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Abstract : 

A new functional of the density and its 
derivative is proposed to the kinetic energy density and the 
corresponding Euler equations are solved. Comparisonswith 
Hartree-Fock results show a close agreement, particularly for 
the shape of the density at the surface, for heavy as well as 
for light nuclei. The dynamicai properties of this functional 
are tested in the case of the giant monopole resonance and are 
satisfactory. 



\\ 

In recent years, an increasing interest has 
been devoted to approximate treatments of Hartree-Fock (HF) 
calculations. Although the use of schematic effective forces [1] 
simplifies the calculations, they still remain very involved 
and may be overdetailed, if one is interested in large systems, 
or in dynamical studies likes description of giant resonances, 
or heavy ions collisions. In the energy density formalism (EDF) 
[ 2J , one assumes that the energy density H is a functional of 
the diagonal part of the one-body densities of neutrons and 
protons, p and p and of their derivatives. Instead of dealing 
with as many functions as single particle occupied states, one 
deals with only two functions p , q = n,p. One then writes and 
solves [ 3) two Eu1er equations to determine these densities. 
The construction of the functional can be divided in two parts : 
the potential term and the kinetic term. 

Concerning the fir3t one, schematic effective 
interactions have been precisely introduced so that the potential 
part of the H.F. hamiltonian density is, for spherical nuclei, 
a functional of p and its derivatives. In this letter, we shall 
restrict ourselves to these cases. 

The second one is the main object of this 
letter ; our starting point is the following simple remark : 
the kinetic energy density T (r) = ~— Z) {V<p. | 2, where i labels 

g zm ^ i q q 
occupied states y. , is exactly a functional of p„ and its iq q 
derivatives not only in infinite nuclear matter where, as it is 
well known, 
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but also in "He, where : 

h* ft* l ( V * n >
2 

In eq. (2) , p = 2|y | 2 , and <p is the wave function of the 

single occupied state. This suggests to define a modified Thomas-

Fermi approximation (MTF) to the kinetic energy density where the 

MTF functional T (r) is also a function of the number of particles 

A , of the following form : 

Tq 
MTF, 

'<r> = ÎÊ (" (V Pq 5 / 3 + 0 (V-^~) <3) 

with the conditions ct(2) = 0 , a œ = | (3TT 2) 2/ 3, 3(2) = j 

which assure that eqs.(l) and (2) are satisfied. Next, we determine 

the functions a(A) and 3(A) through the following procedure : 

for a set of nuclei with equal number of neutrons and protons and 

no Coulomb interaction, one looks for the couple of values 

<x(A), 3(A) which leads, when solving the Euler equations,to the 

closest results to the HF ones calculated with the same interaction. 

One can see in table 1 the quality of the fit : 

energies per particle, kinetic energies per particle, mean square 

radii are calculated for spherical nuclei and agree with the 

H.F. values to less than 1 % for the energies and to less than 

0.2 % for the radii. This shows that expression (3) is a good 

approximation not only for large systems, but also throughout the 

periodic table. 

In fig.l are plotted the densities and the 

kinetic energy densities of protons calculated in ' 6Q and 2 0 8 P b . 
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One can see that the surface shapes are correctly reproduced. 
In order to make some quantitative comparisons, we have calculated 
the surface thickness a of proton densities using the definition 
proposed by Campi in ref.[4j: a = [ ôR^ (dR̂ /dlc) ] ' I T - 1 where 

v i /ij R k = I ((k+3)/2)<r >] ' are the moments of the density . when 
the density is exactly a Fermi distribution one recovers the usual 
definition of surface thickness (the 10 % - 90 % variation in p 
correspondsto 4.4 a). One can see in table (1) that the agreement 
with the H.F. values is better than 5 %. 

ot(A ) 
We have plotted in fig.2 the function ^ . 

OO 

It can be seen that although this function is very rapidly 
increasing in the region A < 10, even in the lead region (A tlOO) 

Si Si 
it differs from the asymptotic value by an amount of ^ 4 %. Thus 

5/3 
the contribution to the total kinetic energy of the p ' term 

SI 
is sensitively less than what gives the T.F. approximation, 
in which o = o„ and 6 = 0 . 

The function 3(A) is found to be rapidly 
varying from the value j for A = 2 to a value which is smaller, independent of the nucleus as soon as A_> 8 and dependent on * q ^ 
the Interaction. We shall briefly analyze these three points, 
i) For a system consisting of one occupied state (''He) or in the 
asymptotic region (r •+ «•) of a larger nucleus where a shell model 

CM 

density p is also determined by only one wave function, namely 
that of the last occupied state, the fall off of the density 
is given by 

..V 2 r a A .r «2 Q 
pq M ( r ) ~ b e * (4) 
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where A is the one particle separation energy. On the other 
hand, it can be shown [ 3] that the Euler equations using a form 
like that of eq.3 for T (r), lead to the following behaviour 
of the density in the asymptotic region : 

3 r 

p f P ( r ) ~» *T e ? (5) 

asyraptotiç_re 

V 2m 

Eg.(5) coincides obviously with eg.(4) if one 
sets 6 - 1/4 (which is another way to state that eg.(2) is valid). 
But if B determines the asymptotic behaviour of the density, 
one can see numerically that it also governs the shape of the 
external part of the surface. In this region, the decreasing of 
p„ (r) in greater than what gives eg.(4), as all occupied states 

SM contribute to the density. Thus a good agreement between p (r) 
MTP 

and p (r) in the external part of the surface requires a smaller 
value for B than 0 « 1/4. Thus we rather prefer to abandon a 
theoretical asymptotic limit in a region where there is practi­
cally no matter in order to obtain a correct surface shape, 
ii) That we find a constant value for B(A ) (A > 8) is related 
to the well-known fact that the surface thickness is roughly the 
same in all nuclei. 

CM 

iii) The shape of p (r) in the outer part of the surface depends 
on the density of states near the Fermi level. Thus we expect B 
to depend on the interaction merely through the effective mass 
m /m. We have checked that the value & = -g , which is in agreement 
with that of %. Wilets [ 5] , gives a good overall fit for different 
schematic interactions, provided that their effective mass is near 
the value. 75 . A more detailed study (using Skyrme forces 
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SU, SIII, SV, SVI [9] , KShler forces Ska, Skb 110] and KT 
force l 7] which cover a range of values of m /m from .38 to .95) 
shows a roughly linear dependence between 8 and m /m of the form : 

* - i 4 + i] 

It is worthwhile to compare the results of the 
present paper to those obtained I 31 when one uses, for T (r), 
the functional derived from the semi-classical approaches [ 6] : 

ITP 
The densities, labelled p , are reproduced in fig.I : the 
too small value of 6 leads to too sharp surfaces and consequently 
too small surface thickness (see table 1). Indeed, it is known 
that the semi-classical expansion (6) is not valid beyond the 
turning point and this is eertaintly why the densities are not 
satisfactory at the surface. 

The functional (3) is also well suited to 
the study of very large systems because it is found that with all 
the above mentioned forces, radii and surface thicknesses are 
rather insensitive to the precise value of 6 . Calculation of a 
system of 2500 protons and neutrons (without Coulomb forces) is a 
good approximation to the semi infinite medium ; it shows that a 
variation of 50 % on 6 induces a variation of 8 % on the surface 
thickness a and of 1 % on the radii. This is in agreement with the 
study of Campi and Stringari [11] which give an approximated 
expression for a as a function of (5 and the parameter of the 
interaction. Thus one can study with this MTP procedure the 
gross effects of the interaction on the diffuseness . As an example, 
we give in table (2) the values of the diffuseness a for various 
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schematic forces in the nucleus 2500X" T n e r o l e °* t h e t w o 

important parameters, m /m and the incompressibility K, is not 
very clear. Nevertheless it seems that for a given effective 
mass, the surface thickness decreases when K increases and that 
for a given K, a is rather insensitive to m*/m when m*/m is not 
too small. 

Finally, we have tested the dynamical properties 
of the functional (3) in a simple case, (monopole 
isoscalar vibration) following a fluid dynamical method proposed 
in ref.[7|. Table (3) gives the results of three self-consistent 
calculations*. One can see that the agreement between MTF and RPA 
is very satisfactory. The origin of the discrepancy between ITF 
and MTF is twofold : i) the compressibility of the nucleus, which 
is related to the second variation of the hamiltonian with respect 
to the densities, is of course modified if one changes the func­
tional used for T (r). ii) the differences in the shape of the 

Tmp MTF 
equilibrium densities p* and p play also a certain role 
in the determination of the energy of the resonance, it can be 
shown [ 7 | that i) is the most important factor. This favors 
the use of the functional (3) for practical calculations as it 
allows a completely self-consistent fluid dynamical treatment. 

The (empirical) functional (3) has to be 
microscopically understood. Work in this direction is in progress, 
using one-dimensional simplified models. 

We are grateful to Bohigas, Campi and Stringari 
for fruitful discussions. 

'The discrepancy between these values and the experimental data 
is analyzed in ref.[ 7 ] . Here we only want to compare the 
theoretical approaches. 
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Table Captions 

Table 1 : Total energy per particle E/A, kinetic energy per 
particle T/A, neutron and proton radii r R and r , 
neutron and proton surface thicknesses a„ and a_ 

n p 
"•"Ca, , 8Zr and 2 e , P b using ITF, MTF and HP 

in 1 6 0 , 
approximations with SHI interaction [ 9]. 

Table 2 : Mean square radii and surface thicknesses in 2500 X 

calculated with various Skyrme interactions I 9) and 
Kôhler force Ska [10] . SC is a Skyrme interaction 
with no velocity dependent component. 

Table 3 Energy of the giant monopole resonance in 2°'pb ; 
comparison between a fluid dynamical calculation using 
ITF or MTF approximation and the RPA result. 



»«0 "°Ca *»» p b 

ITF MTF HF ITF MTF HF ITF MTF HF 
E/A -6.99 -6.81 -6.87 -8.11 -7.90 -7.93 -7.62 -7.22 -7.23 
T/A 15.85 14.58 14.89 17.00 16.03 16.27 18.47 17.91 18.15 
rn 2.56 2.64 2.65 3.31 3.37 3.38 5.64 5.71 5.70 

'P 2.58 2.67 2.68 3.35 3.42 3.43 5.55 5.56 5.57 

»n .33 .43 .45 .35 .46 .47 .43 .58 .55 
8P .34 .44 .46 .35 .47 .48 .32 .46 .44 

Table 1 -

••zr 

Table 1 - ITF MTF HF 
-8.44 
17.77 
4.29 
4.25 
.39 
.35 

-7.95 
17.13 
4.36 
4.30 
.52 
.47 

-7.93 
17.42 
4.37 
4.30 
.48 
.49 



!:"' 

S U S I I I SIV SV SVI se Ska 

K 342 356 325 306 364 307 263 

m /m .58 .76 .47 .38 .95 1 .61 

alfm] .56 .57 .62 .74 . 5 6 .30 .70 

- Table 2 -

I T F 1 7 ' MTP W 8 1 

19 .6 17.7 17.9 

- Table 3 



Figure Captions 

Fig.l : Proton density and kinetic energy density plotted 
for z " P b (right) and • *0 (left). Full line, 
dashed line and dashed-dotted line correspond 
respectively to HF, MTF and ITF results. 

Fig.2 : Plot of the function *** ' . It can be roughly parametrized 
by the expression ^-^ « tanh. 7764 (A-2) 1 / 5. 
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Fig. 2 


