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Abstract

Collisionless tearing modes and the enhanced transport

associated with this instability are investigated theoretically

and by using a two-and-one-half dimensional particle simulation

code in a slab geometry. The effects of electrostatic fields

on the instability are also considered. The initial current is

found to diffuse along the perturbed magnetic field lines with

the observed diffusion coefficient in good agreement with the

theoretical prediction. Electrostatic effects have a tendency

to enhance the tearing mode growth rate. The growth of the

mode is observed to divide into three phases. In multi-mode

tearing, a combination of magnetic islands is observed.
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§1 Introduction

Tearing modes are believed to play an important role in

both tokamak discharges and space plasmas. In a tokamak discharge,

a tearing mode is experimentally observed to precede the

disruptive instability. High m number tearing modes (where m

is the poloidal mode number) may break up the magnetic surfaces

and enhance particle and energy transport, even though their

2)amplitude is small.

In the original investigations of the linear phase, the

plasma was assumed to be a resistive medium, and tearing modes

were described with collisional MHD equations. Recent vigorous

theoretical and numerical studies "~ to understand the disruptive

instability or tearing mode have also mainly been based on the

collisional MHD equations. However, recently some authors

extended the calculation to the collisionless regime by including

electron inertia. Recently, Hazeltine, et al. and Drake and

12)
Lee unified these calculations by carrying out a kinetic
theory with a Fokker-Plank collision operator. Especially

12)Drake and Lee found that tearing modes in present-day high

temperature tokamak discharges occur in the semi-collisional

regime, in which the width of the singular layer around k«Bg= 0

is limited by electron thermal motion along the magnetic

field. In this regime the collisional MHD equations do not

reasonably describe the phenomena. Also, the width of the

singular layer can easily become smaller than the ion gyro-

radius in present-day tokamak discharges, where s^lO2 to 10 3

(s in the magnetic Reynolds number). This, too, is beyond

the MHD description.
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Collisionless tearing modes may not be a possible

mechanism for the anomalous plasma transport or the sawtooth

oscillation in current tokamak discharges because of its small

growth compared, with the electron-electron or the electron-ion

collision frequency. In future tokamak discharges or in fusion

reactors, howevar, collisionless tearing modes may take the

place of semi-collisional ones. Furthermore, the major disruption

may be collisionless even in present tokamaks due to its large

growth rate, even though its mechanism is unknown. It is,

therefore, necessary to investigate the tearing instability in

the collisionless regime.

In a space plasma, collisionless tearing modes are believed

to be one of the most effective mechanisms for magnetic field

line reconnection. ' This is particularly true for the

Earth's magnetospheric tail whore the particle mean-free-path

is anomalously large.

In this paper we investigate the collisionless tearing

mode both analytically and with computer simulations in slab

geometry. Referring to Fig.l, a slab of current j of half
z

width a which is uniform in the y-z plane moves along a

large B field. A self-consistent B (x) field (|B |<<|B | ) ,

which reverses direction across the current sheet at x = jL ,

is produced by the current. We impose periodic boundary

conditions in the y direction and conducting walls at both x

boundaries. Sec. 2 obtains the linear dispersion relation

applicable to both inner and outer regions using a drift

kinetic theory and also gives a quasi-linear theory which

describes the decay of the initial current layer. To date,

- 3 -



in the collisionless regime, electrostatic effects have been

neglected. ' However, it is also shown in Sec.2 that

the electrostatic effects have a tendency to spread out the

width of a magnetic island and to raise the tearing growth rate.

Sec.3 describes a two-and-one-half dimensional magnetostatic

particle model in which the compressional mode of the axial

magnetic field is neglected. The simulation results are presented

in Sec.4. The results agree well with the theoretical

predictions obtained in Sec.2. The nonlinear saturation

mechanism is observed to be the spreading out of the initial

current layer quasi-linearly into the stable state. During tba

transition between the linear and nonlinear phases, a qu?bi-

stable state is also observed which has been predicted by

Drake and Lee. The nonlinear evolution of the width of

magnetic island is proportional to time. This situation is

called the Rutherford phase in the collisional regime. We

also find that when several modes are unstable as to tearing mode, two'

magnetic islands will unite into one large island.

§2 Theory

In this system shown in Fig.l, the current sheet is stable

in absence of non-ideal magnetohydrodynamic effects such as

inertia or resistivity. In the collisionless case, however,

inertia makes the system unstable and relaxes it to a lower

magnetic energy state. Magnetic field lines slip with respect

to the plasma near the central layer (around x - L /2), producing

an induced electric field E which accelerates electrons along
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the magnetic field. The perturbed current J is then localized

near the central layer.

We now treat the colisionless tearing mode nonlocally,

12)

subject to the following several assumptions :

1. The perturbed current J which is produced by the induced

electric field is primarily along the axial magnetic field

(i.e. along the Z direction). This corresponds to neglecting the

compressional mode of the magnetic field and is a good approximation

for a low 3 plasma.

2. The response of the electrons to the induced electric field

and the perturbed magnetic field is much larger than that of the

ions. Therefore we consider only the electron motion in this

section.

3. In the outer region, the induced scalar potential $ is

negligible while the relation k,,$ /(wA /c) <<1 holds in the inner
z

region. Here k,, is the component of the wave vector along the
magnetic field and A the z-component of the perturbed vector

z

potential. The induced scalar potential, therefore, will be

neglected in all regions in the collisionless case. In the

last part of this section, however, v/e point out the effects of

the potential cannot be neglected in some cases.

The initial equilibrium is basically described in Fig.l.

A plane plasma slab is immersed in a sheared magnetic field

!0 = V z + V x> gy ' lBz' >> lByi • (1)

The number and current density vary only in the x direction.

The electron distribution in this configuration can be written

in the form17)
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e

(2)

where m and T are electron mass and temperature; v is the

electron drift velocity along the axial magnetic field; P is
z

the Z component of the canonical momentum,

Pz = mevz - eAz/c ; (3)

and A is the Z component of the equilibrium vector potnetial.
z rLx e

n(x)=nQexp-{^-^
 v

Oz
Az } /j d x e X p ~{T~c voz A 2 } 9

l v e s t h e

equilibrium density balanced by magnetic forces:

V W +imevcmevzvoz

We use this electron equilibrium distribution function in the

following analysis.

2.1 Linear theory

The width of the singular layer of the tearing mode is much

larger than the mean electron Larmor radius, and in the case of

pure tearing modes (i.e., no density and temperature gradients),

the characteristic frequency is nearly equal to zero, and this

is much smaller than the electron gyro-frequency. We can use

drift-kinetic equations to describe the electron motion in this

case. The first-order electron distribution becomes

Ir E»W; fo
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where the subscript „ refers to the component of the vector

along B Q. Eq. (5) , therefore,, contains only the electron

response to the parallel electric field. The perturbed fields

are represented by a vector potential as

B = V x A, § , (6)
— z z

E n = - =:

A is driven by the perturbed plasma current:

dv v,,AAz = - ̂ ^ ]dv vM f , (8)

where we may neglect the displacement current for low frequency

modes. The x and y components of the vector potential are

assumed to be small compared with the z component in the

approximation that the perturbed plasma currents are primarily

along the z direction. Now supposing the perturbed quantities

take of the form A (r, t)=A (x) exp[i(k y + k Z - wt], Eqs. (5),z — z y Z

(6) and (7) yield

J ^ b ^ c * S ozfe oz\e z e

where kM=k*Bg/BQ, and the diamagnetic drift term associated

with the density gradient is neglected. Inserting Eq.(9) into

Eq.(8) we finally obtain

(10)
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v,,n
fo

where k2= k 2+ k2 , X = (T /4Trnne
2) l'2 is the electron Debyey z ue e u

lenqth, and J; =eB /m c is the electron gyro-frequency in

the axial magnetic field. The first two terms on the right

side of Eq.(10) are important in the singular layer where

electrons are accelerated by the induced electric field and

where the initial current peaks. The last two terms on the

right side are sensitive to the initial current profile and the

geometry and determine whether the plasma is stable against

tearing modes.

We now consider what condition reduces Eq.(10) to the

known dispersion relation. First, consider Eq.(10) in the

singular layer, where the current density is nearly uniform.

Assuming 32/3x2 >> k2, and neglecting the parallel electron

drift velocity compared with the electron thermal velocity,

Eq.(10) reduces to

"2 A = k 2A, s2^- Z(s) . (12)
2 z 0 z D ds3x

where k« = c/w is the collisionless skin depth, s = w/k,, v ,

v = (2T /m ) ' , and Z(s) is the plasma dispersion function.

The discontinuity in the outer solutions is simply represented by

feVV - Ix-VV2-A)]/VV2) •

Here, A stands for the width of the singular layer, limited by

the electron thermal velocity according to the relation k,, (L /2+A)v
x e

=Y. (Y is the linear growth rate of the tearing mode.) We

integrate Eq.(12) ovar the layer assuming k,,= (x-L /2)k /£ and
x y =»



3 12)the perturbed vector potential A to the constant ' andz

obtain

Y = k vg A'/2ko
z(!,g /? (14)

where I is the magnetic shear length around x=L /2. Thiss s

growth rate Y coincides with the result derived by Drake and

Lee.12)

On the other hand, k,,v is greater than y in the outer

region, so that the electrons are not accelerated but rather

feel an AC acceleration by the parallel elelectric field.

Therefore w can be neglected in this region, as well as the

parallel electron drift velocity. Considering of the terms in the

current shear in Eq.(10) gives

— A, = k2A, + [— (k-B)]A /(k-Bn) . (15)

Solving of Eq. (15) with appropriate boundary conditions produces

a discontinuity represented by A' in the slope of A across the

current layer. Eq.(15) coincides with the ideal MHD equation

applied to the outer region which was derived by Furth, et

al.3>

Now we solve Eq. (10) numerically with the boudary

conditions, A =0 at x=0 and x=L . A calculation is carried
Z 5C

out with a shooting method. The physical parameters used here

are c/(T /m ) ' = 10, u /u = 1.5, L = 64X,. , k = 2ir/64Xr, ,e e ce pe x De y De

and k =0. The current profile is gaussian: J (x) =z z

Jozexp[-(Jln2) (x-Lx/2)
2/a2] , Joz=en0 (T £/m e)

1 / 2 . The numerical

results are illustrated in Fig.2. There are an upper limit and



a lowe- limit for k a for stability, as shown in Pig.2a. The

maximum growth rate is at k a-0.3. Fig.2b shows the vector

potential A eigenfunction for the case k a = 0.5 in which A

is found to be almost even function about x=L /2, so we present

the profile in a half range (L /2 to L ). These features
x x

19)closely resemble those of the collisional case.

2.2 Quasi-linear theory

Quasi-linear effects are important for plasma diffusion

and may be responsible for the saturation of the tearing

instability. The quasi-linear equation for the electron

distribution function in the drift approximation can be written

as ~ *
3 e ~ * 3 kx 3
3~t f 0 = I [ i T Ek" 3V7 ~ v" B 33?] f k • ( 1 6 )

K e z

Using Eq.(5) we can obtain the diffusion equation for the

distribution function in phase space. For a pure tearing mode,

however, the electrons resonant with the wave cover almost the

entire region in velocity space. We, therefore, consider

configuration space diffusion.

It is particularly interesting to understand the current

relaxation in a current sheet. The integration over all velocity

space of the product of Eq.(16) and the Z component of

velocity, using Eq.(5), yields

ft jz = ̂ C B V V Bkx[«v,,
2» - voz«vn»]|j jz

~ * ~
E, „ E, ,,[<<v,,>> - v <<1>>]
K k OZe e

m ~
~ v o x«v..»»]| 3 ? j
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~ * 3 ~ . 3 - 7 , 1
B, •=— E, [<<v,, >>- v <<v,. >>] }

UOQJ. kx 3x kii ox

where j = -en, dv v fQ. If we focus on modes with Re
t0]c

= 0/

I w.= y, , and neglect the higer order terms of y. , Eq.(17)

reduces to

~ * ~

3_ j = i !*£ !_{!i« In !_ j } _ V j ! ^ ! _ ! k . (18)
k z z k,, k z

The first term represents the current diffusion along the

perturbed magnetic field lines. The last term describes the

growth of the total current corresponding to the change in the

electron energy.

The current diffusion term in Eq.(18) can be interpreted

as follows. The diffusion coefficient D. corresponding to

resonant electrons in the x direction is estimated as

Dj = I <<vH g^)
2>T k . (19)

Here x, is a correlation time for each k mode. Noting that the

relation k,,v,, - y, holds on each side of the singular layer and

estimating T, as the wave life time 1/y,, we find that D.

becomes

| B I 2 y
D. = I —^ *- . (20)
3 k B z

2 k,,2

Therefore the current diffusion coefficient is given by Eq.(20)

as long as the current diffusion may be considered to be the

diffusion of the current-carrying electrons.

This current diffusion due to quasi-linear effects decreases
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the anisotropy of the distribution function given in Eq. (4)

which is the essential source of the tearing instability. Moreover

this diffusion carries the plasma information away from the layer,

which leads to anomalous plasma transport.

2.3 Electrostatic effects

The acceleration of resonant electrons by a tearing mode

forms a charge density gradient between the magnetic field

lines. The resultant electrostatic fields cause a current

distortion through the E * B drift of electrons. We now estimate

the growth rate of a pure tearing mode in the singular layer

including this effect, using the heuristic argument presented

12)by Drake and Lee.

The perturbed electron drift velocity, in response to the

parallel electric field defined in Eq.(7), is given by

v = e A / m c • \^i-)

This drift velocity yields the perturbed electron density.

Using the continuity equation, we obtain

n = -ik,,en0Az/YLmec . (22)

where Y L is the linear growth rate without electrostatic effects.

This perturbed density produces the scalar potential $, through

the Poisson equation,

- ^ $„ = - ik,,u> 2A /Yrc . (23)

Where we assume k2 <O 2/9x 2. The electrostatic field along

the magnetic field lines produced by the scalar potential has
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a tendency to cancel the induced electric field. This effect,

however, is neglected according to the third of the assumptions

stated previously. Instead, we take into account the electrostatic

field across the magnetic field lines.

Now let us consider the electron motion near an x-type

neutral point as shown in Fig.3. The electrons near the point

flow in the shaded region in Fig.3 by [E x B ] x drift carrying

current j (L /2+A), whereas the electrons in the shaded region

flow out from there by [E x B] drift carrying current j (L /2) .

"• «• y z x

This motion, therefore, causes an additional perturbed current

in the region. (The same argument holds near an 0-type neutral

point.) The additional perturbed current j _ is estimated to be

4 v lx *k • (24)

where B. = B n £„ is assumed. We suppose 3(j). /3x = const, and
— \J Z Z K

A * const, in the singular layer. Using Eq.(23), we getz

( 2 5 )

zYL

On the other hand, the perturbed current j produced by
z

the induced electric field is obtained from Eq.(21),

A
z

The perturbed current in Eq.(26) leads to tearing, which

produces the discontinuity in 3A /3x across the sigular layer

that is usually considered in most theoretical treatments.

The scheme to find tha linear growth rate y. with the heuristic
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derivation is1 the same as that presented in section 2.1.

Namely, using Eq.(13), Ampere's law is modified to be

A'Az = - (4TT/C) A j z . (27)

Then in assuming that we may ignore the electrostatic effects,

we find that the linear growth rate becomes

yL = ky ve A V k ^ s . (28)

where k,, (L +2/A)v = k Av /I - YL is assumed. This growth rate

was obtained also by Drake and Lee.

It is interesting to compare Jzef with the j of Eq.(26)

before calculating the growth rate y f which includes electro-

static effects. The current j corresponds to the current peaking
z

around the x-type neutral point. This shows that energy is

exchanged between resonant electrons and the magnetic field.

However, j f appears as a result of the current layer being

distorted by the current-carrying electron E x B drifts, in which

there is no energy exchancre. For the usual current profile,

|JZ(LX/2)| > |Jz(Lx2+A)|, j z e f is of opposite sign to j z , which

shows that, for the case when |j | > |j f j , the current peaks

at the x-type neutral point, whereas if, |j I < | j z e f | / the current

tears at the point.

We now calculate the growth rate including electrostatic

effects. The total perturbed current j . . is

k 2COJ
Y ^ [1-JZ(L /2+A)/j (L /?)]A

4TT Y T
2

L S . (29)
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Inserting Eq.(29) into Eq.(27), we have the dispersion relation:

2c2k 2k 2c2kk ck
A1 = k0

2A - _? Y_A 3 [ l - j (L / 2 + XJ/j (L / 2 ) ] . (30)
2 2 Z X ZX

A [ l j (L / 2 + XJ/j (L /
2 5 2 Z X Z X

S

Noting that k \ v /I ~ y f, the growth rate is given by

The last two terms on the right side describe the contribution of

electrostatic effects to the growth rate. When |j (L /2)| >

|j (L /2+A)|, electrostatic effects always increase the growth

rate.

It is important to note that magnetic reconnection may not

occur in collisionless tearing mode as long as only electron

acceleration by the induced electric field is considered.

However if we consider also electrostatic effects, reconnection

may occur because these effects play the role of current

dissipation at an x-type neutral point.

§3 The simulation model

20 2In particle computer simulation, the magnetostatic model '

is a powerful tool to investigate low frequency plasma phenomena

with magnetic field perturbations, such as tearing modes. For

such phenomena, when the wave vector is nearly perpendicular to

the external axial magnetic field, the compressional component

of the magnetic field perturbation can be neglected. In the

magnetostatic model, the displacement current is ignored, and

hence high frequency modes due to radiation are eliminated.
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The equations for this model are:

V-EL = 4?rp , (32)

V x B = ~ j _ m e_

V * E
ZT

 §z = - li t ? • (34)

where subscripts L and T denote longitudinal (V x A L = 0 ) and

transverse (V-A_ = 0) components, respectively. p and j _ are

given by summing over all simulation particles:

p(r) = I q S(r - r.) , (35)
j : ~ ~J

Vzj S (£ " ?j)]T • ( 3 6 )

where

S(r) =-i_ex P-{Jr
2/a p

2} , (37)

P

simulation particles are assumed to have a gaussian form factor

22)

for the finite-size simulation particles. In order to

calculate the field quantities efficiently, a spatial grid is

introduced. The sums appearing in Eqs.(35) and (36) are

performed by the technique known as the subtracted dipole

scheme (SUDS) .23^

It is well known that a straightforward integration in

time of Eqs. (32) , (33) and (34) leads to numerical instability.

Hence Eq.(34) is equivalently modified to be '

AE „= — [ I -J- S(r-r.) f S(r'-r ) E (r')dr'izT c 2 . m. - - : j . ,D zT - - T
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q-2 r v.
i l [i _ l _ s ( r _ r . ) | s ( r ' - r . ) [~-l xB(r'

2 . m . ~ ~ T J - ~3 c ~ ~c 2 j 3
 J J

q, v . (v. . V)S(r - r.)] T . (38)

The equations of motion for the particles are

V .
mj it Yj = qj j s{r~j~~') [?L(£')+ETz(r> V H 1 *B(r')]dr- •

(39)

and are integrated in time by the usual leap-frog scheme. Both

ions and electrons are included. The geometry in the simulation

is the same as that shown in Fig.l. The system is periodic

in the y direction and is bounded by two conducting walls at x=0

and x=L in the x direction. We assume that there is no spatial

change in the z direction. Paricles have three components of

velocity (v , v , v ) , which is why the model is called 2 - 1/2

dimensional. The particles which hit the walls are reflected

according to the method desicmated (I) in Ref.(24), which produces

neither macroscopic plasma flows nor density perturbations

near the walls.

The initial current profile used in the computer simulation

is

jz(x) = -noevdzexp - {(An2) (x - Lx/2)
2/a2} . (40)

Here v, is the electron drift velocity in the z direction. The

initial ion and electron temperature are taken to be uniform.

The initial density profile balances the magnetic pressure

produced self-consistently by the initial current:
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n(x)(T. + T ) + B 2(x)/87f = const. (41)

The particle guiding centers are initially loaded according

to the density profile. Physical parameters are N^=N =17424,

Lx = 64A, Iy=64A, wce/wpe=l. 5 , c/vthe=10, ADe=A, m.Vme=16 , T±=

T , and v, = -v., . Here N. is the number of ions, N thee dz the i e

number of electrons, and A the mesh size. Then the ion Larmor

radius is 2.7A, and the electron Larmor radius is 0.67A. The

ion cyclotron frequency u . is 0.094w .

§4 Simulation results

In this section, results of several computer simulations

are presented and compared with the theoretical predictions.

(A)

We first present the results of the simulation for the

case k a=0.5, for which the mode with k =ir/32 is unstable.

The time evolution of the magnetic field lines projected on

the x-y plane is shown in Fig.4, which displays double periodicities

in the y direction. Clearly the formation and the growth of

a magnetic island with Rew=0 are observed at the rational

surface which lies on the line x=L /2. The magnetic island

is formed at an early time, and its shape is not as symmetric

along the y direction as along the x direction. Symmetry is

established at u t=500. Until this time the peaking of the

current layer at the x-type neutral point leads mainly to the

formation of a magnetic island; this corresponds to the linear

phase. After u> t=500 the width of island becomes much larger.
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In this phase (w t=500 to 1000), the growth of the island is

enhanced by the breaking of the current layer at the x-type

neutral point, but not by the peaking of the current layer at

that point. At <o t=1000 the mode has saturated, after which

island remains stable. The saturation width is about 13A_ .

Fig.5 shows the time evolution of the current layer. At

w t=450, current peaking is observed at the x-type neutral

point even though its amplitude is small. We also observe

that the current layer already begins to break there. At w t=

£50 the breaking has progressed further, and flatting of the

current at the O-type neutral point is observed. We find that

the current has diffused and that its width becomes larger than

the initial one. The initial current has also changed from a

layer to a lump as the instability grows. After saturation,

the breaking of the current at the x-type neutral point becomes

not as remarkable as that seen at w t=1200, because the current-

carrying electrons trapped in the magnetic island leak out

through the E x B drift.

We can relate the induced electric field and the magnetic

island in Fig.6. Fig.6b describes the magnetic field lines

which are the same as Fig.4, whereas Fig.6a displays the

contour lines of the induced electric field. At an x-type

neutral point, the induced electric field has a positive peak,

but has a negative peak at the O-type neutral point. These

correspond to the particle acceleration mechanism of the

tearing mode. It is observed that the induced electric field

ranges over the entire plasma region and is not localized as

it is during its growth.
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The growth of the perturbed current-density, Fourier-analyzed

in the y direction, is illustrated in Fig.7. This perturbed

current density is localized in the x direction and its width is

about that of the singular layer. We consider quantities

averaged over some range in the x direction; i.e.,

dx j dy j z exp -ikyy , (42)

V2"Ax

ky = 2rrm/Ly .

We choose A = 5A in Fig.7a. The solid line in this figure has

the slope obtained from the linear theory in Sec.2 (see Eq.10).

During early times (w t=0 to 250) , all modes relax to the

thermal level, which is |j |/j M x 10 , m > 1. The m=l mode

is unstable in this case, and after to t=250 the mode grows above

the thermal level, whereas the high-m modes continue to fluctuate

around the thermal level, as predicted by the linear theory.

During co t=250 to 500, the m=l mode grows up with the growth

rate of linear theory. In the nonlinear phase (after to t=500),

the growth rate becomes slightly larger. This nonlinear phase

occurs when the initial current changes its profile and becomes

diffuse [see Fig.5]. After the magnetic island has grown to

some degree, the electrons in the singular layer are trapped

and begin bounce motions in the island. The electrons' bounce

15)
frequency w, is given by,

% = ky vthe W/2*s ' (43)

whero w is the width of the magnetic island. If this bounce
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frequency becomes larger than the growth rate, the electrons

experience an average induced electric field along the closed

field lines and are no longer accelerated by the electric field.

In the nonlinear phase (w t=500 to 1000), of Fig.7a, u^ is

measured to be from 2 x 10~ w to 3.8 x 10 u in value;

the linear growth rate is 1.72 x 10 u> . Therefore, in this

phase, acceleration of electrons does not occur, so the mechanism

of the instability differs from that of the tearing mode. The

induced electric field produces a charge separation along and

also across the magnetic field lines. The resultant E * B drifts

mostly distort the initial current, which enhances the growth

rate of the instability.

This situation is displayed more clearly in Fig.7b. The

open circles correspond to A = 10A and solid circles to A =5A

in this figure, which shows the time evolution of the instability

in Fig.7a. The m=l mode, shown by open circles, behaves in

time the same as that mode corresponding to the solid circle,

before w t=500. However, in the nonlinear phase, the growth

rate of the m=l mode is greatly enhanced compared with the solid

circles mode. This indicates that the current laver distorts

at both edges of magnetic island. Moreover, the total current

(i.e. the m=0 mode )decays greatly in this phase. At u t=1000,

the m=l mode saturates to a value |j_-,|/j _ ̂  2 x io~ . After
Z A. OZ

w t=1000 the amplitude of m=l mode channes little. Mode-mode

coupling is not observed at anytime.

Fig.8 shows the time evolution of the electrostatic field

across the singular layer. The electrostatic field is Fourier-

analyzed in the y direction. The m=2 and m=3 modes do not
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grcv: but rather fluctuate throughout the simulation run. The m=l

mode, however, grows from t t=250 to 500 at the growth rrte,

7-4.0 x 10 ,i; , which is larger than the linear growth rate.

This growth rate agrees with that of the vector potential, to

be discussed later. At w t=550, the m=l mode saturates. The

amplitude of the mode begins to decrease at w t=800 and has

damped out at OJ t=lC00. This forms a striking contrast to

the behavior of the m=l mode for the perturbed current; specifically,

the growth rate of the perturbed current increases at to t=500.

(B)

To confirm that electrostatic effects increase the growth

rate of the instability and distort the initial current

anomalously, we next present the results of the simulation

excluding electrostatic effects. This simulation is carried

out in such a way that the term E (r) in the equation of motion

(Eq.39) may be neglected without loss of self-consistency. The

physical parameters used here are the same as those for the

simulation including electrostatic effects.

Fig.9 shows the time evolution of the perturbed current

density, Fourier analyzed in the y-direction. A =5A is chosen

in Fig.9a. The slope of the solid line in this figure corresponds

the linear growth rate. All modes relax to the thermal level

Ij ™!/J „ % 4 x 10" , until a) t=500. High-m modes fluctuate

around the thermal level throuahout the simulation run. The m=l

mode growth rate agree with the linear growth rate during the

period to t=500 to 1000. At to t=1000, the amplitude saturates.

However the mode begins to grow again at to t=1300 with a smaller
— 4

growth rate ('• 8.0 x 10 u ) compared with that of linear phase.

- 22 -



This mode saturates finally at ui t=2400, and thereafter the

amplitude does not change.

There appear some features of the growth different from

that which includes electrostatic effects. In the linear

phase, the source of instability is the acceleration of electrons

by the induced electric field, and the magnetic island is formed

by the peaking of the current layer, even though the amplitude

of the peaking is too small to be observed at the x-type neutral

point. However the electrons in the singular layer become trapped

in the magnetic island and are not accelerated when the electron

bounce frequency u, is nearly equal to the growth rate of the

instability. At u t= 1000, the instability saturates temporarily,

at which time u, is measured to be about 1,7 " 10 w . This

u, agrees well with the linear growth rate.

After a) t=1000, the electrons are no longer accelerated by the

induced electric field. During the growth of the amplitude from

u t=1300 to 2400, the initial current profile changes greatly,

corresponding to the phase in Fig.7a between u t=500 and 1000.

We plot the time evolution of the instability for A =10A with
X

open circles in Fig.9b. The solid circles refer to the case

of A =5A. Notice that, while the solid circles grow nearly

with the linear growth rate, the open circles grow with a lower

growth rate during u> t=500 to 1000 because the instability is

localized in the narrow singular layer. However when the solid

circles saturate temporarily, the open circles continue to grow

indicating that the current layer has been distorted by the

effects, for example, of E § x B drifts, except for the

electrons' acceleration by E e7»because the E „ ranges over
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the whole plasma even for the simulation excluding electro-

static effects. The open circles grow at an enhanced growth

rate from ui t=1500 on and then saturate at to t=2000. Thepe pe

value of the saturated amplitude is the same as for the case

A =5A. The total current (m=0 mode) in the layer (<5A) diffuses

greatly during the time that the growth rate of the m=l mode is

enhanced., i.e., from u t=1500 to 2300. Mode-mode coupling is

not observed in this simulation.

So far we have mainly discussed the time evolution of the

perturbed current density, because it has some conspicuous

features between the linear and nonlinear phases. However this

current perturbation is localized in the singular layer, so its

growth rate depends sensitively on A in Eq.(42). Fig.10 shows

the time evolution of the perturbed vector potential, which is

assumed to be constant in the singular layer and not so

sensitive to the choice of A . The results shown in Fig.10a

include the electrostatic effects, whereas those of Fig.10b

exclude them. The vector potential is Fourier-analyzed in the

y direction and averaged over some range in the x direction

according to Eq.(42). We choose A =6A in both figures. In

Fig.10a, the m=l mode is seen to be unstable and growing with

the grwoth rate (M.O xl0~ w ) from w t=250 to 500, which is

greater than that derived from the linear theory excluding

electrostatic effects. In the nonlinear phase after u t=500,

the growth rate becomes slightly larger compared with that

in the linear phase. At to t=1000,.the mode has saturated.

In Fig.10b the growth rate of the m=l mode is smaller than that

in Fig.10a at first sight. A solid"line in Fig.10b corresponds
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to the linear growth rate of Eq.10. The m=l mode grows nearly

with the linear growth rate between u t=500 to 800. At u t=800

this mode begins to saturate temporarily. However the mode

begins to grow again with a lower growth rate (̂ 1.3 x 10 u )

after w t=1000, and then saturates at u t=2400. The saturation
pe ' pe

level is the same in both cases.

Let us now examine the- transport due to the tearing mode

instability. It is particularly interesting to know the

diffusion of the initial current layer. (We have already shown

the decay of the averaged initial current in Fig.7b and in

Fig.9b.) We illustrate the time evolution of the total current

in Fig.11. The total current is little changed from the

initial profile at u t=4 00 because the amplitude of the

unstable mode is small. However the profile relaxes as the

mode grows nonlinearly. At u t=800 both of its edges have

been cut down. After saturation, its profile has been

flattened. In the case of excluding electrostatic effects,

relaxation also occurs but that the relaxation time is long and

cutting down at the edges is not observed.

We now investigate the current relaxation more quantitatively.

We have already derived the current diffusion equation (Eq.18)

in the linear phase in section 2.2. We now compare the theory

and the observed diffusion rate in the nonlinear phase. In the

nonlinear phase electrons are not accelerated. Then, Eq.(18)

is reduced to

§t j« " ix Dj fe *« • < 4 4 )
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Where D. is given in Eq.(20). From Eq.(44), the relaxation of

the current averaged over x becomes:

zl=
 ( 5 ^ ) S ^ T A • (45)

z voz

where

Ly _ , ,V2+*x

4Un2) (loae)w 2ch , x
A= ^ — exp-[Un2U 2 / a 2 ] / dx exp-I

w Mk 2Z a2 •"
pe y x -& x

The solid line in Fig.12 corresponds to Eq.(45). Here I =5A is

chosen. The points in Fig.12 are the diffusion rate measured from

several simulation runs. In the simulation, the quantity

31og|J |/3(n> t can be measured, for example, from the decay

rate of the m=0 mode in Fig.7a. The growth rate of the vector

potential is used for Yv ̂ n El3* (45) . B. is known from the

amplitude of the vector potential. Then the right side of

Eq.(45) is determined in the simulation. We performed simulation

runs for several values of the half width "a" of the current

layer. The open circles in Fig.12 are for when electrostatic

effects are excluded, and the others are with them. Particularly,

in the nonlinear phase, the growth rate y., and also the

amplitude of B, , varies with time. Then, we can obtain many

points from the same simulation. This is the reason why there

are several points having the same shape in Fig.12. The agreement

between the theory and the simulation results is very good.
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Fig.13 describes the time evolution of the width of the

magnetic island for k a=0.5. Fig.13a is with electrostatic

effects, and Fig.13b is without. In the linear and nonlinear

phase, the growth of the width of magnetic island is almost

proportional to time. Its saturated width is nearly the same

for both cases.

We now consider the saturation mechanism of tearing modes.

Noting that the saturation level is the same for simulations

both with and without electrostatic effects, we conclude that

the electrostatic effects may not contribute to saturation.

Next, we consider whether the ion tearing mode takes part in

the nonlinear growth phase. If it occurs, then the saturation

of the ion acceleration by the induced electric field is

expected as for electrons. However, this effect does not act

as the saturation mechanism because the growth rate in the

nonlinear phase is different in both simulations. However,

the current diffusion due to quasilinear effects may play

an important role in saturation. The current profile averaged

over the y direction at the saturated time of instability is

illustrated in Fig.14 for several simulations. Their profiles

resemble each other and the half width is roughly the same,

k a-1.0. Thus,a saturation mechanism may be that the initial

current diffuses quasilinearly to become stable for the tearing

mode; i.e., it enters the .region A'<0, even though the mechanism

for the instabilitv in the nonlinear phase is still unknown.

(C)

So far we have focused on single-mode tearing; i.e., only

one mode is unstable in the system. We now investigate multi-
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mode tearing in particular, the system in which two modes are

unstable. The results of the simulation (including electro-

static effects) for the case k a = 0.2 and v, = -2 v . are

presented. Other physical parameters are the same as for the

single-mode tearing problem. Here, the rortes k = ir/32 and TT/16

are unstable. Fig.15 shows the time evolution of the magnetic

field lines projected on the x-y plane. Double periodicities

in the y direction are visible. At u t=150, double magnetic

islands have already been formed. These magnetic islands are

not symmetric, because two modes are growing. The growth

saturates temporarily at w t=300. However, the two islands

begin to combine at u t=600 after the stable state goes on

for some time. At w t=8 50 their combination produces one

large magnetic island. The magnetic island in this phase is

stable until the end of the simulation run.

Fig.16 is a three-dimensional display of the current

profile at various times. At u t=150, the current layer

begins to break up. At to t=300, two current cylinders of

different magnitude are formed. These cylinders exist stably

for a while. However, the two cylinders begin to be drawn toward

each other at to t=500 and fuse at to t=800. With the fusion,

the expansion of the lump of current takes place in the x direction.

At a) t=850, a double-humped current profile appears. This

expansion continues until u t=1000. At u t=1100 one large

current cylinder of radius about 10A is formed. Fig.17

describes the time evolution of the. perturbed vector potential.

The vector potential is treated according to Eq. (42) and A is
X

chosen to be 3A. First, until lOOw , all modes relax to their
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thermal level. During u t=100 to 200, the m=l and m=2 modes

grow with nearly the same growth rate y -v 1.2 x 10 to . The

m=l mode saturates at to t=200 temporarily, which quasi-steady

state continues until co t=500. However, at u t=550 the m=l

mode begins to grow again and finally saturates at <JJ t=800.

However, m=2 mode grows until ID t=300 and then saturates.

After this time the amplitude of the m=2 mode decreases slowly

and then suddenly dumps at to t=650. However, at to t=800 the

m=2 mode begins to grow and dumps again at w t=1000.

In this simulation of multi-mode tearing, the electron

acceleration along the magnetic field lines excites this

instability only in the early times, i.e., before to t=200.

Even in this early pahse, however, the peaking of the current

layer is not observed. Instead, the current layer breaks up.

Therefore, the main effect producing the two current cylinders

may be the E x B drifts. After to t=200, the system is stable
pe

to tearing modes because the x-type neutral point is outside of

the current cylinders. However, the system is never stable,

since the two current cylinders are attracted to each other as

long as the currents flow in the same direction. Then finally

one current cylinder is produced by the combination of the two.

The mechanism for which differs from that for the tearing

modes.
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§5 Conclusions and Discussions

We have described the behavior of single-mode and multi-

mode tearing and the anomalous transport associated this

instability both analytically and with computer simulations.

We found that tearing modes grow through three phases: the

phase when the mode grows with the linear growth rate by means

of the acceleration of electrons; the one when the acceleration

ceases and the growth saturates temporarily; the third phase

when the mode grows nonlinearly. During this third phase, the

current is pinched by E e x B drifts (or j e" x B forces in
z z •- z z ~-

terms of fluid terminology). In this last phase the electron

inertia only prevents the divergence of current at the x-type

25)neutral point as was pointed out by Dungey.

We have confirmed that electrostatic effects enhance the

linear and nonlinear growth rate of the tearing mode. Our

simulation results show that their effects on the growth

rate tends to increase the magnetic island grows.

We also showed that the current diffusion coefficient,

given by Eq.(20), is due to the effect of current-carrying

electrons diffusing along perturbed magnetic field lines. It

should be noted that the diffusion observed in the simulation

agreed well with Eq.(20) and Eq.(44) at each time, not averaged

in time. The width of the magnetic island is observed to grow

proportionally to time in the nonlinear phase. The saturation

mechanism was investigated, and we suggested that the initial

current layer diffused quasi-linearly to become a stable

region, (A'<0). However, it is not clear that the linear
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stability criterion, A'<0, is applicable to the nonlinear phase

because the mechanism of instability is different. Two

magnetic islands were observed to combine with each other in the

simulation of multi-mode tearing. This indicates that low

amplitude, high-m number tearing mode finally forms large

amplitude, low-m number magnetic islands. Therefore these

phenomena can be expected to greatly enhance the anomalous

plasma transport.
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Figure Captions

Fig.l Equilibrium current distribution shown in slab geometry

bounded by conducting walls in the x direction. The

current flows in the z direction producing a sheared field

V<Bo-
Fig.2 Linear growth rate obtained from Eq.(lO) for the case

j =enA(T /m ) ' . The eigenfunction of vector ootential
O Z *s 6 6

A is shown in (b).z

Fig.3 Topology of the x-type neutral point projected on the

x-y plane. The long arrows show the direction of the

electron motion accelerated by the induced electric field.

The short arrows show the direction of electron flow which

is produced by the electrostatic fields.

Fig.4 Magnetic field lines projected on the x-y plane with

double periodicity in the y direction.

Fig.5 Three-dimensional displays of the current layer with

double periodicity in the y direction.

Fig.6 Contour lines of the induced electric field, showing

the mechanism of the instability. (b) is the magnetic fielc!

lines projected on the x-y plane.

Fig.7 Time evolution of the perturbed current density.

A =5A in (a) and also for the solid points in (b). The

open points in (b) are for A =10A.

Fig.8 Time evolution of the electrostatic fields across the

singular layer, Fourier-analyzed in the y direction.

Fig.9 Time evolution of the perturbed current density without

electrostatic effects. (a) is the case A =5A and solid



points are also A =5A. Open points in (b) are the case

A =10A. The solid line corresponds to the linear growth

rate.

Fig.10 Time evolution of the perturbed vector potential A .

A =6A is chosen in both figures. (a) is with and (b) is

without electrostaric effects. The solid line in (b)

corresponds to the linear growth rate.

Fig.11 Time evolution of the current profile (no electro-

static effects).

Fig.12 Current diffusion obtained from several simulations.

Open circles are without electrostatic effects, and others

are the case with them. Solid line corresponds to the

theoretical diffusion rate.

Fig.13 Time evolution cr the width of the magnetic island for

k a=0.5. (a) is with electrostatic effects and (b) without.

Fig.14 Current profile when the instability has saturated.

The slender solid line is with electrostatic effects, and

others are for without.

Fig.15 Magnetic field lines projected on the x-y plane.

Fig.16 Three-dimensional displays of the current layer.

Fig.17 Time evolution of perturbed vector potential A .
z

Ax=3A.
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