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Abestrect

A new iteration procedure for solution of the Sechro-
dinger equation with arbitrary potential is proposed, Both
the eigenvalues eand eigenfunctiona sre represented in thse
form of a series which is well convergent under certsin
conditions. The sclution of the k - dimensional Schrédinger
equation within the proposed achems reduces to r. problem
of the k - dimensional slectrostatics, As sn example we
consider potentials x2n (" =2,3,4) and m"x'.*}x('

in one~dimenalonal space,
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The Schrodinger equation is the basis for solution of
asny physical problems. Various phenomena, both well-known
end dipodvered recently, are described by this equation with
this or that potentisl. Bometimes it 18 necessary to conslésr
very sophisticated potentials, end as a rule the aigenvalues
end sigenfunctions can not be found exactly., One has to turn
to approximate methods., Two of them are commonly used: ths
numerical integration with the hslp of computers and the
Rayleigh-Schrodinger perturbaticn theory (see e.g. [1])o
Both methods have coeriain drawbacks. The former is appliceble
actually to one dipensional problems only, end prectically
does not work in two or more dimensions, The latter es a rule
yields a divexgent series which is sensible only st small
veluens of ths coupling constant. It haas nothing to say about
the strong coupling regime, Moreover, often it is neceasary
to Inveptigate the analytical structure of the solntion, In
this case both methods turn to be ineffective,

In this paper 1 consiruct & new iteration scheme which
pernits to determine sigenvalues and eigenfunctions of the

k - dimensional Schrédinger equaticn with arbitrary poten-
t1al, -

Tn)ike the ordinary perturbation theory, the geries
emerging within the scheme propnaed are‘oxpac‘bed to be con=
wergent. Physicel arguments demonstrating the convergence
ure presented. As an attempt of a more rigorous comsideratien
I formnlate aleso a simple theorem which gives a necessary
condition for the convergence cof the procsdure. |



Bosldes practical usefuiness the epprrach poaseises
coertain elegance. For exmwmple, cons*ructing successive iteraw
tions reluses sctually to solution of K - dimensional
electroatatics with verying (coordinate-dependent) dielectric
permeability. In one~dimensionsl gpace the answer is writtenm
out in a closgsed form.

The general consideration 18 supplemented by a fow
examples, We¢ deal with one-dimensionsl potentiais, which are
rather ofvsn encountered in verious applications, nomely
Xz" (W =2, 3, 4) and quartic snharmopic oscilletor.

Row let us proceed to a systematic description of the
method., We start with a certain transformation of Schrodin-

ger equation, which converts the stemdard iinesr equation

Ay t(E-V]Yy =0 )
into a nonlinear one. The ponlinesriszation transformation I
meen has the form

- gY

§=- -7ty @

whore /A end V are ordinary k - dimensional Laplace
and. gradient operstors. Using egs.(1) amd (2) it is 2 trivial
matter to obtain a new nonlinear relation

2
Jivg-g =E-V (3
which is completely equivalent to tbe origimal Schriddinger
squation providsd thet the edditicnal oonditiom

-» P
‘j 2 ¢ (sceler function) (%)
18 satiafied. )
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The potential \ can be always decorposed into two

piecea V = Vo + AV( such that the cquation

A%w‘(E,-Vo‘%zg (5)

—- s
can be solved exactly. Then y" ==V %/,{fo « Wo delay
discussion of the question as to how to choose Vo in each
particuler -ase¢ and now will develop a perturbation theory
with respect to A . In a standard way write

Oo-
v =-22"4
= h
p A d (6)

P
E = Z 2E, )

—
Then the values of En snd functions y“ are determined

.

by the following of linear equatlonss:

a’:’vg: ~z%5; =£,- @, (8)
(Besides, each of the functicm ;; must satisfy eq.(4).)

Here M-t
=V, , @. *‘géﬁ%{ at a2

Mult_plying both the right end left-hend sidee of eq.(8) by

4,01 we come to

div (£27.) = (Eu-Qu) B° (10

The letter relation is the usual /( - dimensional electro-
statics law, %z and gﬂ playing the role of the dielect-
ric permesbility end the field strength respectively. To
specify it completely one needs a boundary condition.
Invoking the defimition; of ‘}Jo and :i:‘ we got an

obvions reletions
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This relation ~un be Immedistely cunverted into in-formation
#bout, [“n . Kevlly integrating both gtdes of eq.(17) over
the whole space and transforming the volume integral in the
left-hnnd aide into the aurface integral (with the help of

the Gsugs thaorem) we find

£, = (11)

This expreasion gives the value of the # - th correction
to the energy level of theunperturted potentlal, It is worth
noting that the flrst correction { N = 1) colncides with
that of conventional Rayleigh-Schrodinger perturbation
theory {1} . To determine other corrections Eri it is
necossary to solve the electrostaticel problem (10), with
various right-hand-sides expressions, which ies equivalent to
solution of the general elliptic equation

A \Pn -2 (3:'.6}0") = Eh - Qn (12)

whe re g;:f;f” and En is glven by Eq.(11). This 1is
not an eigenvalue probiem, since éin is assumed to be
know from lower-order iterstions (see eq.(11) ). Thus, from
the numerical point of view a computer integration of
eq.(12) is a much simpler problem than taat of eq.{1).

Now as to the convargence of the procedure proposed,.
It is a complicated and difficult question. I plan to
return to its deteiled discusaion elsewhere, However, a
remark which seems physically Justified is in order hore.

It 18 almost obvious that if the perturbing term

.)I restrict myself in following consideratlion by rising
potentiaels only.




AV. is less singular than Vo and i8 small a3 compared

to Y at [xf—~ o , then the series (&), (7) are
convergent. Really, a true reason which lies behind diver-
gencles in ordinary perturbation theory is a singular nature
of the perturbation. Consider the analytic structurs of, say
the ground level energy, E y a8 e function of the coupling
constant A  in the complex A plane, If A VI/VO o=
et [x| > ©=© then chenglng the sigu of A , A +-A
regults in sn instability, emd in particuler, in E there
energes an imsginary part due to tumnelings. This signale the
dlvergence of /‘{ peries in this case. If the potential V,
were leas singulsr then Vo s then no ressgons would exist
for appearing of singularities. At least, such reasons ure ’
nott on the suriface. Thus, one can expecty '\:bai:Oii’:his situation
all the quantities are nonsinguler in 4  in the whole
complex plane, which sutomatically means thet R series
are factorially convergent. I did not manage to find e rigo-
rous proof of this statement, Howevcr, in numerical cxamples !
which will be discussed telow the convergence is extremely

rapid., As to the rigorous result, let uz mention the follo—~

wing theorem for one-dimensional case:
If Y, grows at infinity, [x] o0, enc e )
are unhounded functions '), then the series (6) - (7) ama

>

divergent.
Now let us discuss how to realize the idea concretely,

The central point is an optimul choice of the zeroth-order

spproximation which must gurrantee the most repid convergeance

.)For excited states unboundness is required for regular
parts of y"(x).



of the procedure, It is clesr thet sny function from L‘.Z (Rk)
serves in fact as the wave function of some level of agome
potentlal , In other words, given any function !//o one can
fit a potential

Vp :Eo + A%/L}’o

in such a way that the given function \,UO turng to be
Just a bound level wave function in this potentiaml. It is
obviously expedient to take Y/ in such a way that V),
would be close to the original potential V , and in parti-
cular, would contein all the singularities whi:h sre present
in V . Thie 1s automatically achieved if ore puts in ¥4
the informstion concerning the asymptotic behavior and number
of zeroes of the genuine wave function 1’/ » Buch an informa-
tiom is easily avallsble in each particular cese at least in
cne~dimensiocnal and radielly symmetrical probiems.

Since Vo (Kl slmost follows V(}\’ ) by conatruction
and reproduces all its singularities, their difference,
V,= V-V, s 18 small as compared %o Vo everywhere,
end hence the perturbation theory in ( V- Vo) nust be
convergent.

Iet us give a few examples, Consider the Schrodinger
equation in one dimension .). Ther eq.(4) represents in fact
a well-know Ricatti equation, snd eq.(C) can be readily

solved exactly,

*) k - dimensional radielly symmetric equation reduces to
the one-dimensional cne. In these cases a gimilar pertur~

bation theory wss proposed for anharmonic oscillator prob-

lem [2] « Gepaeral formulas were obtained in paper [5] .




X
‘ju(*)= %'ZJ (En"' Qn)%z"lx’ (13
-

where Q” are defined in eq.(70) aad the /s -~ th correc-
tion to the level energy E,, is given in eq.{11).
¥or the potentials V(x)= in ( n =2, 3, 4) ena
Vix)= mtx* +3x" , which ure often encountered in
various applications, the zeroth order wave function can be

chosen in the following form

2 : 4
YI( (x)= exp{ %/X_ 4 x'ﬂ} (142)
m

an extension to higher excitations being trivial. These wave
functions eqs.(148,b) satisfy the S-chrodinger equation with
ths followlings potentialss

eround gtate (sg.(14a)) \

¢ (ﬂ)=
V0= [ g o £ 5

Dirat excited state (eq.(14d))

(4)
VIR Xt 2m g 1 e wa e gn s E g2 S O

(a). Poteptisl V(x) = x*" . In this caee in egs.(14a,b),
(15a,0) I put ™ =1 amd g = 1. Then \{(x):Wx)—V,(x) =
= -Xl +[MK”-4—1XM‘] (for ground state) and %(X)s V{)‘)—Vo(ﬂa
---X‘:l +[(n+2)x°'".1x'”'] (for the first exitation), and

Just these expressions will be t‘mated ag perturbations.
Subgtituting them as well as \f’ C..KP{ / - htd



na Wi« ex,b{ 7. - X on } into eqs.(11),
(13) one finds the first corrections to the energy levels.
The resulté are g.ver in Table 1, It is worth emphssizing
the rapid convergence of our methodt already the second

correction contribution does nct exéaad a few percents.

(B). Quartic snhsrmonic oscillator V= mixl +g xY
Only the ground state will be consi dored. Substituting the
psrturbation V(X) 2V x 2»ﬂ/§'x as well as \}’lo{fx x
= exp{-m/z f"x/_;} into e ge.(11), (13) one finds the
first corrections to the ground state energy. For example,

the ftirst-order correction has & form

E,=2/3 /(x ) exp -pox’ "ijd (16)
‘T}P{ mx? zfX‘;} dx

(We recall that E = ¢ .) A remark concerning the analytic
structure of E’ in the complex 3 plene 18 in order here.

In fact it reproduces well some of the main features of the
behaviour of the genuine energy [ , and, unfortunately, ]
fails to reproduce others. Namely, £, has a cut [-00,0]
and the 3—» o= asymptotics is ~3V3 as it shogld be,
I‘oroo'ver, the discontinuity across the cut as 3—-» — 0 18
exponentially small, however, it does nct coincide with the
WEB exprecsion {(ses e.g. [4.5] ), wilch is known to be
correct at 3-—? O, This deviation from the WEB result is
certainly a drawback of the method, bdut, luoki],y enough, it
4oss not invelidates 1t as a whole, Realis, 1f one could smm
the emerging series, the WEKB formula would be restored. The
letter statement cen be p’riﬁon quite rigourously (at least
for exampiss discussed in (A) and (B) ).




Table 2 confronts my results contuining two first ite-
rations with numerical calculations [6 . Tis sgresment
ia excellent in the whole rang> of g investigated.

It is worth noting that the pew perturbative procedure
proposed hero is mnot only interesting by itself, it ylelds
also an information about certamin sums encountered in the
usval verturbaticn theory. In fact, thecie exigts sam Inter-
relation between our method and that of the usual one, In the
latter the wave function is expended in the following way

o

]
yal AY, (1))
fe=0
where the % - th correction ¥/, 1s determined by s sum
over ell intermediste states of unperturbed potentisl, Yor {

example, for the ﬁrat correction we have

= 'hf (“}
Z_ e o
where ths superscripts (w), (t) 1abel the number of the !
level, On the other hand, within the approach proposed the
correstion .‘(8) may bs obtained from the definition (2)

and @q.(13). Then, the following sun rule ig obtained

(e) }{/%"" ,c) )" Vie £ mY’

= EICI E
Hore the constent C, is dsterained by requiring that the
first-order perturbed wave function is normalized to wnity
in general case nake- tks interrelation explicit let us
invoke the definition (2) end consider series (6), (7) as
formal cnes. By comparing two altermaetive expressions for




coefficlents of various powers Auﬂ in the ¢ ana £
expansions many attractive sum rules can be found. These sum
rules give the information zbout the speclrun of unperturbed
potential.

To summarize, I mensged to comstruct the iteratiomel
scheme, which does not require the knowledge of the emtire
spectrum of an unperturbed problem, In one-dirmonsionel end
spherically symmetrlic cases cloged analytical expression
for corrections at all orders can be writtem out. For arbit~
rary multidimeniional potentisls the orizinal eigenvalue
problem turns out to be equivalent to integration of electiro-
statics equation (12), From the numerical point of view such
an integration is much more simple <then ths solmtion of the
elgenvalue problen,

A few points remained to be irvestigated yet. The rigore-
us proof of the convergence conditions is still lacking in
general case, The orthogorality of the excited states as
given by subsequeni iterations is questionable. If they are
not orthogonal, then what is the optimal way to orthogonalize

then?
I conclude with a pome remark on literature. In the paper

[2] a version of convergent perturbation theory fo. ground and
first states of anharrcnioc oscillator to one dimenslon was
proposed. With some affort one can show that the technique of
Ref. 2 1ie a particular case of ?he approach dsveloped here
to one dimension, when !‘o(l)-‘-[V(K)] o and unperturbed potential
Vo(x)=V(x)— V'(X)/zﬁ-(;)- » Moreover, this recipe applicable di-
rectly to a narrow class of one-~dimensional problems. One-di-
menslonal SchirBdinger equaticn was considered also in a re-

cent paper [7] which I learnt ebout after the completion of

10




present work, There is a certain overlap between the results
of paspsr [?] end the part of my work which treats one-

dimensional potentials.
it is 8 nleasure to thenk B,L..Joffe and K,A.Ter-Marti~

ro3yan for diascussions and I am greatly indebted to Yu.A,Si-

monov for wvaluabls comments, I want to thank M,A.Shifman for

reading of the manuscript and eriticel remsrks.
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n
Ground-state and first excited energy levels in potentials X .

Zable 1.
Values A £ characterize the corregponding term of our perturvation toeory,
In dbrackets the relative deviations from exact values are containeds 3,,.... Tcs
Ref. 8.
Foten— L] 1 - x© ) Y
ximatio ound level | first level |ground level | first level 'ground level i Tizst Level
£ 1 3 4 3 . - ; z
0 ' ,
AE 1 3 4 z - 2
E 1.,13359(6,9%)| 3.94939(4%) ’1.1581+1(1.2%)i 443500300, 5%) 1e23476(0,73%) |4.37634 Z,5%)
1 — :
aE 0.13359 0494939 015841 | 1,35503 0423476 I 1.87684
E 1e09519(2,3%)| 3484482(142%) 1.14747(0,2%)| 44353376( 0, V%) 14225535(0,02%) 4475414 0, 36%)
2 .
0.04841 0.10458 0601094 0.,01927 I 24009165 00122636
3 E [1.06976(0,9%) - - - ; - ' -
8E bo,01542 ! - - - ! - . -
Eaxact 0 06036211 ! 3079967315  [1,14480246 | 4,33850882 1022582010 | 4,75587454
: -

e




Table 2. Ground-~state energy level of snbarmonic
oscillator with quartie anhasrmonicity
(two approximations). (E'=F/7 , g’ = 9/2
see gq.(I5a) }Jo B from Ref.§
1 4 [ 4
9 ' E £ exact
0.1 0,561658 0.559146
0.2 0,604862 0,602£05
0.3 0,640163 0,637992
C.ét 0,6706481 0.6€8775
0.5 0.,697772 0.696176
0,6 00722399 0721039
0.7 0. 745055 0. 743908
0.8 0.,766125 0.7654u4
0.9 0.765861 0.,785032
1 0,804468 0, 803271
10 1.50463 1450897
50 2449734 2049971
100 3412582 313138
500 5029575 5331989
1000 6,65739 6,69422

13




1.
2.

3.
‘.

S5
6s

7.
8.

14

Re ferences

L.D.Lendau, BE.M.Lifshitz. Quantum Mechenicsa. Moscow, 1963,
A.P.Dolgov, V 5.FPopov, Fhys. Lett., 298 (1978) 4033

ZEETF, 75 (1978) 2010.

AV.Turbiner, Pisme v ZHETF 3Q (1979) 379

C.M,Bender, T.T.Fu, Phys. Rev, 184 (1969) 1234;

Phya. Rev, D7 (1973) 1A20,

B.Simor. Ann. Fhys. 58 (1970) 76.

F.T.Hice, DMcMillen, K. W.Mcentrsl). Phys. Rep. 43¢ (1978)
307.

Y.Abaronov, C.K.Au. Phys. Rev, hett 42 (1979) 1582,

M.S.Marinov, V.E.Shestopal. “About eolution of the Schré-
dihger equation with potential 12, The report on the
Meoting of Muclear Physics Division the Acadamy of Sclsen-
aea of the USSR, October, 1977.




W’thkc 3624




