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1. Introduction

•this paper describes a three-dimensional FORTRAN conputer code (OSC3D) which was de-

valoped to deteralne the nonlinear response characteristics of an HTGR core. OSC3D Is an

extended version of two existing codes OSCIL and OSCVERT [1] designed to predict tbe dynamic

response of a horizontal one-dlaenslonal nonlinear aprlng-aass system and a two-dlaenslonal

aystes Including large planar rotations respectively.

The HTGR core shown In rig. 1 consists of several thousand hexagonal core blocks

surrounded on their outer periphery by reflector blocks. Several Investigators [2,3,4] have

studied the nonlinear dynamic response of these blocks by snalyzlns simple one- or two-

dlnanslonal mathematical models as well am by perforating scale aodel tests with Models

simulating either a vertical or horizontal plane of the core. The present study Involves a

seep advance of the previous atteapts by considering an analytical aodel which consists of

several layer of blocks, etch layer having seven blocks in a horizontal plane. Etch block

possesses two horizontal and two rotational degrees of freedom coupled with the vertical

degree of. freedom, the rotation about the vertical axis being excluded.

Pig. 2 shows a horizontal slice of the entire core. The view Indicates that the fuel

blocks In each layer are arranged in approximately 55 block cells, each cell consisting of

seven blocks. The present analytical study Is directed towards an Investigation of the non-

linear response of one such block cell In the event of a seismic occurrence. The computer

code is developed for this specific mathematical aodel which represents a vertical arrange-

aent of layers of blocks. This comprises the "BUCK MODULE" of tbe core elements which

would be obtained by cutting a cylindrical portion consisting of seven fuel blocks per layer.

In other words, a number of such nodules properly arranged could represent the entire core.

Hence, the predicted response of this module would exhibit the response characteristics of

the core.

2. Model Description

Fig. 3 shows a 'block module1 with four layers. Each layer of seven hexagonal blocks is
arranged with one In the center surrounded by the remaining six. The entire module is con-
tained in a constraint wall having 18 faces ss shown la Fig. 4. Caps exist between adjacent
blocks in any horizontal plane. Each core block In a given layer is connected to tbe blocks
directly above and below it via dowell pins. The bottom aost layer is connected to the
constraint wall via dowell pins- The wall can more with any assigned Input time history.

The basic block element eaployed Is a regular hexagonal solid element with an equal side
length of V and height of '2h\ It is a finite discrete mass having five degrees of
freedoa, rotations about thu vertical axis being excluded. It is modelled with springs and
daapers to simulate the stiffness effects of the finite body at the time of inpact with the
adjacent blocks. ' Each hlodt has sttts of such restoring elements at its top and bottom face
levels. One dowell pin, instead of three as in the case of a real block, is attached at the
center of the lower face at each block.

A basic force algorithm was written for vertical and horizontal plane forces for s
typical layer of blocks. In the case of vertical forces each block has six equal vertical
restoring elements, each defined by a linear r.rlng and a damping coefficient attached to
its bottom face. These and la fact all restoring elements mr* designed to develop a dis-
placement and velocity dependent restoring force when under a state of compression but null
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force when under tension (I.e., under tension a gap forms between adjacent elements). The

six elements are located at the six corner points of the hexagonal base.

In any horizontal layer as shown In Fig. 4, there are eixty separate surfaces for
potential contact between adjacent surfaces. This Includes seven masses with six faces
each and an 18-facad constraint wall. Each block face contact Is simulated by gapped-
restorlng elements attached at the top and bottom of the block, which exhibit only coa-
pressive force to the surfaces in contact. There exists Initial gaps In these restoring
elements because of the actual core block arrangements, two kinds of contacts can occur
during the dynamic motion of the Module: On* between two adjacent block faces and the other
between a block face and the constraint wall face. Thus there exist thirty Independent
lncereleaent contact forces to be calculated at each layer of the block nodule as can be
seen from Fig. 4. In order to calculate these independent forces, the restoring elements

are arranged among the blocks in a definite fashion. The algorithm adopted is shown in
Fig. A. The face identification number of each block and the block identification numbers
are also indicated In the sketch. For the six outer blocks, the face number corresponding
to the block identification number does not possess any restoring element since the force
on this face is calculated from the adjacent block which has the restoring element. Also,
the central block (#7) does not have any restoring elements attached to it since the faces
adjacent to it already possesses these from the outer blocks. Thus only the outer six
blocks with five restoring elements in each need be considered for the force calculations.
Since these forces are equal and opposite In nature, they need not be calculated twice for
individual surface points of contact whenever two adjacent blocks are involved. When the
contact occurs between the wall and a block face, the motion of the wall is transmitted to
these adjacent blocks via these restoring elements.

The dovell pins, three per element In a real core, are represented by a single central
pin having the circular restoring elements with gaps. The pin forces are calculated In a
fashion similar to above. Xnterelement pin clearance is present and the function of plna
Is to keep the column aligned In the vertical direction while however Inducing rotatlona.

3. Governing Equations of Motion

In all the restoring elements, spring constants simulate the elastic properties of the

core blocks. The dynamics of the system is determined by the solution of the set of second

order nonlinear ordinary differential equations. Theue governing equations are given by

Mi*i + Ri (V'"V *!"**** " 'i °V V »)
1 - 1,2.,. H

where

M± - generalized mess
X - generalized displacement of a mass (degree of freedom)

X , X - generalized velocity and acceleration respectively
B. - total generalized restoring forces In the direction of X± of the corresponding msss

T , jL - generalized displacement and velocity of the constraint wall
F. - total disturbing forces exerted by the constraint wall In the direction of X of

the corresponding mass
H - total number of differential equations for a 'block module' under investigation

and equal to (5 x n) where 'a1 Is the nadier of blocks In the module
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Each additional layer add* 35 equation* to the aretes. Each restoring force equation
baa many ten* arising fro* the baae springs, dowell pins, corner springs and gravity. The
governing equations for each mass contain tens from the Inertia effect, the restoring
forces, and the surrounding wall. Input forces.

4. numerical Methods

In OSC3D five second order ordinary differential equations are developed for each mass.

These, equation* fall Into the class of stiff differential equations as defined by GEAR [5].

These five second order equations are further broken Into ten flrat order DDK's. The GEAR,

aultlstep integration package for atlff ODE written by A. C. Bindaarsh (6], was used for

solving these equation*. Use of this method was necessary to ensure convergence and

numerical stability of the solutions and it is a major improvement over other single step

methods.

A prime feature of GEAR 1* its ability to solve stiff ODE problem*. A set of equations

is called stiff if it Involve* both very rapidly changing tern* and very slowly changing

terms, all of a decaying nature. In other worda, the eigenvalues of the Jacobian matrix

have negative real parts. Again the property of stiffness is local, a problem may be stiff

in sow regions of 't' and not In others. The difficulty with stiff problems la that most

conventional methods for solving the ODE'* require Incremental values of *t' commensurate

with the Tninf—" time constant, while the total time range of the problem Is conBtnsnrate

with the naxiaum time constant. A* a result, the problem cannot be run to completion In a

reasonable number of steps. With GEAR'S methods, the time step can take very null values

In order to achieve the convergence and stability of the solution. Moreover, the GEAR

package contain* variants of Newton* s method for Iteration purpose* to solve stiff systems.

It was found that for the type of system under consideration, GEAR had the best capabilities

for solving the ODE's.

5. Result* and Conclusions

Several teat run* were made in order to cheek the reliability of the solutions. The
results of a single layered csse with sinusoidal wall motion was compared against an
equivalent two-dimensional model computer results, for which were obtained using the existing
OSCVEBI code. Clocks 6, 7 and 3 shorn in Fig. 4 correspond to the three masses of the 2D
model. • The results were published in a quarterly progress report [7]. For the Inltal time
steps there i s an excellent correlation between the two results. As the time advances, the
effects from the motion of blocks 1, 2, 4 and 5 alter the displacement characteristics of
the central three blocks. In addition, strong coupling from the third direction was noticed
in the block motion.

The results of a three layered system subjected to a sinusoidal wall motion at a
frequency of 8 cps and 0.25 Inch amplitude are displayed Is Figs. 5 through 7. These are
three-dimensional plot* shoving the two horizontal block responses ( i . e . , V- and V-directlons)
ss functions of time. In this particular case toe vail motion Is limited to a horizontal
dlsplsesmcnt In the U-direction. These time dependent 'snake curves' confirm the anticipated
harmonic response characteristics to a period excitation. The sharp changes Is these 'snake
curves' indicate the collisions either between two blocks or a block and the constraint wall.
Again, the uppernoat layer experiences larger and more pronounced displacements as compared
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to the lover layers. The symmetry between the blocks 1 and 5, 2 and 4 can also be noted.

With regard to execution t i n e , i t varies widely depending on problem size and the number

of co l l i s ions occurring In each t ine step. In particular, addition of the third dimension

causes a great Increase in the number of c o l l i s i o n s . When a col l i s ion occurs, the t lae for

convergence i s considerably increased. As an example, the above nentloned problea which

constitutes 210 f irst order ODE's required an average computer time of 150 seconds for

executing one tlae step of 0.01 second. .

The code has been prograaed to peralt the analysis of a 10 layered systeu, the actual

core height. However, owing to the large storage requirements, the presently operational

version of the codt i s only suitable for configuration, of up to five layers. Even at this

l e v e l , I t was necessary to atore the large Jacoblan matrix ai ;s of the GEAR package in an

out-of-core large core memory device. Some storage optimizat?an through the use of a

modified GEAR package using a block storage foraat sight be possible.

In conclusion, the program 0SC3D successfully Incorporates a l l the features needed for

the analysis of a three-diaensional model of an ETGR core. The solutions have been found

to converge and are numerically stable. I t remains to thoroughly proof tes t the code by

conducting long tlae runs of multi-layer block configurations. These results w i l l then be

ver i f ied against experimental results developed with a three-dimensional vibrations' teat

r i g . eventually, thie coda w i l l be used in future studies to investigate the effects of a

s e i s a i c disturbance of the constraint wall . Also, the Interaction behavior of block

responses wi l l be studied when both horizontal and vertical wall motions are applied

simultaneously.
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Fig. 3 A BLOCK MODULE WITH FOUR LAYERS Fig. A HORIZONTAL ARRANGEMENT OF BLOCKS
WITH RESTORING ELEMENTS



U-V DISPLRCEMENT VS TIME

Pig. S HORIZONTAL RESPONSE OF
BOTTOM LAYER

Fig. 6 HORIZONTAL RESPONSE OF MIDDLE LAYER Fig. 7 HORIZONTAL
TOP LAYER

RESPONSE OF


