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ABSTRACTY

The relaxation times necessary to establish chemical equil ibrium
among different hadrons in hot, dense hadronic matter are investigated in a
statistical model. Consequences for heavy ion collisions are exploited in the
framework of a simple reaction model. The possibility of Bose-Einstein pion
condensation around the break up time of the nuclear fireball is pointed out.

AHHOTAUNA

B CTaTNCTHUECKOR MORE S HIYUYANTCA BPEMA PEeNAXCANRR ONR YCTaHOBMeNNA
XHMEY@CKOT'O PABHOBACKA MEXIY DAMUMMI ANPONAMA B ropaveM, NAOTHOM &ARPOHHOM
nemecTde, PACCMATIRBIDAKTCA CAEACTINN VIR MPOUECCOP CTONKHOBEHNA TANEIJMX HOHOD
» paMxax npocTof Monesm peaxiumy. Bo3MMxaeT BOIMOXHOCTD XoMaeHcaitnd Bore-3fun-
Tefilla NROHOP HA KORLY pacnana afnepHoro $aneptona.

KIVONAT

Porrd és sirl anyagban a kiildnb8z0 hadronok kizbtti kémiai egyensuly
be&llésihos szlikséges relaxicids 1d3ket vizs &ljuk egy statisztikus modellben.
A nehéz ion Utkdzésekre vonatkozd kivetkezményeket egy egyszerll modell keresté-
ben haszn&ljuk ki. Rémutatunk a Bose-Einstein pion kondenzécid lehetSségére
a maganyag-tlizgolyd szétesése kirili pillanatban.
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1, INTRODUCTION

In most models for energetic heavy ion reactions it is
assumed that during the reaction a hot and dense matter is formed
from all or a part of nucleons of the target and projectile
nuclei.l'2'3/ For some time in this hot hadron matter there
are interactions between the constituent particles, but as the
time goes on this fireball explodes and develops into a system
of non-interacting fast moving fragments, In the first part of
the 1ife of the fireball the energy concentration is enough for
the production of pions and resonances, therefore different sorts

of hadrons coexist. Even if thermal distribution is /at least
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approximately/ assumed for the kinetic energie; of hadrons it is
an interesting question to answer whether the time js enough for
establishing chemical equilibrium between the concentrations of
diff erent hadrons. /Speaking of hadrons we always have in mind

also hadronic resonances produced abundantly af high enough energies./

The main purpose of this paper is to clarify this situation by
determining the reiaxation times necessary to establish the chemical
equilibrium for the different hadrons, In Section 11, and I1II, the
relativistic statistical equations are given for the chemical
equilibrium and for the time development of systems not being in
chemical equilibrium. In Section 1V, the concept of the statistical
approach is incorporated into a simple heavy ion reaction model,

The discussion of the results is contained in Section V,

11, EQUILIBRIUM MIXTURES

Before starting our considerations concerning hadro-chemical
reactions we collect in this Section a few remarks about equilibrium
mixtures of relativistic ideal gases. The equations of state of an
equilibrium mixture of relativistic ideal gases in the Boltzmann

limit are the following_h/:

Tp=v = A QP (2.1)

8’2_ 3‘- Z,'mi’."i. R(mtp) ,
< <

Here we use /as in all what follows/ the system of units where

t‘c - &Boltzmann’ '1 + The index A4 denotes the different
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components of the mixture with mass /M; /below we shall have

4
- x,N,A’e‘te. /. P-Tr is the inverse telpera_turo,“:',
is the partial pressure of the component 4 and s"-' is its

/number/ density. The total relativistic energy density is denoted
by &/ including the contribution of rest masses/, é;_ is the
energy density of the component 4+ and A;’ is its ahsolute activity
/fugacity/. The conditions of the chemical equilibrium can be
formulated in texms of the quantities A-‘; /e. £. Sections 111.-1V,./.
The quantity CL‘ is the /spin and isospin/ degeneracy of the
particle state with index 4 ° d-t. ‘(2;‘; *‘)(Z-I¢*") where ¥, and

I; are the spin and the isospin, respectively, The functions

Q‘.‘ and ’R introduced in Eq. (2.1) are defined as

QA= iz Kyl
(2.2)

where k,,(x) is the modified Bessel-function of index p~ . As it
can be seen from Eq. (2.1) 'R("M‘(S) is the average energy per

partiicle for the component i measured in the unit M,

In the non-relativistic limit ””;’{&—’00 one can use

5/

the asymptotic expansion

K},m-j——;—-’—: e”‘[pg; (p-F +} | .3)

This gives

%’& @
QJ@)’-(%F) e (4+ 4‘ )

Rim ) = ,1__ (2.4)
LS~ S
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The Boltzmann limit corresponds to the case of small occupa-
tion numbers of states in quantum gases, The quantum corrections
to Eq, (2.1) can be determined from the corresponding equations of
state for relativistic quantum ideal gases. We note, however, that
such equations are not unique as their form depends on the conven-
tion for the quantum counting of states, The usual "box quantiza-
tion" /i.,e, periodic boundary conditions/ gives the equations of

statebl /for simplicity, in the case of a single boson component/:
3 % )
J= mC(2emB)  GV(A mpE)
-3
-Pf-"’ m3(ﬂxm@~) GS)(A\M(;)) (2.5
e = mt (2w [ QA )+ 2565 A |

)
The functions & are difined like

"
g‘/‘f’ (o) = 5= \< (yy) . (2.6)

‘.'L‘ 5*4

()
For fermions Q has to be replaced by
«) C(u‘.)
Pl =~ 6, (-x4) . (2.7)

Another convention for state counting based on the Newton-
Wigner localizattion gives instead of Eq, (2.5) the equations of

state which can be casily obtained firom the partition function

in Hef.7/ a
s ’l:n(wf) G’i(i;(;p‘)) )
= e O 5p) g
au ’"‘["dr F)ﬂnbrup) +Pp J%P)&VQ(MP]'




The functions Gr(‘) are known rrom the non-relativistic case"/,

namely

@ . 4
Grms 2 [ x

"cﬂ (2.9)
For fermions we have again
_ (2.10)
‘—; )= — Cr(—x)

instead of Q’,(X) . The tunctions D(x) and 'I?'Q(-l) /the latter
denoted in7/ by Q)’_BE(f) /  are defined us

s %
B l?‘ T4k, )+ K00 (x+£)]
2 Farzkeol™

@.11

% 3 K,(-c)*%? A %,
'U'Q(K)- Q‘x) X l: Al(o(x),,_}(‘(x)(,ag,)] .
It can be easily seen that in the Boltzmann limit, when in Eqgs.
(2.5-6) or (2.8-9) the 3,-4 terms dominate both Egs. (2.5) and
(2.8) are reduced to Eg. (2.1) o The two forms coincide also in the
non-relativistic case MF“’” hence the non-uniqueness is

reflected only by the relativistic part of the quantum corrections,

111, HADRON REACTIONS IN NON-EQUILIBRIUM MIXTURES

In this Section we consider high temperature mixtures of
hadrons /nucleona, pions, A ~-resonance, g - resonance stc,/ in
thermal equilibrium, The temperature will be taken high enough for

a reasonably high rate of resonance production i.,e, of hadrcnic

|
|
!
|
§
|
|
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reactions transforming different hadron states into each other,
/This situation is similar to ordinary chemical reactions therefore
the name "hadro-chemical reactions” is appropriate for it./ Actually,
this means temperatures in the range T = 50-150 MeV, The lower
limit is fixed by the resonance production threshold wheareas the
higher limit corresponds roughly to the Hagedorn-temperature 'T: 8/.
Near 7: the rapid /exponential/ rise of the resonance state
density implies the dominance of highly excited, highly degenerate
hadron states resulting in a phase-transition-like phenomenon
/maximal temperature in the statistical bootstrap lode19/ or a
second order phase transition from hadronic matter to "quark-soup”
in the quark uodello//. In the present paper we do not consider the
T‘&’T; region restricting ourselves only to the lowest

resonances /we hope, however, to return to this interesting problem

in a future publication/.

As it was stated above we assume thermal equilibrium with
hadro-chemical reactions still going on, that is no chemical
equilibrium, Our main interest will be just to study different
reaction rates and the time development of the densities of different
nadrons, Such an approach is legitimate if thermal equilibrium sets
in earlie than chemical equilibrium, i,e, among the collisions
establishing equilibrium the elastic ones dominate, It can be seen
from the equations below that, at least at large baryon number
densities /relevant in heavy ion collisions/ and if the momentum
distribution is already near to the thermal distribution, this is
indeed the case, The reason is the large increase of nucleon-nucleon
elastic cross-sections with decreasing energy helow 1 GeV/e

lahoratory momentum,




Mathematicully, we approximate the hadron gas by a multi-
component, relativistic ideal Boltzmann-gas /the thermal equilibrium
equations of which are given by Eq.(2.l)/ﬁ Implied by this assump-
tion is that the gas is sufficiently dilute such that it makes

‘ seLse to speal about individual collisions with the saae cross-sec-
! tions as measured in hadron scattering experiments, However, this
assumption can hardly be fulfilled in situations occuring in heavy
ion collisions, In spite of that we helieve that one can obtain at
least order of magnitude estimates based on tiis extrapolation,
Such estimates may be useful also for the construction of a correct

/relativistic, quantum, .../ theory of the processes in high density

hadronic matter,

Once the use cof the S-matrix for individual collisions is
allowed /at least approximately/ the situation is not as bad as
one would thinx at the first sight. Namely, taking into account
resonances means to include an essential part of the interaction

11,1}
among hadrons ’ 2/.

This is supported by the experimentally
verified "duality" property of quasi-two-body reactionsl3/. Accord-
ing to duality the non-diffractive scattering amplitude /dominant
in the energy range relevant in nearly equilibrium hadron gases/
can be approximated /in the average/ by the sum of the direct
channel resonance contributions, A basic assumption of the statistical
bootstrop model is, in fact, that the strongly interacting hadron

. gas is statistically equivalent to a free /i.e. ideal/ gas of the

' 9/

resonances”’’ ,

In thé present Section the general form of the equations

governing hadro-chemical reactions will be derived under the ahove

|
|
| |
1




assumptions, Here only the simplest situations will bhe considered,
The specific particles and sreactions relevant in heavy ion collisions

will be dealt with in the next Section,

First let us consider a gas consisting of a single sort of
neutral ground state hadrons /ealled " & -meson”/ and a single sort '
of neutral resonances /called " Q -meson”/, The only reactions
considered /besides elastic scattering/ are the formation and decay

of the Q ~-resonance :

QerMT (n=2,3..) . G-D

The total width of Q will he denoted by r and the prohability
of its M -pion decay by W, | For this latter we have the

normatization condition

- A
4‘-EQ. " : G.2)

The summation over m here is, in fact, not infinite as multipion
decays for ’YL>/Y)19 /'W‘:r are kinematically forbidden / '”1? and
Mn' denote the masses of Q - and 7T -mesons, respectively/,

15/,

The total width of the Q ~-meson is”’

ro -3 A (dh dpe g 'Slop ).

a1 ™ w V0P 20

(3.3)
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where P is the four-wmomentum of Q and 1%,m,fh_ are the
four-momenta of the decay product pions, The partial width r‘“

pives the N -pior decay probability like

T
mQ;-—T;—— . (3.4)

We use invariant normalization of states, hence the invariant

wmplitude FE: is defined hy

4 ok
- pmlSlp7 = ~i(ax) S(P—rﬁ-m ) T, 5.5

}

where S is the S-operat.or.

We always assume that thermal equilibrium is establisiied
faster than chemical equilibrium, /This is due to the dominantly
eclastic character of the average collisions in the gas./ In the
aresent Section we also keep the temperature fixed. The normal‘zed

momentum distribution of particles in thermal equilibrium is the

following:

3 3 4 -fpe
wt.(f)dfmz(l’f) QJf‘)g e (i=%9). (3.6)

Hevre, and in what follows, the four-m>menta will bhe specified in

the rest system of the gas, therefore e.g. is the energy in

Po
this system, /The function CQifﬁ» was defined in Eq. (2.2)./

4 g
The number of Q-»—v‘tit decays in unit time and volume is l),lﬁ/:

2
@x) A 7.
o We () — S(P—ff“ ’fn)zﬁ,z%..zf;,, df B"'Af"* ' (.7)
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Simitarty, the number of the reversed proeesses is /assaming
Lime—veversal invarianee/:

A

In eguilibrivm these numbers are egqual for every M1 hence the

densitios salisly:

PR SR(Y (¢=7159) . (.9

Comparing to Ky, (2.!) y 1S owe have pnl now d-1;‘=- 4, the umulivl jon
o chemical equilibrium /in the absence of any conserved quantuom
numhers/ is:

A,,;"" 1 (4 =7, 0) (3.10)

/NoLe that For additively coaserved quantom numbers, like (z.,_.

haryon numher B . the condition of chemieal equilibriom is
’ e > . /
A,“"‘:Ab ;A= N.l\.) o/
Outside chemical equitibrium the Q and I~ densities
are changing in time, From Fgs, (B.T-H) it Tollows easily that
a.v, k) W (m P) o ~
R 5 -
._o\ig,nv(’cﬂﬂ D Ty Kb @

¥ el X ) Rolp
TR R D) O
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The other simple case we consider in this Section is that
of a single component gas /ealled again "pion” gas/, where particle

creation is possible due to scattering processes like

The general case MIT > NIT with %72, will not be
considered here for simplicity. /The previous case contains, in
fact, also such k nd of processes through resonance intermediate
states,/

The secattering cross-sestion of the process l‘J’C —»NIT is

l’l/:

given by

z
d (zﬂ 5( 2 Pi T Pz Ty AP A%"' o
T OB R )zm e 619

2
where A is the centre of mass energy squared: A= (1,44.1:'_) :

and the function _Xd“, (») is given as

A W =T 2= fmsm Flla-(m-m ] (.14)

o o' ol')
The invariant scattering amplitude ‘4_’“ is defined in analogy
Wltht, Eq. (3.5)- '
The numher of scattering processes 27 —Hmo in

15/,

the pion gas in unit time and volume is




e A ————
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"'?m s 3
\) W, PA)W (P’} 8‘(?4’1’1 P T’m.z)n— %o——%—r—d:n .
(.19
The reversed process goes like
3 3
% . (Ia:) - d d ma2
\zn.' WK(PD - w’(q’“"’-)ll | 8(?. P[rs‘ Fuu)zp,: 2P~zo ’ (3'"’)

The condition for chemical equilibrium is given, of course, again
by Eq. (3.9), and the change of the pion density in time is

determined by the equation

dv ) _ Z“_“ (41—2.)[" G:) @ ]

4y B-4my) 5. K= P
(§m,3 16x* J‘ 2 K (1% ) Raf)

(.17

The notation Q,p; (P) : is used here for Q{ fﬁ) in
Eq. (2.2) when the maas: M, is replaced by {3 . In deriving
Eq. (3.17) from Egs,(3.15-16) the following identity has to be
used: cf (5( f; }
£ et pas .
A SLheps-l-

(5 (0= I%vx@ 6.19)
Hf%) Q B ==z 45 .
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The appeavance of the Facter Q(;(P) in the integral of
the right hand side of Eq, (‘;.l?) is remarkable. For large c.m,
energy [ the Tunclion Q{; ((5) behaves according to
Eq. (2.l|) like ~ e--r;“’ . As the cross-sections do not
rise appreciably, this means that the integral is cut off !
oxponentially for ﬁ > T'“(‘;A « Therefore, scattering
processes with centre of mass energies much larger than the average
thermal ecergy are unimportani in hadro-chemical reactions /at least
when the momentum distribution is nearly thermal/. This leads e.g.

to the dominance of elastic N’N scattering in the temperature

range 'T_'N 50-150 MeV we are considering.

In the lollowing Section ecruations like Egs, (3.11) and (3.17)
will he adapted to the physical situation in a simple heavy ion
collision model, A numerical study of the time development of the

solutions will aiso be performed there,

1V, THE HFAVY 10N REACTION MODEL

The main purpose of this paper is the investigation of time
acvelopment of the compressed and hot nuclear matter, For the
description of the nuclear reaction mechanism part of the heavy
ion collision process a very simple model is used, Only central
collisions bLotween heavy ions of equal masses are considered, The
exact treatment of the problem is naturally impossible, The model
presented here contains crude approximations but it is helieved

to describe the main properties of the reaction,

The reaction is described as the collision of two inter-

penetrating spheres originally filled with cold nucleon gas, The
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assumptions of the model are summarized as follows:
a/ The target and projectile nuclei having A?“ A;.‘A
mcleons originally are represented by moving spheres of volumes

V,

f-vt /eonstant in time/. Their sum is denoted by Vo" Vr.fvt .
! Before the collision the number density of the cold nucleons -3,,
is uniform within the two spheres, thus J,,\/o‘*' lA .
As the reaction proceeds the two spheres begin to overlap, The
cverlap volume is denoted by VP*’“:) . It is assumed that nucleons
ontside VPQ; (t) /the "collision zone"/ are not influenced, thus
retain the original Jg, density, The cold nucleons within the
collision zone are assumed to have a spatially uniform time
dependent density \’o(f) in the whole volume v?t-a:) .

b/ As the spheres representing the target and projectile
nuclei begin to overlap the nucleons in th begin to collide
with each other, There are elastic scatterings as well as A -
resonance production, The scattered out nucleoﬁs and produced A"b
are considered as the constituents of a hot gas cloud at rest in
the c.m, system and with given temperature 'T' and volume V? .
The overlap of volume vca with the volumes of nuclei is denoted
by vgrt . In the first period of the reaction
Va(t)=vpt(e)—_-.vgrt(+). The particles of the cloud collide with each
other and with the fast moving cold nucleons, too, During the
collisions resonances are also produced, hence the hot gas consists
of nucleons (N) , & -resonances (&) , JC -mesons (7T) and

© -mesons (@) .Denoting the "cold" nucleons in the original
nuclei by No the 1ist of different "inelastic" /from the point
of view of the model/ processes we take into account is the

following:

N,No—» NN No N,—» N A&
NoN —» NN NeN-sNB&  Nex—sNx 1)
NN <> N& AerNx hadth
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¢/ The hot gas cloud is described as a multicomponent ideal
relativistic Boltzmann gas, However, the interaction bewtween the
particles is accounted lfor to a large extent by allowing the pro-
duction of resonances /c.f. previous Section/, The gas is assumed
to be in thermal but not in a chemical equilibrium, /This corresponds
to the assumed predominance of elastic collisions,/ The time evolu-
tion of the densities of different particles are described in terms
of statistical equations of type given in the previous Section
taking into account the effect of chinging volumes, The time
dependence of the temperature of the gas is determined from an
equation expressing energy conservation,

d/ At the moment 1;“' of maximum overlap of the colliding
spheres ( Vq(fm)‘VPt (’L‘M)=\l9ft ({“")GVP‘\‘{') the gas
decouples from the inecident nuclei and the volume V%(f) of
the spherical gas cloud begins its adiabatic expansion, For the
approximate description of the expansion the time dependence of
the radius R®) of the sphere is borrowed from a simple hydro-
dynamic modell7/. The kinetic energy of the hydrodynamic flow is
subtracted from the total thermic energy. The densities and
temperature are kept spatially constant within V% also in the

expansion period,

The division of the process into an initial "ignition period”
/when nucleons are scattered out from the original cold nuclei and
the hot gas is constrained to the overlap and a subsequent
"expansion period” when cold nucleons are already ignored is, of
course, somewhat artificial, In reality the two processeq g0 over
into each other smoothly and there is some overlapping pe?iod. Our

strategy is to consider the two dominant processes separately for

simplifying things,
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Colblecting these idea
heavy don ecollision proces:

d,, CRE AV, (&)

At v,,(t) '}';lt (

~ Vgpe®) 9, 9,

one oblains For the deseription of

the following sel of equations:

on (-4

o) Yt L® e

Voo e & UM Ty g T e ()

dvo AVH)

@+ Bt 3B 4@

w4 G
dt V?!(’) dt V(’(ﬂ d do NO
» Y vy g, Vapt ®
C“‘ON_'__t)J{{')J '
Vo d, Tdy Vatt A, dy e
(i_(fL P LA
drAQ an (P) d '6' r‘) N, ANX +
. ( RN N O T N A o
A G QP A d, Q) Crne
A ® LA AV o84 ot ® g v
dt v? {,’L_/\ dt V9 ) do —'a—:o A,oo
Pt wl) 5 o JON =
Wi d, "
) Ju(f_)_” “_’_Et)_ CA,ANW—

dAQb(’ Cln(\)ﬂ“;) d Qﬂn

(n.3)
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. ( RN N G I ) .
dNQ"(ﬁ) dAQb(P) CluQu(f‘) ad NQ..(P) A,NA

(s.%)

duef®) _ dv, (9 ®
dt v.,(e) at =t [ d‘?@},"‘u—
- zw .3 ({—) < f{—) 4
(d QK“)) 41(" (d IQK(F)) 1 Cx,g‘ﬂ.’ +
+ ( alt) Jm < (t)

dAQA(f) (P) d Qx(p)) Cxt, AN

(1.5)

Wiy gt b - ?

4
[4 o %0 (d g:fﬂ)r ( d%gfm) ] G, 9%

dv tf) 1 g |

(1.1

S oy
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the conservation of enepey  yields:

) ROAL

| _ ('l.?
A 4g%(+)] /[ 5 mERfm, ‘%)J(t)]
- / 1""IL| IQ

The definition of symbols in these equations are the following:

\’o(f') Dnmber density of cold, fast moving nueleons in the

projectile and Larpget spheres of volume V, ;

U
’JN(H,QA&'),JKW))\J?("-’): number densities of ot nucleons, 84 5 pions

and Q'/S in the V, (’b) gas volume;

df "'N)d d,‘,d : deeeneracies of the components;
d‘n?‘t'm db"‘gidx’s adg"g')
4 7’1 &
P' -i‘_-r'_ t with heing Lhe temperature of the gas and t.he

Boltzmann conslant;

E () ¢ the kinetic energy of the hydrodynamic €low connected

with the expmsion of Lthe gas sphere in the decaying

phase of Lthe reaciijon;
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Q(""ip : the average energy of a particle in units of ils mass;

R'(!) : derivative of R with respect of its argument;

-4
L a
Qi(P -mg (zx ”‘lp Kx, (”iP) : the single particle

partition function;
K“(l) : the Bessel function with imaginary argument;
Moy : average number of pions originating in the decay of

w : probability of the . pion decay of a € 3

Cope = 2 (20,"" + 26M%) [(3—4m2) /3,

NN N>
Co,oN = (6;' S ) J(44~"4‘m;) 4&N /(64'”1: )

Nx
CoNt ™ <5 J [/S‘ﬂ_— [m + m‘)l][h; (w..—m,S ]/?54’"‘;)

N
Chyo0 = 2’(20:'” *°;1N5>J (A4—4m:)/44 )

NN
Cnon = S J (éln-—- 44\4: )/54~ /(w: 44)

. L o .

e



file:///b-4mSVb

- 20 -

Coon = GiN“ mu - (my *"“x)l][ﬁ,t - (""N - ”:t)l] /(1":54)

, CN,&NR“ = ﬁA k‘(”a f)) /Kz ("‘AP)
! co d
1 A 2
Ch,Na = T S i (8-4mg) s K, (38) 53 (3) ,
(w2

NA
Ca 00 = 2°,' J(Afl"”’:)/'fq 1

—

CA,ON - 75,"& \l(ézu—é”:ll) '54,‘/[”’:4) )

Ca,ann = Cuannc »

Cana= Cyna
Cxom = T—Z R® Ky (meP)/ K (meft)
Cx,anx = Cy anx |

cq'gk - C",gx_ ')
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V,

apt (t)

the overtap volume of the hotl pas with the faxt movine

tareet amd projectile spheres;

Vg

tm’ Q°/0:ﬂ-2,

and projectile spheres oceonr;

f{) the volume of Lhe hotl pgas;

the time al which Lthe maximal overlap ol tarpet

"‘«1 is the 1elative

speecil of Lhe two spheres,

4
Oy TE g [mgr B}

Aceording o assumption A—), the time dependence of volume V, {f)

i given ax follows:
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The radius of the isentropically expanding sphere of wniform

-/

densily has Lhe fime dependence

2 4/-
RE= B (5 8)

(1.7)
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The kinetic energy associated with this hydrodynamic flow is \7/
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where E+{ is the total epnergy content of the gas sphere which
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cim he Lransformed into Kinelic energy, and
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The kinetic equations were interriated numerically by Runge-
Kutta method, The initial values of the demnsities and of the
temperature were determined by expansion of the equations for small

‘t values and by the prescription that the time derivative of
the temperature shiould be zero at t~0 . The densities multiplied
by the corresponding volumes yielded the number of different
particles as a function of time, They are displayed in Figs, 1-2,
The chemical potentials rl;, for all the particles were also

calculated on the basis of the expression valid for Boltzmann gases.

. PG %@

—_ Ai&)’——/ . (’l.lz)

R, (1)

In order to check the consistency of the Boltzmann gas assumption

the functions Dix) and ‘U’Q({) as given by Eq. (2.11) were

deterllined, too,

According to assumption d/ the development of the reaction is
described by a somewhat different mechanism in the formation /or
"ignition"/ period and in the subsequent explosion period, This
change in .he reaction dynamics is emphasised in the Figures by
inserting gaps botween the two parts of the curves /which are
calculated, of course, continuously/. The dotted curves in the

secl“md part of the Figures show the development of the system in

the: constant volume case: V,(f)— VP ==-Vt fer t> tm .

The continuation by an arrow connects these curves with the corres-

1

ponding equilibrium values /attained practically in all cases
| _23
before t=810 » /.,
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V, RESUHLTS AND DISCUSSTON

The analysis of Lthe reaction model

Fipure 5 shows that, while the pions play a negligible role
al, El 4 $ K0 MeV/nucleon bombarding energy, they have Lo be
taken inte account from about, E] l=—H00 MeV/nucleon, Above the
energy of about 2 GeV/nueleon the highly excited nucleon and meson

states bhecome presumabhly more and more important, Their excitation

may lead to a maximum temperature,

The inspection of Figs, 1-2 shows that the 13 resonances
and pions are produced mainly in the "ignition period” of the reac-
tion and their sum does not change appreciably during the explosion

1
period. The ratio of pions to Ab Jor to Q -mesons/, however,
varies strongly during the expansion, This ratio - if it were
possible to measure il - would give the break up time of the fire-

ball,

The greatest part of the fast moving cold nucleons /especially
in the U+l case/ sulfers scattering Tor the time the spheres inter-
penetrated each other completely, This suggests that in central
collisyons of heavy lons of equal masses all the nucleons participate
in some way in the formation of the fireball, Peripheral collisions
or unequal mass nuclei are clearly less advantageous from this point

of VieW.

On Figs, | and 2 it can he seen, that even before the complete
overlap of the spheres the density of "gas" exceeds that of the "cold

nucleons", Besides, the cross sections are larger for the "cold
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nucleon” - "gas” scattering becouse of Lhe lower energy. These
facts show, that the collisions of the "cold nucleons” with the
constituents of the hot gas play an important role in the "ignition”

of the firoball,

Throughout the whole calculation the Boltzaann limit was
used for the momentum distribution within the gas, To check the
consistency of this approximation, the X= A/D("“F) quantity
which appears in eq, @.H) was calculated for each particle type
and for all time steps, As long as x & , Su that in calculat-
ing G%f!) one can neglect the higher order terms besides the
first term in Eq.(2.9) , the Boltzmann limit is a good approxima-
tion, The calculated values of X were less than 0,1 Tor most of
the time of the reaction, /Large X values appeared only in the
progressed phase of the expansion of the fireball,/ The Boltzmann
approximation can be used therefore consistently in the description

of energetic heavy ion reactions,

The chemical equilibrium

The Figs 1 and 2 show, that the time necessary to reach the
chemical equilibrium is of the same order of magnitude as the total
rcaction time, Theretore, although the ratios of particle numbers
of different "chemical products” don’t reach the equilibrium value,

they are not very far from them,

At the time when the number of A -s plus pions plus twice
the number of @ meSons arrives to a constant level, the thermic
coupling ceascs among the constituent particles, This time can he

regarded roughly as the btreak up time, At this point the density
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in the present model is abow! 0,25 times Lhe overlap density,

ie¢, about half the normal nuclear density,

Is a Bose-Einstein pion condensate formed in.the reaction?

Inspecting the inserls in Figs, 1-2 one can observe a very
interesting point on the plot of the pion chemical potential rt,,_.
versus time. Namely, necar the break-up time it reaches the value

P" = 0,14 CeV i,e, ‘ux: ™My ! This is a singular point in
the present description, If the gas mixture were large enough and
it were spending long enough time in this state then it would
corraspond to a phase transition implying the creation of a pion
condensate, Tn ideal quantum gases this is the Bose-Einstein
condensation, At this point pions could be created without'energy
investment, It is important to note that this condensate is a hot
one! lts existence is not restricied to near zero temperatures, A
remarkable feature is that this econdensation /if it occurs/ is just
in the last part of the fireball’s history, therefore, directly
ohservable, /Events that oceur ecarlier in the fireball’s life are
"washed ont" to a large extent from its "memory” by the later
thermal history,/ This may provide us with a rather unique tool to

study the properties of dense hot and condensed hadronic matter.

The appearence of Lhe condensate ean be understood here as
foilows, In the collision many hot pions are produced, At this time
the system can he described approximatcly as a2 Boltzmann gas, Dur-
ing the expansion, however, the plons have to cool down but for the
lower temperature there are too many of them in the gas phase., As
the temperaturc is dropping the "pion consuming"” processes /like

ws N> 85 ApN—=N+N / slow down very much, Therefore




}

the pions have to be removed by the Formation of a condensate, The
characteristic feature of such o condensation is the clusterisation
of pions in Lhe momentum space. One has Lo realize, however, that

| the intermediate state in Lthe energetic heavy jon reactions has a
short lifetime., Therelore the Tormation of Lhis new Ltype of pion
condensate /different from the much disenssed pion condensation in

19, 20
eold muelear matter 7 /,

is Lo be regarded presently more as a
question towards experiments than a firm theoretical predietion,
The gquestion, how strongly Lthis tendency of momentum space clusteriza-

Lion of pions will manifest itself in the heavy ion reaction is to

be answered by further theoretical amd experimental investigations,
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F1GURE CAPTIONS

Figure 1,
The dynamics of the 11+11. heavy ion reaction at 2,1, 1,4, 0.8
and 0.4 GeV/nucleon hom.arding energies, The number of particles

i and the gas temperature in the overlap region is plotted as a

; function of time., The shaded spheres on the top of the Figures
indicate the geometry of the process: the interpenetration and
eventually the expansion of the projectile and target nuclei, The
vertical dashed lines separate the "ignition" part from the
expansion part. The particle numbers and temperature shown by the
dashed branch of the curves correspond to the case, when no
expansion was allowed after the complete overlap of the two spheres,
The arrows at the end of these curves point to the equilibrium
values of the corresponding quantities. The insert in the upper
right part show the chemical potential, I“._r and activity, A‘.l'
for pions as a function of time, The horizontal line marks the

rﬂ =fmt value, where the possibility of Bose-Einstein

pion condensation appears,
Figure 2,
The dynami~:s of the j**»—l\f heavy ion reaction at 2,1, 1,4, 0,8
and 0,4 GeV/nucleon bombarding energies, The explanation of the
details is the same as in Fig, 1.
Figure 3,
The pion to nucleon ratio as a function of bombarding energy in

the U.+1L and A*’+Af central collisions,

|
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