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ABSTRACT

The problem of start-up for a large size tokamak
plasma is studied with a moving limiter. The plasma
“ransport with the presence of the electric field dif-
fusion and heat conduction losses is investigated
analytically by the separation of variables during this
early phase of the discharge. The results are then
applied to a TNS-size plasma. It is shown that a moving
limiter may help ameliorate the possible problem of skin

effects on the current profile.



1. INTRODUCTION

In order to avoid the skin effect on the current profiles in a
large, ohmically heated tokamak plasma during the early phase of the
discharge, a moving limiter is one of the proposed1 alternatives to
the solution of the problem. Since the plasma column expands by the
controlled moving limiter, a desiralle current profile may be obtain-
able. The plasma transport during this expansion phase 1s studied
analytically by means of separation of variables2 which are time, t,
and p = rzh(t), where h(t) is only a function of time. This approach
allows one to investigate the plasma discharge parameters in terms of
the limiter motion as well as the plasma current rise. Furthermore,
the plasma parameters such as poloidal betz, safety factor, flux func-
tion, etc., are obtainable by making use of the analytical solutions
of +<he plasma temperature and the current density.

This problem was first studied extensively by Bardotti et al.2
in the case of pseudoclassical type losses assumed for the electron
heat conduction. In this paper, we extend their approach by intro-
ducing a model heat conductivity coefficient which in turn provides a
general view of the problem of separsbility. We also observe other

possible cases.

In this report, Sect. 2 describes the plasma model and the basic
equations, Sect. 3 outlines system equations and Sect. 4 gives the
evaluation of the plasma discharge parameters. General discussions

and an application of the results are included in Sect. 5.



2. PLASMA MODEL AND THE BASIC EQUATIONS

-

As was done previously,z"> a cylindrical plasma column is adopted
so that the computational complexities du2 to toroidal geometry are
avoided. Furthermore, we assume:

1) The plasma density is constant and uniform, and the ion density,
g is equal to the electron density, ng n=mn, =mn.

2) The species have the same temperature, T. On the border of the
plasma which is defined by the limiter position, rL(t), the temperature
is To and constant.

3) Except for the heat -onduction losses, all other losses are
ignored.

4) The electrical conductivity, g, is classical and vanishes

outside the limiter.

In the model it is assumed that the plasma radius 1s being increased

from zero to Ty (t =T) = a durirg t = T (see Fig. 1). Thus the basic

equations for r < rL(t) are as follows (mks units are used):

Y

B
E__P g- - 1172
5 = 5t J =cE, g = kT

1)
2
_13 T _J° _ 13
W= T gr (er)’ S T r o (Tay)
where Q. = —nx-%% is the radial heat conduction flux of the electrons.

Here E is the toroidal electric field, Bp(r, t) = ul(r, t)/2rr is the
induced poloidal magnetic field due to the plasma current I(r, t) =

2m Jg dr'r' J(x', t), (M = 4w x 10-7 H/m), and J(r, t) is the toroidal
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current density. For the heat conductivity coefficient, ¥, we introduce

the following general form:

-
X{(r, t) = CnYr"s/Iqu/z.

Here C is a dimensional nunerical factor that depends on the plasma
parameters such as toroidal magnetic field, major and minor radii, etec.
The values of s, p, and q are determined later on.

The analytical solutions for the current density and the temperature
are sought by introducing two variables, t and p = rzh(t). In the
following section, the separability condition and the resulting system

equations will be discussed.

3. SYSTICM EQUATIONS

Let us start with assaming current density profiles of the form

S, t) = I (%51 F(p)

with an arbitrary constant, a. Here, at time, T, the limiter reaches

the final plasma radius, a; thus the plasmna current on the magnetic axis
is J. 2 J(r = 0, t = T) since F(p = 0) = 1. With this in mind, the

system equations are obtained by making use of the variable transformation
as well as imposing the separability in t and p on Eq. (1). The result-

. 3
ing equations are then as follows:

) s

Ife)(z_a)/s Z’%

T(r, t)

I(r, t)



(p-3)
Y h ~3(1+20)/5
Cn f t
v(r, t) = . P(0)
(wa)p qu7§ T)
-2(1-32)/5
h(t) = h, (%)

the functions F, G, Z, and D must satisfy the following set of

nonlinear differential equations:

dp 2 s+1 2 10a

) p 3/2 - -y
Ef_:ipsc(q”l)pz + S [(2 “)-g——(l———~\1"]

dG _ .a/2 2P
5 = S6 ps+1 (2)

9§=[DG-FGS/2 - (1‘3“)56‘1/22 ]/A ,

dp 1 + 20

where

S = pP g% with P = p5/7P6%2 |
Here, Tf denotes the final value of the temperature on _he magnetic axis,
i.e., Tf S T(r =0, t= 1); pf is the final value of p at the edge, i.e.,

Pe S p(r=a, t=r1)-= a2hf and Zt = Z(pf). The constents A, D, and T

are given by

6 {1+ 20 2
D=z ( 5 )anhf/qu



h (P‘S"'l)
A= (4Co V70 —E—
f'f ' f (J )PT q/2
7 f
2 .
T = Hogca q/pf, with
= 1 372
C'f - ]\Tf -

The separability requires that a, p, q, and s must satisfy

a6 - 6s + p - 2q) + 3 - 2p+2s ~q =0, (3)
This relation gives us some of the acceptable scaling laws for x(r, %),
which are listed in Table 1. As we see from the table, the pseudo-
classical scaling is

PS PS
X

where pp is the poloidal Larmor radius, Ve is the collision frequency
PS |, .
of the electrons, and Co is an enhancement factor. In this case the

constant C becomes

C

0 H .

PS PS 411)2 n
C x

with Czs ~ 1 - 10. Moreover the system constants D and A have the
expressions
2
TP
_{ ¢n fof o ) _ ~PS{10 o
D -< 2 2 (J v 2g) A A =Gy (%T'D 1 + 2 )
ua 5Jf

Here, we have made use of the fact that the toroidal conductivity is
given by g = Znez/meve, where My and e are the mass and the charge of

. . PS .
the electron, respectively. The divergent nature of ¥ =~ on the magnetic

axis can be avoided by introducing



2
M_/r\ _PS
ME(E) K exs =2 a1, 022,

which is calied the Mercier scaling.4 We are, on the other hand, limited
by the value of o, which is 1/3.5 The enhancement factor and the system

constants in this case become

) 8]
M = ¢"S/a” ana

M (2 \2
v= ) (SD)/pf.

M . . .
Here, Co depends on the inverse aspect ratio, € = a/RO by the relation

2000, € < 0.2

C =
0.2V
2000 (—é~) L€ > 0.2

where R0 is the major radius of the torus.

Table 1. The heat conductivity coefficient,

x = Cn'r2S/1Pr¥/2,
o} S q p X
. 3/2 .
Arbitrary 0 3 0 1/T , neoclassical
Arbitrary 1 1 2 r2/I2T1/2, pseudoclassical
1/3 2 1 2 r4/12T1/2, Mercier's like




In the case of neoclassical scaling, we have

N

X zx(s=0,q=3 p=0 =,

. N
Assuming thet X C. Cgcazve,then cNe Ccha2 where K = veTs/z. The
system constant A then has the form

3 o (1 + 20) '’
where kK = 2 nez/me.
. P
We should note that the enhancement factor, i.e., Cgc, Cos, Cr s

has to be chosen so that the plasma temperaturc becomes To on the limiter
at any time. Furthermore, it is clear that Table 1 may be extended to
account for some other possible empirical scaling laws as long as the
choice of a, p, q, and s satisfy the separability condition, Eq. (3).

In order to complete the scheme of obtaining the functions F, G, Z,
and S from the set of differential equations given earlier, the boundary
and the initial conditions must be stated. For r = 0 we should have
F({0} = G(0) = 1 and Z(0) = S(0) = 0.

For a moment let us discuss the time evolution of the limiter. The
limiter motion may be found by imposing the condition that there will be
no temperature discontinuity on the border of the plasma at any time.
This condition is satisfied by the temperature equation as

T(r = r,, t) = constant = To ,

L’
which implies that

T ~-2(1+20)/5
= 9(t
G(DL) - Te (T’)



Here p, = ri(t) h(t), which defines the evolution of the limiter

L
position, rL(t). This, in turn, gives us the initial time, to’ which

sets the limiter on the magnetic axis, rL(to) = 0. Since G(0) =1,

. T \5/2(1%20)
o_{.0
T (Tf >

which defines to.

In the coming section, we take up the problem of relating the

system parameters, i.e., Q, pf, and D to the plasma discharge parameters.

4. PLASMA DISCHARGE PARAMETERS
Knowing the time evolution of the current profile and temperature,
the following plasma discharge parameters can be computed in a straight-
forward manner.

1) The plasma current, Ip(t):
(2-0)/5 2(p;)

()

a, t=1T) = ﬂJfo/hf

n

Ip(t)/lf

with If = I(r

i

2} The normalized safety factor, qs(r, t)/qs(O, t):
From the definition of the safety factor qs(r, t), we find

q.(r, t) -0,
q—zm—,—t)—: 30

For t = T, this yields

qs(a, T) Pe

S(0, T) Zf




3) The poloidal flux funcc¢ion, Y:

3 - ' ', t), and from the definition of B_(r, t),
Since V¥ RO 4: dr Bp(r ) n b )

we get
R J (2-0) o
PY(r, t) = —~—4°hf(%> % dp'z/p'.
f

4) The skin time, Ts(r’ t):

We find

2T

T o_ 2T _ 2 - ay._ Z2(p)
T = 5t (1 3a) (

1 - 30/ j;)odp,z/p.

- 1
since 1/TS T
5) The averaged poloidal beta, ép:

a
2n _% ar2nrT(r, T)

B = or
P (B°/2m)ma’
- Df

/B = dpG G, ,
B/ {)' G (0)/P Gy
where

2nTO To

Bp = = T—' and

2
o Bf /2u B

G. 2 G(r=a, t=1) = TO/Tf .

1l

Here we have used B

— 52
£ qu/ZWa and T, = Bf/dun .

6) The electron energy lifetime, Te*
%n frdr%' T(r', 1)
0

Tp(r) = — or
dr'r’E(r', 1) J(x', T)

S

0
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'%pdp' G 3 2
TE(I‘)/TE =5 with T, T3 Tf/Jf/of .
£ Jb do! F2/53/2 f

7) The transformer flux, wtr:

Assuming that the transformer coil is located at r = b, the

glectric field at that point is

1 awtr

T T
o)

From this, we compute wtr for t = 1, which takes the form

Yir 100 [1 ) G(l-a/Z)/(l+2a)]
uRoIf (2 - oc)Zf f

1 Pe
27 fy* dezso

+ 14n(b/a) +

5. APPLICATION AND DISCUSSION

Before the results are demonstrated on an example, it is convenient

to carry out the computation in tcrms of Bp s Gp» and n, which is
o

defined by

n = At/t, with v, = t(T,/T )l'sp o .

B B B" f f

Here At = T - t0 may be calied an opening time of the limiter. For

most cases, it is reasonable to assume to/T << 1, so that the system

parameters become

3 a _4_0-—&—0\1.53 0.4
Pe=17 |3 1T+ 2 9 ,

o
H;
!
FS
o'“
w
)
o
A
-
el+
B
S
|
v
QO
=1
o
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G. = T, .
8p / Tf/ B
The last relation gives us the value of the final temperature, Tf,

on the magnetic axis.

We illustrate the results on a TNS-size plasma with a moving limiter
that starts from the magnetic axis and reaches the full-size radius at
the end of discharge. The Mercier-like scaling is assumed for X during
the computation, since the pseudoclassical scaling case 1s vastly
explored in Ref. 2.

The typical device parameters are: R, = 6m, a=1.25m b=1.5m,

g (r =a, t =71) =4, n=6x 10%° m-3, and the toroidal magnetic field

is 8 T. The system parameters used for the computation are B
(o]

= 7 =
g = 2.3 keV, I, = 2.6 MA, and

TO = 64 eV. After having solved Eq. (2) numerically, the findings are

"

1.8 x 107% and n=5x 10'3, which yield T

presented in Figs. 2-9 for J(r, t)/Jf, T(r, t)/Tf, qS(T, t)/qs(O, t),
x{(r, t), Ip(t)/lf, T/Ts(r -~ 2, t), Y(r = a, t) and rL(t)/a. For this
particular case the limiter opening time is set to At = T = 2.3 sec, and

the other plasma parameters found from the computation are B_ = 0.122,

X = 16.5 mz/sec, Y, = 29.5 volt-sec, and TE(r = a) = 0.284 sec.

tr
Since we have a current profile peaked off-axis, we can demonstrate

the effect of the moving limiter by adjusting the opening time. Fig.

10 (a, b) shows the final forms of the current density profiles for

the opening times T = 2.3 sec and T = 4,77 sec, respectively. We see

that the slower motion of the limiter has a tendency to give rise to

a profile peaked farther out. That is simply a result of gaining more

time for the plasma temperature to grow appreciably in the central part
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of the discharge. We should also note that the transformer flux for
T = 4.77 sec is about 34.5 volt-sec compared to 29.5 volt-sec for the
previous case. This also indicates that having a moving limiter may
prevent the system from the deposition of an excessive amount of magnetic

energy and reduce current density skin effects.
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