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Abstract : 
The splitting of the nuclear Hamiltonian into a collective Hamiltonian, 

an intrinsic Hamiltonian and a coupling term is shown to be a solvable 
problem. The solution is equivalent to a change of representation, as 
exemplified by the multi-channel theory of nuclear scattering or the 
Born-Oppenheimer representation of molecular dynamics. 

Host nuclear models attempt to replace the microscopic description 

of N nucléons, with their 3N degrees of freedom r,,...r„ and corres­

ponding Hamiltoaian ^»(£i •••£»!»Ei«"' £M^ » ̂ y a description with much 

fewer degrees of freedom Jti••• ^£ r> c * 3N. The variables 3^ are 

understood to be "collective" and governed by a collective Hamiltonian 

« ^ c o l l ^ V $lc» S^j." «^C** A s r e 8 a r d s t h e connection between 
J^)' and r's and the derivation of 0fa .. from ç̂ £, a certain amount 
of arbitrariness and phenomenology in the choice of j£' and properties 
of g%£ .. is unavoidable, if only because there exist 3N-C residual 
degrees of freedom £.,...£__. An explicit change of coordinates from 
r's into cTç's and £'s is usually impossible. The purpose of this 
note is to show, however, that the problem is not untractable. 

The main question to be raised is how t- estimate the coupling 
between the "intrinsic" degrees of freedom Ç and the collective varia­
bles (fc. For this coupling may induce important viscosity and/or 
friction effects in the collective dynamics, as is well known in the 



theory of the deep inelastic collisions of heavy ions for instance. 

There one chooses for c5v's the relative distance between the ions and 

a few other variables such as deformation parameters, angular momenta 

or orientation angles of fragments in binary modes, mass and charge 
2) densities and so on . The influence of the neglected intrinsic degrees 

of freedom is then felt through an interesting hierarchy of relaxation 

times for the < ^ ' s . 
3) A similar question is of importance in the theory of fission , 

since the statistical distribution in the phase space of ̂ ' s is ac­

tually controlled by the Ç's. For instance the mass distribution of 

final products, a collective observable, may be influenced by the pre­

sence or absence of the breaking'of pairing between nucléons, an intrin-

sic mechanism . Many other examples can be. found where the coupling 

between tK%s and Ç's needs to be properly understood . 

The argument which now follows goes by three steps.lt will first 

be stressed that the theory of coupled channels in nuclear collisions 

actually achieves a change of variables from r's to and £'s, in 

a special representation , though. Then it will be shown that the 

formalism can be extended to a Born-Oppenheimer representation for 

coupled channels. Finally the general situation, where approximations 

can be implemented in a practical way, will be described. 

In the theory of coupled channels one knows explicitly the 6 collec­

tive variables, namely the total center-of-mass coordinate vector 

R • (r. + .,.+r„)/N and the relative distance vector $* between the 

projectile A and target B 

# " % * •••+XA>/A " (rA+, • ••.U A + B
) / B • ( , ) 

http://steps.lt
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The 3N-6 intrinsic variables are the internal Jacobi coordinates of 
nuclei A and B, such as 

ki ' li'lz » h. -£ 3" (£i +£2 ) / 2 • ••• 

W 2 - lA+B_ (IA+1 + • • • + I A + B - 1 ) / ( B - 1 ) • 

As the transformation from r*s to «Jfc's and E's is here linear, it 
is a priori possible in the cluster model and the associated resonating group 

8) method to transform explicitly the nuclear Hamiltonian from its micros­

copic representation 
N-A+B p\ N 

(3) # • I TT+ I V(r.-r .) 
i«l 2 n i>j-l ^ ~ J 

into the partition representation 

&' ^coll + <^int + ^ " c o u p l ' ( 4 ) 

with 
P 2 & 

AS m 1— +<£— , (5) 
<n> co l l 2Nm 2um ' K ' 

rA-1 n 2 A 
#i« « K * #1 - [ j , 2^\l^-lA 

rA+B-2 TT2 A+B 
(6) 

[A+B-Z IT. A+B "I 

k»A ' K I > I « A + I J J 
' k-A " M k" i>j«A+l 

and 

A A+B 
. - I 7 V(r. - r . ) . (7) 

" " P 1 i - 1 j-A+1 - 1 ~J 
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In these eqs. (5) to (7) the momenta JP, dr and IT. are conjugate to 
R, «5? and £,, respectively, and they are associated to the relevant 
masses Nm, vim - — m and u.m.It is obvious that dtb *, > *kfint

 a n d 

tftf 1 are the collective, intrinsic and coupling Harailtonians, 
respectively. 

The channel representation consists first in the diagonalization 
of 4f£ ., with eigenfunctions X (O which are products of eigenstate 

m e n ** 
of nuclei A and B, 

\fS) ' \<i\ • • ' W ^ V ' •êA+B-2) • (8) 

Y « (e +e ) Y , (9) int *n n n ^ n ' 

the eigenvalue e being obviously the sum of nuclear eigenenergies. 
Then a complete basis of the full Hilbert space of the 3N degrees of 
freedom may be chosen as 

»R.^.n(S^) - «<**•>«<£-S^VP » (1C) 

where JR' and *£. ' are c-numbers taking on all values. 
Except for details of antisymmetrization which are unnecessary in the 
present discussion, this is nothing but the basis of the resonating 

8) group method . In tl 
element of reads 

8) group method . In this representation the general, non diagonal matrix 

<V si v I **I V#••»«> - - 6 n v [ i • ér\ «W 6($'- £"> 
do 

• « ( S ' - r ) ^ ' - ^ " ) e n , 6 n , n „ • ^ V ^ œ u p l I V ^ n " * ' 

It will be noticed here that the first term in the right-hand-side of 
eq. (11) is diagonal with respect to the intrinsic labels n',n" and 
corresponds to the collective Haoiltonian. The second term is diagonal 
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with respect to the collective labels R*, *A.',R", (ft" and corresponds 
\̂. ^c ŵ ^ 

to the internal Hamiltonian. The last term has no a priori diagonal 

properties and is identified as the interaction matrix element. This 

classification will be of some use in the following. The diagonaliza- « 

tion of 06 in this representation, eq. (II), is nothing but the 

coupled channel theory of scattering, the details of which are well 

known and need not be recalled. Truncations on the channel labels n 

are, obviously, the most natural approximations available for practical 

calculations. 

The Born-Oppenheimer representation shows similar properties. As 

will be shown, however, the presence in the formalism of adiabatic 

polarization effects induces a.modification in the three terms which 

will be found in the right-hand side of an equation analogous to eq. (11). 

Let ̂ t denote all the "heavy" degrees of freedom (protons, nuclei) and 

£ denote the "light" degrees of freedom (electrons). Again the Hamiltonian 

is the sum of three terms 

* m ^heavy< # > ̂ l i g h t < P ^ < & *> ' < 1 2> 

but these terms will not be interpreted like those of eq. (4). Rather, 

taking advantage of the fact that is a local operator with respect 

to « ^ , one replaces eq. (9) by a diagonalisation of &(f^. . • %^~ 

in the full Hilbert space of both ^ £ and £, 

[^light(P + ^ ( # '£> " e n ( ^ ' m £/n " ° • (13> 
where 

with again « ^ ' as a c-nuraber. Comparison with eq. (10) shows that x *v 
is now again a channel wave function, with ̂ J. '-dependent polarization 



effects however. 

The furetions 4 A , make * complete, orthonormal basis of the 

full Hilbert space» for obviously 

«•^•sr--*-"*'-?"'6»'»" ( 1 5 ) 

because of the hermiticity of £&.. . . +tr and because of eqs.(13) and 
light 

(14). For the same reasons one finds the completeness relation 

rn f d^' x V ^ w g , - £'>«c£ 2 -3'>x ^ . B ( y 

• ï « x ^ > ) 6 ( * i " * 2 ) x 4 g , « ( ^ ) 

• « q ? i - * 2 > 6 ( & i w f e > • (i6) 

It is now interesting to consider the matrix element of ĵ? in this 

representation. One finds at once, from eqs. (12) to (14), 

* "~ * * (17) 

<c *v n <v n n 

where it is necessary to distinguish the kinetic and potential parts, 

^ and 2^ , respectively, which are present in ^ T • For a local operator 
heavy 

*tfo ( J^ ) gives a term diagonal with respect to Ug while 1o , which 

contains Laplacians, induces three terms. More precisely, since $ ^ , , 

eq. (14), is the product of a 6-function and an ,32' dependent intrin­

sic state, it is well known that the gradient operator may act twice 

on either the former or the latter, and it may also act once on each. 
If one denotes by M_ the mass tensor which defines T» and assumes PY 



ttat this mass tensor is a constant, one finds 

^ n g n n n L g ^ ^ „ ^ ^ ^ 

*% ( # ' ) 6 ( . £ ' - # " ) ] + 6(-g ' - # " ) £ . ( # ' )« . .. 

6.Ï-1 l n " ^ n n o. 3 ^. . 3 £ w

 n n V J 1 1 *-
(18) 

where 

and 
^ n V<#"> " ̂  | 5 Xg^CÇ) ^ X^„n„ (£) . (20) 

The first bracket (a sum of two terms) in the right hand side of 
eq. (18) may at first sight be understood as the collective Hamiltonian. 
It is actually renormalized by the intrinsic Hamiltonian driven by%r » 
V ^ ' ^ n ' n " 6 (^'~-5?">- *"* l a 8 t b*«<*et in the r.h.s. of eq. (18) 
has, obviously, the structure of a coupling term between channels. It 
is a sum of two terms, one with local form factors %&" ^ and one 

with quasi-local form factors 
The properties of the Born-Oppenheimer 

multi-channel theory results from multiplying the ansatz 
* C g . O - E n » f d g » V ( $ » ) » £ „ B H (21) 

where * «o» n has been defined by eq. (14), by the total Hamiltonian 
$f&* described by eq. (18). When solving at best the Schrodinger 

equation one may truncate with respect to the channel indices n'n", 
thus obtaining a canonical system of coupled differential equations for 
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the unknown wave function g „. 
n 

It can be stressed at this point of the argument that the "channel" 

index n defines an intrinsic representation more convenient than tue 

"intrinsic coordinate representation" £. This is because the change of 

representation from {jç ,£} to {ZK »n} defines the channel basis $£> , 

the physical significance of which is obvious. It will now be shown 

that a more general case can be found where coupling terms TA/ , „ can 

be exhibited. 

The procedure goes as follows. Let*^ be a set of microscopic 

nuclear operators (multipole moments, etc) for which there is evidence 

of collective motion. A constrained Hartree-Fock calculation can then 

generate a discrete set of Slater determinants (p. , where _X is the 

Lagrange multiplier and v a discrete label. When X takes on all relevant 

values, this makes a discrete set'of continuous sequences and nothing 

prevents to diagonalize Sc in the subspace spanned by either one, 

or all of these sequence {tp, }. Namely, within one sequence, one may 

look for an amplitude f ̂ , (\) such as the states 

Vv-fdA*£.v(^v ' (22> 

fullfil the properties 

^ ' v ^ ^ V •«<$•- <S"> . «23) 
and 

% ' v l ? '*£%'" *' «<£'-?"> • <2*) 
If the sequences are mixed by the ansatz 

*# •« - Ev { d i f W * > v̂ ' ( 2 5 ) 
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one looks for the properties 

^vlVv^W^'-?" 5 • ( 2 6 ) 

<** '.' '£ IV V* -?'6n'n» 6<S f - £ " > • <27> 
In any case, eqs. (23-24) or (26-27), the diagonalisation of ® is just 
a generator coordinate problem. 

The point of interest is that ? A , appears like a normalized 
eigenstate of-5£ . A comparison of eqs. (14) and (15) with eqs.(25) 
and (26) for instance shows that one may identify, at least qualitative­
ly, 7jg> i » eq. (25),with a Born-Oppenheioer channel state $riE>t_t 
eq. (14). Nothing then prevents, in principle, to calculate the matrix 
element <$j* , • UJfcl^g) •« n> a n d fit i £ with a form analogous to eq. (18). 

Namely, by least square fits gr any oth'er suitable method, one can 
try to extract from <$^g , n, \â£ \7L- „n„> 

i) a term proportional to 6 , „ 6(5? ' - Jt ")» which will account 
n n «v «v 

for a renormalizable, channel potential e + f£ , 
ii) a term proportional to 6 , „ and second derivatives of Ô ( Ç ' ~3")» 

which will account for collective kinetic energies and possibly contain 
effective masses K 0 ^ ( ^ " ) , 

iii) a term proportional to 6 ( ^ ' - ̂  " ) , bat non diagonal with 
'gY*nV 

ftv 
respect to n'n", which will account for £ f t W * , „, and finally 

iv) terms proportional to -5 n " ) , which account for 

Although tedious in practice, this derivation of coupling 
terms between collective and intrinsic degrees of freedom can b° summa­
rized easily. Firstly, one should identify collective degrees of freedom 
and freeze them in an adiabatic approximation such as the constrained 
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Hartree-Fock method. Secondly, one should diagonalize these operators 

in order to obtain a suitable channel representation. Finally, the 

matrix element of the mar.y-body Haniltonian can just be analyzed in 

this representation. The coupling under study is only the non-diago-

nality of this matrix element with respect to the channel index. 

It is remarkable that only two kinds of terms, listed above under 
iii) and iv), are necessary. 

The key point of this derivation is the use, for the intrinsic 

degrees of freedoa, of the "n" lyhel, actually an energy label, rather 

then than the £ label, for the latter raises an untractable problem 

of an explicit change of coordinates. The difficulty has been 

alleviated by the channel representation', which may easily incor­

porate polarization effects and* technical truncations. 

It is a pleasure to thank C. Grégoire for a stimulating discussion 

and critical reading of this note. 
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