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THE SPONTA#ZOUS BREAKDOWN OF CRIRAL SYMMETRY IN QCO
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ABSTRACT

It is suggested that the usual path integral representa-
tion of Euclidean vacuum amplitude (tunneling amplitude) in QCD
must be supplemented by the explicit boundary condition correspond-
ing to the spontaneous breaking of «. al SU(N) x SU(N). Adopting
the trial wave function introduced by Hambu and Jona-Lasinio, one
sees that such a path integral avtomatically breaks also the addi-
tional chiral U(1l) symmetry of massless quarks. The catastrophe
of semi-classica) approach to QCD and "U{1) problem" would be
avoided in this way and one has, in principle, 3 better starting
point for the self-consistent calculation.
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1.1

1. INTRODUCTION

one of the popular methods in the theoretical study of
quantum chromedynamics (QCD) is (or used to be) the semi-classical
method and “its generalizations [1] .

Such an approach gives very good qualitative description
;:hen applied to tae quantum mechanics problems [2] « even if used
in a rather crude form. But this technics seems to suffer
various defects when applied to the problems of quantum field
theory in general, and Q.C.D. in particular.

in latter case, while there have been the series of works
on the possibility of the spontaneous breaking of chiral symmetry
and the generation of guark masses [3] . [4] many of which follow
the ¢lassical observation of 't Hooft [5] . one is also worried
by the fact that, as soon as one tries co analyze the situation
by semi-classical method even in its most general form [6] , one
gets the results completely contrary to the expectation [7] .

It was Crewther whe examined this and reiated probliems
("u(l) problem”) in the greatest detail [8] and his conclusion was
that, even if one is to reject the most general assumption of
semi-tlassical method such *s the importance of classical solutions
with finite Euclidean action, and thus the whole idea of integer
topological numbers, one is still left with quite severe chiral
selection rules which may minimize the significance of “gauue non
invariance” of U(1) axial charge. Thuz, in spite of observation
by 't Hooft [5] . one would be in difficulty so long as one does
not admit the unwanted U(1) CGoldstone boson [8] {s}.

On the other hand, recently there appeared the series
of works based on VN expansion [_10] of QCD which have shown
that the appearance of U{1) Goldstone boson, after all, may
not be so disastrous and one can get on quite happily with normal
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currest algebra t;pe phencmenclogy 2% long as one does not really
insist on the quantitative explanations of, for instance, 7’mass
or, indeed, pion decay constant [11] .

At the same time, Witten has shown the possible
unreliableness of semi-classical method in the prablems of quantum
field theory [12] . If one defines the semi-classical method as
the Gaussian expansion around the arbitrary (well separated) real
minima of the Euclidean action, Witten's idea was confirmed by the
exact calculation by Lischer and Berg on the special model [13][14].
It is quite possible that one must interpret 'z’ as U(1) Gold-
stone boson [11. 12, 15} and moreover that one cannot ask for the
quantitative explanation beyond the consistency argument offered
by '/IV approximation [11, 12] .

However, evcie if the most familiar method of the dilute
gas approximation s shown to be eefinitely misleading in sone
cases [13] [14] , there seems to be sti)) quite a few unsolved
problems as well as the possibilities of computational {mprovement
in the semi-classical technics in field theory [16] .

In the following note, i would Tiko to present the argu-
ments to show that the conclusion of Crewther and others is not
the most general one which one can expect within the framework of
conventional QCD. Even the seemingly clear-cut conclusion from
dilute gas approximation [7] of QCD may partly originate from the
way in which basic "path integral” representation is written down
without due regard for the boundary conditions.

1 shall begin with the summary of Crewther's argumer.
[_19] and the simple minded derivition of the chiral selection rule
in the functione! language.

The pi:h integral representation for the Euclidean expec-
tation value wi.h respect *o so-called & -vacua [1] of operator
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1.3

(or the product of operators) X { "/', ¢, /}.)is
< X (68, A4)) o f
S S;Y" f 9- , 1474
| (D¢ 9¢ e
- f 94 e ¢

__G’c_F 2 4)
e . X(‘hﬂ‘,/}

(1)
(N ; normalization factor)
where «r1
E = pure Yang-Mills action
= _r' d¥z T“ J4 Fr-v {2)

5 = fm Vol (5 01V,
) A 4 —q
with ,4/, = %’{ Af"T {3)
[T% TA] - .]palu T¢ @
‘C;u - grA./ - 34/4,» + [/4I /OV]
and ?Pu = .zl Gr\h\o' FAV .
The Euclidean Y matrices  { Tr ‘} satisfy

{Jr, Jv =¢.g}.|/
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1.4

The indices s,t... and u,v... refer to the flavours and colours of
quarks and run for l,.,.,NF and l.....NC respectively. The
letter L in the second term of ,S‘EF {3) represents the number
of light quarks. Physically L ~ 2 [17] . One can also define
the expectation value with respect to the generalized "topological®
sector [181 <0 >» by

. qa A
XD, = —h’/—,f.‘bfl, S(—,;lv,an.F"n*z— v)
_S>Y"' —_ "CF
e ‘fs«nw X e "

One can derive the chiral Ward-Takahashi identity ¢ ¢w 7.z )
for £-- >9 or <" >,, by applying the transformation
of the integral variables

/4/_“(1; — /4rA (1)

oy (22 3
Ge) — €7

Pyl 7 2o,

Gy F)et
’ (6)
where o (1) = AT S=1,2.- 4L
o $a L#IJ"‘NF

Only non trivial point is the regularization of the formally
divergent integral

W[ A Y, )

V(YD ¢ (H)
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1.5

which is the Jacobian of the transformation (6).

As has been shown by Fujikawa [19] , this can be done
by g ~function regularization [zo] of Hawking and one has the
regularized expression

fsv'o?’ =f.945w" ok} i{zt- ,;’;,.fdw ‘R(;-‘F():';'J}

Thus c¢ne arrives at the equality v

<X>é = "\Ll fcﬁﬂr e-s‘E ﬁqu
o cd Nl

X ( e. Illfrq(’)"‘ (_F(J) ey ) 4;/:‘)/\
x ofp { ',T;i,,f(e-u n)h FF N}

ISR f oo (F 4l 42 |

(8)

where one has used the fact that the quark-gluon action (3) fis
invariant under (6), except the term coming from the space-time
dependence of of(1) .

Since LHS 1 independent of ©{(3) , one can write

S [gnS)|=0
§ott2)

okiy»0o
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1.6

and this gives the we‘ll~lmoun local WTI ,

%94 - fwsw
§X
S0 +{2L'IZF'T‘ Fra
o Z Ty ER ) ) X ]
-6 - .«AAd‘,J _OF
X ewr{,-‘-—i,f'ﬁ FE }Ozzr 82 o
Now assume the operator x is of the form

ZT :)(.;_ (2’-@)

with e Xk X
a

Xeu)— € (3¢)

(10)

under (6},
Then (9) becomes

*fsu, s fsw.‘b(i
x[ §Ca-1sXg + 24-17,T1 Frex)
+ Q’Z((H”!; ¥r ] X
* eff{-_rﬂfv'rr oy -52

(9"}

At this point, on2 puts the a'l'l-mportant assumption that the gauge
invariant axfal U(1) current ‘lr 6’,'0': ‘7" does not couple to
zero mass particle for any value of H [21]
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1.7

Then one can drop the current divergence term in (9*) aftel
integrating over & , and oae ends up with

[ % -2L % d ]<X>e =0 w
where K = ; ﬂ’é

Written in term of 27 vacuum (4), one has

[ X -2.v] <X>y =0 (12)

i.e. < x>y:0 unless the chirality of X satisfies
e = 2LY

If one further assumes that the topological number 37 can take
only the integer value

{-aglr Z‘ [00/4/‘} ./:A’FFG"J ) (13)

Vonot “hn®

-s
then one needs to think only of { X+ }'.__ and <><>9 becomes
Fcurier series [22]

i Ve
<X~ 2 ¢ X2, (14)
v--
One of the first "difficulties" which worried some authors [7] were
(‘P(/ia})%z =0 for any €
if L 22 (15}

This is the immediate consequence of (12) since < X>r=f o
trivially unless (X)) =0 . But here one can obtain (15} only
assuming the boundary condition : /4, 1) "Ja'lgilgrz)(pure_
gauge) as [XJ-» o0 which implies (13). (15) was taken as
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implying the impossibility of spontaneous mass generation but it

can be interpreted as the impossibility of whole current algebra,

since <V 9:?0,,’V }; . Apart from this, it has been pointed

out that (12) dimplies that the vacuum expectation value < --- >§

is not the periodic function of & with period 2 7% but with
2ns [23].

It is not easy to see what has really gone wrong in the
derivation discussed above (which is conventional and presented
here only for explanatory purpose} of chiral selection rule in
the limit of ¢ ()% (J(L)symmetry.

If one is to accept the above derivation (or the more
careful current algeﬂra derivation [8] of the same selection rule),
then it seems that one cannot despense with physical U(1) Goldstone
boson, in spite of ‘t Hooft [5] observation that the colour gluons
can break chiral U{1) symmetry via Adler-Bell-Jackiw anomaly.

In what follows, 1 would 1ike to suggest that the conven-
tional path integral (i) is, to say the least, a rather inconvenient
starting point for any approximation scheme one may like to apply.
Unless somehow one c¢an solve the problem exactly, one would never
reach the desired “symmetry breaking phase" from expression such
as (1).
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11, THE PATH INTEGRAL IN THE QUANTUM MECHANICS

To illustrate the possible modiffcation of the path {nte-
gral representation (1}, which leads to the selection rules (11}
et (12), I would like to discuss first a relatively trivial problem
from quantum mechanics.

Let us consider the system of two fermionic oscillators
of the same frequency or "bare mass" (particle and antiparticle),
coupled to each other through a constant potential.

The Hamiltonian is
H o= @ta+0°0) + Alae)ars®)
+ const. (16)

where the creatfon and the annihilation operators satisfy the anti-
commutation relations

{a*t.a} =1 fe%.2}=1

alta"-;-e’-'gvzﬂo
(17)

The constant in {16) is added to make the ground state erergy to
take some convenient value. Hamiltonian like (16) (with many degrees
of freedom) makes frequent appearance in the problems of statistical
mechanfcs, such as Ifing model [24] .

Taking the arbitrary states expressed as the linear
combinations of basec in Fock space

\I> = (oles +otie G¥+ et €%+ dif a¥6%) 10>
1 ED= (o +otf @™+ olof & 1ot ¥ ) 1 0>
(18)

{where 107 %2 the Fock-vacum defined by aio=0 , 4P =0,
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one can express the Euclidcan transition amplitude as the functional
integral over the path defined in the Grassmann algebra [25] , viz.

(F'e~H<{II_1.,)II>
7 (a5 “/-“4’?-‘
=L LY
e

G (5.) of - Z [ 7 (£-2:)+115-5)
. ag 1 & q e
+ ot {w(FEI+1°50) + 4G SN
x eyr - (%ng + 79 goa
¥ gf‘ (70)
(4t = ¢ _3_1 )
(19)
where ':P'z and Qi: are the polynomials of variables at end points

t =t/ =t, and T =1t”=%y representing the fina) and
initial “wave functions” (Surface term).

’ I ma T8 apé
Q‘If%) = ofos + O ‘7,) + Olos ?0 +dn% %
K r¥aa Yo 4 rla€at
{’r(?n) = oloo + 0l 3“ + 0oj ;:, +dn 24 S
(20}
9L
In the expressfon (19), the fntegration variables g , /’
are 4(W+/) generators of g ¥t/ dimenswna'l Grassmann

algebra and the integral over them is defined according to the
measure on Grassmann variables introduced by Berezin [24] .

1[4
n
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The “Euclidean Action" ir the firsy exponential in (19)
takes more familiar form in the formal continuum limit [36]

{ 4 »0)
Se ~fdt [’74‘/ + "' +a>(}‘ ‘S ?a)

+ ARS8 +TT) ]
(21}
-z olE

The extra surface factor at £-1" , @ <%t is important
when one makes the correspondence with usual canonical farmalism,
such as the transformation of variables [25] . However, it does
not play fmportant role in the consideration of symmetry breaking
and I will omit this factor in the most of next section.

In particular, the Euclidean expectation value with
respect to ordinary Fock vacuum is given by (19) with &y = i'}:l N
and then (19) is reduced to a familiar (except the last factor)

fOHh. Y
<ol e—H(t~t.) l0>
t

= AN PN EN

t' P Aca
v eup -5 e - (WS + 45 )

(22)

On the other hand, it is clear that the Fock vacuui |0 is not

the lowest energy eigenstate of total Hamiltonian H , Thus the

simple formula {22) 1is not expected to giv"r the "vacuum" ampli-

tude €p - Eof %~17) . except in the limit = ov and
t2-w .

To obtain the corvect energy levels, one diagonalizes
the Hamiltonian by introducing the new creation and annihilation
operators by the transformation [26]
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a'@) - Gt O - St L F
8'(a) =sinat a¥ 4+ ot 6 (23)

A1l the anti-commutation relations {17) are unchanged for a’ and #’.
They annihilate new vacuun defined by [27

2%, = (@ + st @*L*) (0> 28

a’) 18 <o

27k 195,

(o] {28)

(Note also goloy = <o{oD> =] ).

The original Hamiltonian (16) is diagonalized if o ':-atisfies

= -A
b 22204) = = £ (26)

Then, in term of @ (%) ana L%) , H  becomes
H =(yaea + 8 )ar'ta’ + (/v - 4)68!
+ const. {27)

This shows that the new “vacuum” [2 Zu) is the true ground
state of W . Measuring from the energy ©Of | _92‘ ar° there
are a1so three excited states with energies

{ Jwipi £ 8
2 JuHht

Note that one can express the new vacuum (24) as the unitary
transformation {28]

-i§
(o) -~ € o (28)
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-

with G =(a (a‘i(a*_-e.a )

- The true ground state | sz has the overlap with Fock vacuum.

<ol gy~ oot Al (29)

Combining (19}, (20). (24), one can express the true Euclidean
vacuum amplitude as
(O ‘ e"H‘f"—-(‘) ’9>
o
- ;. do.ﬁ "4 .‘ -a
L1 493" 4y S

(2L

x(@ret + s £S5))
X (con + s 47 YE)

< otp = Se. o~ (UE +HES)

(30

The transformation (23) is the simplest example of Bogoliubov
cransformation [26] [27] familiar in the BCS [25] theory of super-
conductivity as well as in the study of 2 dim Ising model [36}.

The example of eq.{30) does not necessarily imply that
one must start worrying about the possible presence of non trivial
wave functions in the expressior{ such as {1) for QCD.

Path integral (1) is the field theoretical gencralization of simpler
example Tike (30) but in the Vimit tDovand t o0 .
In this Vimit

L ~Eoltt)
{1}"_;‘:, € =105 e (31)
X

where |2 D is the time ground state ¢f H .
Thus, for the Euclidean vacuum expectation value of the operator
X, such as the ones discussed in Chapter I, one can write
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]

<Fle> <eIX ey <elTy
LFI1ey<oI >
- g <rleX ety
‘.--
J‘-{.‘:‘; <F'e‘a’—t)HlI>
e (32)

el X 12> -

LGS

with any pair of states II> and |F> such that

<QIF>4O (QII>=I=0 (33)

From this argument, 'one can see that normally the conventional
path integral formuta for field theory with Euclidesn field @t1)

<eX®12> - (9P X(e) e Sew
fS)? P‘,S}(P)

Se .« (2 oL (P) (3
- (F-&-1)

can be used to represent the true vacuum expectation value.
But there are exceptions when
(1) <2 100 =0 between true vacuum 127> and Fock
vacuum lO> (35)

or
(2) vacuum is degenerate, so

Lo €7 3 050

tae B (0

when there are many degrees of freedom, the arguments given above
become much more delfcate due to these pioblems.
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As the trivial example, one may generalize our simple
model (16) to the case with many components of oscillators

(a,8) = (a.€:)],

with the hamiltonian

=0 » . » [

H - 2 [&);(’l;aa-f'@:'g:_) 4 ArateboYaedd) ]

e~ : (37)
where one can imagine that &J. i~ concentratud just below some
"{onization energy",
e.g.s W 2 '-;VL" while the couplings ~nd A: are
such that

Iavv d(ﬂi,“’:)l < ( < ! (38)

where oL (A:.W:)is the Bogoliubov angle given by {26).

~ The model can have finite O-point energy. But the
overlap between true vacuum /¢ and the Fock vacuum @ >, given
by A:topso ,  @:|0Dc0 , is

](01‘27,‘_2,_...5{, < £: " - o (39)

One will then never arvive at the correct vacuum expecta-
tion value with the trivial wave function Sf"g = &¢ - 1. Indeed,
in such a case, one wil) observe the collapse of the vacuum ampli-

" tude .
Lo <ol et 16> -0
(40)
{ 107 ; Fock vacuum)

simply because

Lo et o> = o 1)

£t

(taking the ground state energy as Eo = 0).
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As for the presence of vacuum deqgeneracy (which we hope to find
in (1)), this normally necessitates the non trivial boundary
condition in the path integral so that one may arrive at one of
the degencrate vacua instead of a statistical mixture. (Remember,
for instance, linear (”-model with scalar fields). For fermionic
path integral, such a boundary condition can be simply gut only
through the explicit wave functions.

In any case, the question is then what sort of wave function or
the boundary conditio:: can survive the limit £ — od {n Euclidean
path integral.

Since it is not possible to analyze the problem with
full mathematical rigour, I am going to picsent in the next section
the phenomenological guess for the trial vacuum wave function which
is consistent with the idea cf spontaneous breaking of chiral SU(NF)
symmetry and current algebra. In this way, one will he led to the
original formalism of chiral symmetry breaking model as it has been
conceived by Nambu and Jona-Lasinio [31] .
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111. THE PATH INTEGRAL IN QCD.

The discussions at the end of last section suggest that
the way to modify the path integral (1), so that the resultant
chiral selection rules may be less severe
than (12), is to acd the non trivial wave function which can
contribute to the Euclicean path {integral in the limit t'» o0
and {’= - 20 , Such a wave function must be able to induce the
system to fall intc one of degenerate vacua and thus must contain
the germ of chiral SU(N) symmetry breaking in itself.

The discussion of Section 1 shows that the non trivial
boundary condition on the gau.e field integration M » although
it breaks chiral U(1l) symmetry [30] » does not have eo_gh symmetry
breaking in it. Thus the simplesc¢ possibility would be to look for
the wave functions which depend on the “fermionic® variables 4
and ¢ at the boundary surface <+ «1o¢d . From the way in which
our path integral is defined (i.e. as the generalization of (19) to~
infinitely many degrees of freedom), this wave function shouid
express the relationsnip. between the Fock vacuum of massless quarks
and antjquarks and the true physical varuum where the chiral symmetry
is spontaneously broken and quarks are massive.

Now, just such a relationship has been considered in the
classical naper by Nambu and Jona-iasinio [31] introuucing for the
first time the “Goldstone pions” in the theory of stro.g interaction.

According to these authors, the chiral symmetry is spon-
taneously broken through the “super conducting® states where the
massless quark and anti-quark pairs (nucleon-anti-nucleon of Ref. 31)
of same he) ‘city and opposite momenta form the “Cooper pairs® [35].

In analogy with the coherent trial states of Refs. [26]
and [27] + Nambu and Jona-Lasinio give the explicit expression in
the simplest case of Ap ={. [2]. ’

La™> = T {{E0En -/ 0-F) ewien}ioy

F » Quark comentum
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A » helicity
and fp = &l / VE+m®  (m: parameter),

l.n.')ﬁ‘ I0> §s the Fock vacuum of the wassless “"nucleons” or
quarks

QR ) IR -0
-&Q;Z)I-Q">-o for all g and p|

(43)

Writing sho@) = 7 (- )

@ o) = [ (1x f7)

one sees that the formula (42) corresponds to the Bogoliubov
transformation

3fa) = cn6W)QRA) + 5w bP) EVERA)
LBN) = —simb® BFIA) + 0PI G (82 ) {44)
The new annihilation operators satisfy
At A) 127D - o
#'Ga)[02> =0 {45)

for all -[7 and 2

The parameter m , which is related to the Bogoliubov angle as

Gm0¢)=(/m N {45)

corresponds to the spontaneously gencrated mass of quarks.
This can be in principle calculated with self-consistent method [33]
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The chiral syrmetry breaking trial state {(42) of Nambu
Jona-Lasinio is of the form discussed in Secticn II. Moreover, if
one calculates the overlap with Fock vacuum {31],

OO > = Laclany
= o g (b p AR =0 wn

because the exponent is negative at large momentum and diverges
linearly with the vltra-violet limit of integral.

The Fock vacuum has the zero overlap with the "super
conducting" state of Nambu and Jonz-Lasinio just because of the
contribution from large number of states with high momentum.
According to the discussion of Section 11, this may be taken as
the indications that any approximation scheme starting from the
conventional patk integral (1) would run into difficulties [26] .
Yle are in the situation where one cannot hope to proceed
trivial wave function and reach the true vacuum “perturbatively”.
{Even with non trivial configuration of /%u ).

Before writing down the modified path integral which
should replace (1), I generalize the Nambu-Jona-Lasinio represen~
tation (42) to chiral SU(N.) with NF >1

. hy
1o, = T fc.::eqz)
- 2,251
: ¥ 221;‘.1) L
+ swmoep) I ok ga (€ L€ é’\ﬁ(ﬁﬂ)} 120>
(X}
(48)
where the angle éCF) is chosen as before, and
: [AS
{'1; }‘:,l 3 the generators of SU(N.) in the quark
representation.
Ve 1
[_(ln}.:‘ ; parametrize vacuum degeneracy with respect

to the chiral part of SU(N:) x SU(Ng)»
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of 3 parametrize va uum degeneracy with respect to chiral U{1),

Corresponding to the global chiral transfurmat‘on of che field
operators

b 1

=0 . ‘-...'_’ :
LQP.B(w e fﬂ' le rn)‘,. ’(IL&A (49)

One has

u&l‘ 2 LQ(-&) - ln(nl>g'_£‘

’”
where {2 s given by

—

ML 28T _oRX 20041
e e e = € (50)

l-ﬂ-") also breaks chiral U(l) which amounts to the change
of parameter

d » A+’ (51)

Now ] can put the wave function corresponcing to the t-ial state
(48) into (1) and obtain the following modified path integral
representation of the vacuum expectation value of operator X (i v;ﬁ",)

L2 XU A0 D0
-7 f.&)//(vu e % ﬂy—fnrj)wz,r) e
n.,,{ cosw) + sibe L] (™ )I%0a] ]
JLL emowr s on) [l T (7920) [ 5hes], ]
X (nt4) e e RERn

%omalization factor) . - {52)
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The letters (& , ) in LHS indicate the degeneracy of vacuum
with respect to O  as well as the direction in the space of
chiral transformatwn 2 |, the Grassmann variables E?‘ (PN]
and [7 Ir,u ] . correspond to the Fourer components uf local

{ -component Dirac variables YA2.7) and & 27D ot the
given Euclidean time T , One can write

o (27) = [ax 180l 3) 4 (5], ()
+ [Shernl(7) + L 3ae-0) () }
W 00w (404 €L 1 0] 0.0 0) +[3.070) 0e)
+ [ Tatrni (o) 4 [0 0] (0,0 0)) I
(¢ T )

(s3)

[
The vectors ( ,ra)et.c are the massless spinors in the represen-

tation where ¥y matrix is diagonal. One can choose, for
fnstance,

W) [ Elrps ! [F1a7s [h-in
;] 21 t+tPl p)J "'lf, |-0-r (54)

W"Ps
and &
W (1 BF
. W (s5)
wo @ o |~ £C '
1( fl’F_' )
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(52) is the main result of this section,
Note that one can write the coherent state (48) as unitary transfor-
mation (as in (28) o, Secticn II)

. ln"’),“ =i G(at. 2kt na) o>

where

Gla,e,a"8"52,x) - cfd': 6¥) J, {

. Al h .
ahleafe™ ), €)™ e‘“‘a..m.’}

(56)

3lthough it is not so simple co introduce the object like (56),
which is not normal ordered, intc the path integral. (Normal
ordered form of (56) is, of course, just the original (48)).

The "current algebra”® vacuum of Nambu-Jopa-lasinio
breal.s chiral SU(N) x SU(N} according to (50). It also breaks
the chira® u{1), 1.e. under the global transformation

Gy — e d s (x)

— — N 9".
G —» Frye”
($7)

one has

R, 192 (s8)

Just as in QCD Lagrangian of quarks and gluons, the invariance
under the chiral SU(N) x SU(N) implies automatically the chiral
U(1) favariance (unlike the Gell-Mann-Lev, iinear O -model with
¢ -’i and p/ }» the spontaneous breaking of former (by
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coupling to the wave functions {48)) entails the break!ng of the
latter.

¥ '
The factors A EABCrA) ( 4, tericity) fn (48)
have the chirality 24 . So to study the chiral transformaion
property of (48), it is convenient to write this as

] A
Folg) P ’LT [ anbd} + smb@U @]
. A
«T Lors@)+sme) Ute)] 0>
2 (59)
A‘l
where the operators U* ®) transform as
V) — e Use)

under (57).
(59) means that the Wambu-Jona-Lasinio's trial states are the
coherent superposition of chiral U(1) eigenstates

- * S S .
127> - % W 10 (60)
where * (,1}\7){ — e;%« Wx

under (57).
The vacuum expectation valuc according to the modified expression

(52), Zﬂ'l Ay T4 can be written as
3 <oy e By 10>
(Aol

where [ 0> is stil) "Fock vacuun™ or the factor 1 in the path
integral. .

The assumption of spontan.ous breaking of chiral
SU(N:) x SU(NF) {or the curxent algedra) is that the chiral
sectors (o,ﬁ,,P ~ - .- W3 107> with more or less arbitrary
values of Vg and Yz should be able to contribute to the
vacuum amplitude. .. - X oo
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Now it is easy to see what has gone wrong in the analysis
of Section 1. Applying the same technics of WTI and taking care of
chiral non invariance of the vacuum wave functions in (52), one
ymmediately arrives at the modified selection rule

() i)

which should replace (12). Here, ¢ and V¥ (positive or nega-
tive integers) refer to the component’

Ny A
ol Wy, - - Wy lo >
tion value <X>v .

3}, as before, refers to the chiral symmetry breaking from the
boundary condition on & /%r .

of the total vacuum expecta-

The validity of the idea of spontaneous breaking of
chiral SU(NF) x SU(NF) implies that the total vacuum expectation
value of the operator { ( 9 -vacuum) must be non trivially
contributed by many components { Ve, Ve ) . Fer each of such
component terms, there will be different chiral U{l,} selection
rules

Y (X) =21V +20%-% ) -

Conversely, the rigid chiral selection rule of (12) implies not
so much as the existence or the no. existence of U({1) Goldstone
boson but the negation of the idea of spontaneous breaking of
chiral SU(NF) X SU(NF) and thus the impossibility ¢f current
algebra,

The modification (52) and resultant change in the
selection rule (63) of course do not affect the local chiral k™1
with current divergences.

The only difference between path integral (1) and
(52) is the addition of surface terms at { e 200

Thus the standard manipulation of Section 1 with
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the local groub parameter o{{X) , concentra-:d around some fianite
space-time point X , will lead to .the exactly same form of
(anomalous) WTI

< 97F%n). X D
/ S'IX N - L = FP ey
T < Sd(lu)dl,o ~ Bme < 1 ‘)':X->

whera

. L == o,
Fros=Z % s c2) -
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1V. SUMMARY AND CONCLUSION,

It is suggested that the controversy over U(1} chiral
symmetry in the usual formalism of QCD is in fact the controversy
over the possibility of chiral SU(N) x SU(N) current algebra
itse)f in this framework. Thus the present author is in compiete
agreement with the spirit of Ref. [8] on this point.

The reason why one is allpwed to think separately of
the spontaneous breaking of chiral SU(N) x SU(N) and of that of
the chiral U(1) x U(3) in some of the published works on "U(1)
problem” seems to be partly due to the rather careless way in
which the path integral representation of the Euclidean amplitude
is understood. It must be remembered that even in the linear
scalor O -model and fts equivalents in Statistical Mechanics,
one must specify the boundary condition in the corresponding path
integral to obtain the specific ground state which manifesis the
spontaneous symmetry breaking

LY = F #0

In fact, the path integral which does not specify such a boundary
condition would lead to the statistical mixture of degeierate
vacua where one would not observe any order parameter.

¢
The simplest example would be the A‘P theory in
two-dimension where the Euclidean action is given by

Se = [l & 0-4)'- {r#*+ 3 8*]

a=’12- /A" ,\}O

One expects {and can demonstrate rigcrously) the spontaneous
breaking of the discrete symmetry

¢ —-¢
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But if one carelessly identifies the vacuum as‘
) Se(p)
' —~HE ~ ¥E
S <ol €M 0> ~f3¢ e
I =
M -

then one has trivially
€

n -8
<ol 1oy = f$¢ ge =0

In QCD, probably it ¢s possible to demonstrate rigourously (inde-
pendently of semi-classical approximation) that < F¢ %=

if the path integral is not supplemented by the suitable boundary
conditian other than the topological sectors an .DA/., .

To try to obtain U(1) symmetry breaking only through the
non-trivial {topological) boundary condition on .9/4/' (gauge
fields) is equivalent to try to aobtain the whole of SU(N) x SU(N)
spontaneous breaking in the same way. Although 't Hooft mechanism
singles out the chiral U(1), if one says that there is nothing
€lse needed to define the path integral far QCC, then one would
first of all lose chiral SU(N) x SU{N) breaking and current algebra
before the question of U(1l) Goldstone boson. Cf course, the
present analysis cannot demonmstrate this statement mathematically
by the rigorous analysis of field theory defined by the path
istegral (1) or (52). It would be certainly verv beautiful .if one
could reduce all of the chiral SU(N) x SU(N) breaking as well as
the chiral UY(1) x U(1) breaking to some topological structure of
gauge fields,

Cn the other hand, the closer analysis (when it is
passible) of the path integral such as (52) may result in the -
existence of U{l) Gold:tone boson which somehow becomes much
heavier than its SU(N) counterparts, like 7 , K , 7 . This
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vould be in accordance with the speculation from 1/N $nalysis
mentioned before [10].

In principle, one can obtain the indication of the
answer to these questions by assuming the integer topoloyical
number on gauge fields and then by applying the usual analysis
" with special gauge field dependent quark varfables ( 7.. ,?. ) .
corresponding to the Dirac eigenvalue problem

(F+A )P = 20 P

The behaviour of integrand with respect to zero mode, 1.e. those
quark variales (77,7, ga") which correspond to

(AP =0 Vel, 2. mtyor-

depends eatirely on the wave functions SFF awd 3?, » since
5’; now takes the form

2, A UuZ
Anto

But the complicated non local structure of !I": and Q'r

prevents so far to see if the vacuum expectation value such as

<q—‘l-> has the term vnnch is proport'lona'l to

’lT A% dg’ 77 ’Z 2’

The coefficients of some of just such terms seem to cancel.

Finally, it is usual to consider the pure Yang-Mil's fields as
all important for the qualitative understanding of QCD, such as
the possible phases of the system with or without confinement.
Nevertheless, the correlation between U(1) problem and the
spontaneous breakdown of chiral SU(NF) of Nambu-Jona-Lasinio
seems to suggest that the existence of fermions is essential

to understand any part of physics of QCD. Dne example of the
speculation in chis direction is the phase transition depending
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on the number of fermion proposed by Callan-Dashen and Gross [34].
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