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Abstract

A general scheme of constructing boson expansions that was
proposed in earlier work is applied to a ngmber of examples. The .
Fukutome expansion is obtained by considering the spinor represen-
tation of the SO(2N+1) group. Its hermitian, Holstein-Primakofr-
type version is also derived. The generalized Dyson expansions
for even and odd fermion systems are given in terms of two spinor
representations of the SO(2N) group. For fixed fermion number sys-
tems the relevant boson expansions are obtained by considering the
fundamental representations of SU(N) while for fired seniority
those of Sp(N) are concerned. The collective boson expansions cor-
responding to the Ginocchio model, the interacting boson model of
. Arima and Iachello and the Elliot: model are given for the symme-
tric representationcs of SO(8) and SU(1l+l) and any representation

of sU(3).



1, INTRODUCTION

In the previous papers ]), hereafter referred to aspart I
and II, a general method for constructing boson representations
of fermion Hilbert spaces was given. The method allows one to
relate in a definite way a boson state to every fermion state
while tﬁe fermion operators may be presented in the form of boson
expansions. Infinitely many boson representations can be obtained
each being valid for the carrier space of an irreducible remresen-
tation of a semisimple croup,

The present study aims at glving a few examples of the cons-
truction of boson expansions to illustrate the general method and
to provide the relation with previous approaches. The examples
based on the allowed representations of the Lie groups SO (2N+1),
SO(2N), SU(N) and Sp(N}), symmetric representations of SU(1l+1) and
S0(8) and all representations of SU(3) are investigated. Such a-
choice is dictated by two possible ways of utilizing boson expan-
sions when describing the collective excitations of a fermion
system. The first one is to map a "large" space of fermion states
onto the boson space ani then to search among many bosons for the
coliective ones. The kinematic step, i.e. bhoson mapping, preceeds
in this case the dynamical one which coprsists of reducing the
number of bosons based on the properties of the Hamiltonian. The
boson expansions for the chain of subalgebras SP(2N+1) D SO(2N) D
SU(N) > £p(N) provide the mapping of "large" fermion spaces
which are the entire fermion space, the subspaces for even and
odd fermion number and the subspaces with both fermion number

and seniority fixed. The generators of algebras in the above chain
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are known combinations of fermion and bifermion operators. The
number of individual boson excitations is large, each of them
cofréspénaing to some individual fermion or two-fermion excita-
tion. .

The szcond way to utilize boson expansions for the descrip-
tion of collective motion is to perform the dynamical step be-
fore the kinematic one by picking up the collective space first
and then mapping this "small” fermion space onto the boson space.
The sections dealing with the SU(1+1), SO(8) and SU(3) algebras
2xampllfy such a mapping. One obtains the boson spaces with a

small number of different collective bosons.

Sect.2, concerning the SO(2N+1) algebra, contains a rather

detailed Aiscussion of the method ; the samc scheme is utilized
in the other sections in a more compact form. All sections

are independent of one another and in particular symbols 1like
PR

q*,
»n

in every section.

N
H, o+ 3. |3> 1> and w(C) may have a different meaning
-~ Pl



2. ALGEBRA s0(2N+1)

The orthogonal algebra ’dq = so(2N+1), is compused

of all fermion and bifermion operators

i + 2.1
2 4;;0"(1 CL\)S ’

+ +
a , OO, 4, Ay yo

Qo 5 Cu ;. O Gu

where the indices Yl v number N single-particle {or single-

quasiparticle) states. The Cartan subalgebra is formed by the N

generators
A
- 4 +
H,u T2 R Qotn {2.2)
and the rank 1 of‘H is equal to N . Algebra so(2N+1) is
274) | The

the algebra BL of the standard classification
root vectors belony to N dimensional Euclidean space and

. 2~4)
can be expressea in terms of the unit vectors Wesr

w

W = (0,0,...,O,i,O,...,O) , (2.3)

with the unity on the /.Ath place. The root is called positive

(negative) if its first non-vanisning component is positive

(negative) . To every root :i corresponds the generator ﬁoc
. =

and for positive roots this correspondence reads

A

o« = O /127 for %= W, (2.4a)



E,p = OBy ¥ <y for dwW W,

= o =w, - 2.
By = 00y, V<m, forgeph-W,. (20

The ﬁermitian'conjugations of this generators correspond to

negative roots:

A +

E, - LT e £ Yp s asm
s+ 4 _ (2.5b)
Ez.‘. = 0,0, V<, ford =-Wymd,,

A +

'-:‘3& = A, 0, , V<, ‘F""'.ﬁ.’f’."k‘,\’-’ﬂ#’(z's‘?)

The irreducible representations of f] are determined by the

highest weight j, which is the N dimensional vector of eigen-
AN

A
R values of the Cartan generators H,
L d

- A
. o . (2.6)
H li> = A Hi>

while the highest weight states, |j> , are the corresponding
eigenvectors. The allowed represe;:;ions (part I) ofbﬁ can
thus be found by examining the spectra of %Mf eq.(2.2). As
?;%iﬁ‘ are the particle number operators, they can have in
the fermion space only the eigenvalues 0 or 1 ; hence the

highest weights j must have components equal to i%.
o~



The only highest weight with this property is for the clas-

sical algebra BL the weight

. (4 4 4 2.7
ZE: h’/& = lZ2sZ )y T ) - @D
M~ /u. =4
and thus the only allowed representation is the spinor

representations) of SO(2N+1). Evidently , the highest weight

state is equal to the fermion vacuum

ly>= 10>, (2.8)

Every state of this representation can be obtained by suc-
A

cessive action on [0> with the generators E s egs.{2.4~5), and
e

+thus the zepresentation space is equal to the entire fermion

space.

L
nonorthogonal with respect to the highest weight j, and

7z PP .
The roots :—",M andﬁyo +‘Vﬁ/4. \)\/u, are positive and

A :
the corresponding E__, generators, egs. (2.5ab), determine the

generalized coherent states (part I) :

l¢> = exp{ Z: +Z_ a, /J fIU>‘2 -9
Va=d
v <

The total boscon number is thus equal to M= N(N+1l)/2 which

includes N(N-1})/2 bosons represented by complex numbers

c and N bosons represented by C/q .

o



Tt 1s convenient to consider the camplex numbers C, " as the compo~

nents of an antisymwetric matrix C- = -C, and C, C (/:“//.. as

the components of a N dimensional cclumn vector C. The cor-

1' —-bf

responding boson operators are denoted by bf ’ b /uv '
Vi
and bT s respectively. Alternatively, one can group Lhe

N(N+1)/2 complex numbers Cv/u_and /uinto the antisymmetric

matrix c in N+1 dimensions :

~
C\,/u = C’,,/(,t fow yu=4,2,.,N, 2.10a)

VN+g =- c~+4,9 =Cy ’ {2.10b)

5 = (_gr g ) , (2.113
xt 1.

and the corresponding bosons are denoted by b =
po g Y X) /A R /lk

-'131‘\, ’ v,/,(= 1,2,¢000 N¥1.

QY

As the gerierators a}‘ commute with a ‘) /‘ one has

= 4+ * + +
-+ (2.12)

whexre use was made of

N 2
Chou) lo> = :
| (EEZ ' /u) Dg O . (2.13)



Based on the formulae (3.6) of the nex:t section the norm of

generalized coherent states can be expressed as

) N _ -1 _
<105 = det’™(T + ) (n+2 T, (T 4CC) gr),
v, pa=d b

(®

where I is the unit matrix in N dimensions. Considering C

to be the column vector one has
4
(N — - ~z
1> = det (I 0+ CE)det " (X ¢ s

or

(+1) ~ oy

4
LCIC> = det* (T +CCY) (2.16)

for C given by eq.{2.11).

Summing up the positive roots which are not orthogonal

to j one obtains the specific weight (part I) related to i :
M.

At

~ N ii( N N . (2.:7)
=2 Wt W o+W )= W, =2Nj |,
g gy =™t o

Thus the weight function w(C), determining the scalar product
for the functional representation (part I), reads
N 2N+4
_(NxA) )
w(@) = W[det (T +ET*)] (2.18)



N(w+a)/2
2
W = (’E) ol=—14 (2v-4)!! R (2.19)

where the formulae (3.11) and (A.12) of part I were used and W

was determined by direct integration using methods of ref .6) .

The Wick theorem allows us to calculated the functicnal

images (part I), and thus the boson images, of the many-fermion

states |WY> R

+ i,
ly> = a,\,d...o."\,A lo> | (2.20) |
|
!
i.e.
lw> e |¥)= A.”-ibT 1 10) ; A even,(2.21a)
. BZ,‘%_ vA_d_“ ’

\)3 A-(.

19> > 1¥) = (A=) ; 3 8 10) ; A odd | (2.218)
2

where the square bracket denotes the antisymmetrization of all

enclosed indices.

The action of generators (2.4-5) on the generalized

coherent states |C» can be in terms of the identities

y 9 |¢>= > &% (2,222
'aG““» Q, O.luld> 7a~—c_:/‘-f|d>_a;‘(4_d§46o d"\’)ld>’ 2.22ab)
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'f / - - .
(C‘a,'az_idw. &)exP{ Z C’ /“IO,>-O (2.22¢)

represented by first-order differential operators ; the formu-
lae given in part I can be used as well. In this way the Dyson-
type boson expansion of generators {2.4--5) is obtained, which

-~
f or bT and bT bosons reads

vp O P B B

o d
expressed in terms of b

N4 h’T
2 -
o< by, x=4_'bx~+4 s = 6 Zb 19/“ , (2.23a)
+ N+ih, N+A T ,v
a,u /4.N+Z 5_465/4 EN+a % 4 § b’é' - (2.23p)
ol (4-F d )T bie! i Zb
/4(1"2 b, x)* b s Pu gt Lx N
¥=4 ¥3=4
N+4
Ouoy < bl —2 b, b,cbys =
My M a’Zé;A'MX Ve TEé (2.23c)
PoS ot f
=bm"zs;f’ S5 *Z éT by~ b, b, )b >
0=

e ~ N 1‘ T
O Oy > Z_ o ooy =B§1b/«x4’va’*éw(°v )y (2.230)

Ay Qe buy = buv . (2.23e)

This is the finite and Loson-like non-Hermitian expansion

derived by Fukutome7). A slightly different expansion was

8)

given by Okubo who did not consider the operators b ' /,as

representing ideal bosons.
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The fermion states {¥>, eq.(2.20), form the orthonormal
basis in the fermion space. The overlap matrix Q (Part II) can
thus be determined in terms of the boson images |, eq.(2.21}. It

turns out that Q is diagonal and

(A-A)!Y 5 A even |

(wies Al - A  odd (2.24)

)

or

(Wiw) = (2Ng-4) ! (2.25)
where Np denotes the number of bosons in the statelqo, while the

total boson number operator is expressed as

~ N -'- N 1,
NB = %:12)0/* b\wtg;_ibﬂbﬂ (2.26)
V<&

(round hat denotes the operator acting in the bYoson space).

Tae orthonormalizing operators Eﬁ and EF defined in
part II are thus diagonal in the boson basis and their eigen-
values depend only on the nunber of bosons . Introducing
the symbolical notation.Gnn.for the matrix element of 8 between
the physical boson states with Np = n and Np = n', one has

-4 4
2

. ’ N - _z
GBVN‘II= gmnl[(zn-d.)!! ) G'Fvwll= “WIJ'(ZW—A)!!J . (2.27ab)
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12.

As discussed in part II, the above relations can be fulfilled

”~ ~
by many different forms of the GF and GB operators. For

example, one can choose GF as

. 4
~ Z = a (2.28)
G—F = Z L(ZV\"A)!H Pn 5

=0

~ .
where P, projects the boson states on the subspace with number

"
of bosons NB = n. The boson expansion of Pn,

"E;n = : ﬁ;/n! exP{-ﬁB}:

(2.23)

S
{(and therefore that of GF) is infinite and convergent .

-~ .
An other form of the Gp operator which also fulfills
condition (2.27b) is

Y

F'=
[4]

NS

o

—— ~
-
I_(ZV\ 1)..] Pn ) (2.30)
=0 .
max
where m = Ny is ‘the maximal boson number in the physical

space, which is always finite. Evidently, the two forms, egs.

(2.28) and (2.30), differ only outside the physical space. A
”~
third possible form of Gp.

St
G. = L(z;\gs-/l),l. ) (2.31)
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which makes direct use of the square root Taylor infinite expan-

sion,is always faced with convergence nroblems.

As it was argued in part I, 4. finite expansion for EF

can always be given . This is so because one has to fulfill only
a finite number of conditions for the matrix elements of 8}

and 83 with respect to the physical space. As in many examples
these conditions have the form of egs.(2.27ab), the general
method for finding che EF and E; operators can be presented as
follows :

Define the operators g{kn} depending on the sequence

of numbers Xn, n = 0,1, ...,m, as

FiX.\= Y
{ n} kZ.-._o k NE‘ ? (2.32)

{(m)
where the coefficients Y k can be determined in terms of xn

Y(m) N 2 .3-[2_ (—-A) :;)XP] {lijj

L=k

from
(2.33)

(™)

L
and the coefficients { K } , 0£ x £ 1, resembling the Newton

coefficients (P)' are determined by

cy =y renfid

L
{ey=1 , o=t

(2.34)
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and have the property
m Wa
m k
Z {%lt = M@ 2.55)
k=0 k=4 )
for every t. It is a matter of simple algebra to prove that

{2.36)
F n' {XVI?' = ng)'xn R V',n'=0)4)...)m. !

Hence conditions (2.27ab) can be fulfilled in terms of finite

expansions 3

-4 4
Gy« F{lnat]3 , &= F{l@mn]] . e

In view of the identities

T: 611:5“_1 B b= 6§n+4_ (2.38)

’ n

B.b

one has
- !)T
3

. ~ -4+
6. = Fin-2)*{ 8",

(2.39)
~

@

!

. ~ 4
s b G¢ F{(zn+a)* ] b

and thus the Holstein-Primakoff-type expansion is obtained from -
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the expansion (2.23) by multiplying the terms which increase and

’ ~ -4 ~ EN
decrease the boson number by F{(Zn-l) ’-] and F[(2n+1)2}, respec-
tively. Hence the hermitian and finite :xpansion for the gene-

rators (2.4-5) reads
a L Nt
w F{(2n+4)zj bu - Z-_ {ga, by (2.40a)
& F (Zn-d) fli,T 4Zb boy Z_bs ,uxbx,J Z_bé?u (2.40Db)

eF,!(Zn-i) J[ o oy vs s Z_(b on LTLT u’)bJ , (2.40¢)

T .
goim Eibita bt -
avager Elnsit] b,,;, | e

”~
The maximal boson number m, for which the ¥ operators should be
determined, eqs.(2.32), (2.33), is in this case equal to the

integral part of N/2,
N
m=NB =['Z] . (2.41)

Notice, that expansion (2.40) is hermitian and foims
the so{2N+l1) algebra only with respect to the physical space.
By choosing the nonsingular form of the EF operator, eq.(2,28),
and its inverse for the EB operator,

_4.
2

Z: [(2‘0 4) s (2.42)
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one can obtain Holstein-Primakoff-type bosons expansion for

the generators with the commutation relations fulfilled in the
entire boson space . Then however, the expansion becomes infinite.
The infinite and hermitian Garbaczewski-type expansion can be
obtained from that of egs.(2.40) by using the operator ; projecting

boson states onto the physical space as discussed in part II.

All boson annihilation operators are vhysical ;

this is obvicus for b, r eq.(2.23e), and can be explicitly

/A

checked for b, in teomns of ea.(2.21). Hence the R projection of a koson

/k
state (part II) can be obtain by using the 'C*operators in the functional -

A

representation,

+
T, = 9, % , (2.43)
o

A

(cf. eq.(5.21) of part II) or the corresponding operators

e

ral

+
» P (2.44)

st -
B’ﬁ—'(o

- +
in the boson space. Note that b, is rot the boson creation ope-

A—

rator as it is the hermitian conjugation of pﬁ in the fermic::
pr

sense. For the fermion herinitian conjugation given by the weight
function w(C) of eq.(2.18) on= obtains
8f -(g1,-2'5L 5L 5,,)P
= - 2.45
v v S T 8 Pus ) (2.45)
which can be easily expressed in terms of bT and bT bosons.
A4V s
Thus the R projection of a boson state can be obtained by repla-

cing every boson creation operator'éj; by the corresponding ope=-
”

rator 'Eﬂv .
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3. ALGEBRA so (2N)

The bifermion operatoxrs

+ 4 +
a0y 5 A9 O 5 THVTXOY G

O

form the orthogonal algebra,f] = so(2N), which is the classical
DL algebra with the rank | = N. The Jartan subalgebra and the
correspondence between roots and ﬁ“ generators are identical as
for so (2N+1), egs.(2.2) and (2.4b$?; (2.5bc) . Again, the highest
weights of allowed representations must have components equal

to i:% . For SO(2N) there are two spinor reyresentationss) which
fulfill this requirement, namely

N .
i 1 (£ 4 4 4 (3.2)
J = IZ-X!/A‘(Z,Zr")l:z)
o lA:i
and
N-4
(=i w-tu (4 2 4 _2
STz m 2N 2525052572 ) (3.3)

The boson expansions for them are considered separately in the

subsections 3.1 and 3.2.

3
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. 1
3.1 Representaion Jv= (51 Fe e0ar 3)

The fermion vacuum 0> is the highest weight state for
this representation. The generators (3.1) can only create pairs
of fermions ; the representation space thus contains all fermion

states with even particle number.

The rocts w +w °, \)</-¢ ;are positive and nonorthogonal
W ‘-ﬂ.

to the Lighest weight. Hence the generalized coherent states

are given by

o N
|C>=ex(>{—i-z: C\,ﬂo{)o;&}|0> , (3.9
Sp=d

where again the complex numbers Cou 2re considered as the elements of

}4

the antisymmetric matrix, CT = =C. The corresponding- M bosons,

= - - f f = - 1‘ i -~
M = N(N-1)/2, are denoted by bv,“, b‘,}‘ 13“\) . For this repre
sentation the generalized coherent states are identical to tle
Thouless vacua 9). It is worth noting that the alternative form

10)

of Thouless theorem presented by Ring and Schuck examplifies

the gemeral relation, eq.(A.8) of part I, between twe different

parametrizations of generalized coherent states.

The norm of |C) reads 11,12)
4
Zz , () +
<dIC> = det™ (I +CC) . (3.5)
Despite the square root,{C{C> is a polynomial ; this is

so because above determinant is always the square of
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a polynom:l.ai.In terms of the identity (2.22¢c) one has the formula

N »
<C10,0316>= 8, -2 CurCos Lelog a1 > =

™. Lt (3.6)
= (T7+cY),, Lele>
utilized in sect. 2.
The specific weight is given by

- M N

=7 (W, +w Y=(N-H/ w = 2(N-4)} (3.7)

2 opet =V ”"/“) mag M s

v<

and thus the weight function w(C) reads

2N-4

Wlaet (P cet)] © .

w(C)

5 N(N-A)/2 N-4
W (__ ,~1l (2\,_4)_’.! . (3.9)

i
V=4

1

13) who proved

The same result has also been obtained by Suzuki
the unity resolution using assumptions different from those given

in part I.

The generalized coherent states of the present section,

eq.(3.4), are equal to those of sect.2, eq.(2.9), when setting

Cu = 0. Hence in the present case the boson image lt}’) of the
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fermion state Y>>, eqg.(2.20), is given by eq.(2.2la) while the
boson expansions for the generators (3.1) are given by egs.
(2.23c~e) with the bosons %& R QM disregarded. One obtains

‘ 14)

the generalized Dyson expansion derived by Janssen et al. and

the corresponding expressions will not be repeated. The genera-
lized Holstein~Primakoff expansion 4 can be obtained as in
sect.Zi Ifs finite version is given by eqs.(2.40c-e) and (2.26) with

the bosons bl b, disregarded again.
o " S g g
s - 1 1 1
3.2 Representation j = (5, 5+ -«.r =3)

The hiuvhest weight state for this representation is

the single~fermion state

. - -+ = 4 )
IJ>~aNIO>.-lQN>. (3.10)

o~

Which fermion state is occupied depends only on the convention
adopted for the numlering of the fermion states from 1 to N.

Each state can be called the N-th one, and the approach is in-
dependent of this choice unless approximaticns are made. For
applications, e.g. when one tries to reduce the mmber of different P

bosons, this choice may be important.

Generators (3.1) creating pairs of fermions can trans-
from la;)‘into any other odd-fermion state. Hence the represen-
tation space contains odd states and is the orthogonal complement

of that considered in sect.3.l.
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The roots x\'+x}‘, vl N,and’\y“J - YN, V<N, are
positive and non-~orthogonal to the highest weight 3j, eq.(3.3).
. M A Mﬂ-
The corresponding E L generators, egs.(2.5bc), determine the

P
generalized coherent states

N-4 (3.11)
fc>=exp{\%ic\, \,a/u+°ZC a\,o‘NJ! YA
Vi
; N-1_ 154 +7 4
IC>= (4_1—\)2;_ e )xz,-(p{-ioﬂgdaﬂa\,aﬂj‘()“) (3.12)

in obvious analogy to egs.(2.9) and (2.12). The antisymmetric ma-

trix C, C = =C in N-1 dimensions and N-1 dimensional column
upm VA
vector C, 'C_\, = Cyrcan be presented in the form of antisymmetric

matrix € in N dimensions, as in eq.(2.11) . The boson operators

bf Lyn = -"BL\’ are related to the components of the matrix 'f", while
bT and bT are related to C,  and C,, respectively.

vp w3

The generalized coherent states ICD», eq.(3.11), are
now the Thouless vacua with respect to the quasiparticle vacuum

|a;;> for the quasiparticle annihilation operators &

a,=ay , v=4,..., N-4 | (3.13)

o +
Q.N:CLN.

Similarly as in sect.3.1 one has


http://eq.l3.ll
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)

4
{(cle>=det* (=" +CE) (3.14)

and in view of the expression for the specific weight,

N-4 N-4

i’&,(ﬂv*’,"f \/*'o:i(b{‘, -w N'): 2(N_A).*L , (3.15)
V(M |

the weight function w(C) is given by eq.(3.8) after the substitution

I~
C=C.

The boson image of the fermion state |W¥ >, eq.(2.20), for odd A

reads

lw> < W)= (A 4\" bE, lj (,7; 3] 10)  for v #N,

(3.16)
lY> < |¢)= (AA)“,b LB lo) for V=N,
[, v, Va \‘A
Hence to the A-fermion state corresponds the (A-1)/2 or (A+l)/2 boson
state depending on whether the N-th single fermion state is occupied
or not . The boson vacuum ch corresponds to the single-fermion
+ 1Y
. state laN>, eq. (2.10). “he bosors bl/*, VM < N, and 132; ,\7<N,
play a different role. The former . add pairs of fermions while
the latter transport the fermion from the N-th state to all other

states.

The boson expansion for generators (3.1) can be presented in

the form of the generalized Dyson expansion :
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. ~
aat Bl -2 Bl BB
MY ke wooq ME VS 5 3
(]
~t > NT ~ (3.17)
,uo'v EL M8 bvzs' ’
~ ~ ~n
Oy Qe Luv
where
~t _ Tt ~ ~F 'l'
a'\’-a\’ ? a\’= a\) 2 bq/"-:b\’/“ '&‘r \71/“=4;"')N_4(‘3,18)

>

for ~v=4,  N-4,

As the norm of the boson image Iq/) ; eqg.(3.16), reads

(Ylw) = (2Ng-a)!I (3.19)

for

Rret °/“ Pops o4
N LM (3.20)

the Holstein-Primakoff-type expansion in the odd fermion space is iden-

tical with that in the even space when the quasiparticle operators 3t )

and '59 , eq.(3.18), are taken instead of the a+v and ay operators.
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4. ALGEBRA =su(N)

The particle number conserving bifermion operators

+
o ¥ (4.1)
Q,/A ~

constitute the unitary u(N) algebra. After the particle number
L)
operator Ng ,
N - 2o
= .. O
F aen MM D (4.2)

is removed from the algzbra, the remaining Nz-l generators form
the unitary unimodular algebra (H= su (N), which is the classi-

cal A algepbra with the rank L = N - 1, The Cartan subalgebra

L
is formed by N-1 linearly indepcndent generators chosen from among

N generators
b = ahb o

UMMt
'u (4.3)

. A
For simplicity, one can use &ll N generators Hlubearing in mind

that the set
N l Fn

=H, e H, =H,+eN
H/“ M /4:4_'/“ M F (4.4)

can be used as well for any €. This ambicuity requires the identification

of every two weigth vectors differing by £4,
ot

(4.5)
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’ A
The roots «f and the corresponding Ectgenerators are given by
P

egs. {2.4c) and (2.5c). The componeﬁzg of weights related to the

»
%“ operators, eq.(4.3), can only be equal to 0 or 1. Thus the only

2-4)

allowed representations are the fundamental ones s for the

- highest weiahts

A
J = Z W = (4,1)...',4,0,...,0) ,/\:4,...,N-4) (4.6)
~ ‘Mgd,w/u

and the oune-dimensional identity representation for

(4.7)

Devomposing the spinor representation of SO(2N+1)
(full fermion space) into the irreducible allowed representations of
SU(N) one finds the identity representation appearing twice for

the highest weight states

1j>= lo> awnd U>:O~:---O‘T\:'O>a (4.8)
R =g

where the nonuniqueness with respect ot addtion of vector 4,
S

eq. (4.5), should be used. The highest weight states for the fundamental

representations read

. + + _
> Q... 1o>=1HF> .
',.,'.).. ‘ 4 A (4.9)

Similarly as in sect.3.2, the choice of occupied states is immate -~
rial for general considerations and may become important if some

approximations are made.
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As generators (4.1) do not change the fermion number,
the representation space sonsists of all A particle states for the
A-th representation. The rootsxi - gare positive and nonorthogonal
to the highest weighth”, eqg. (4.6), (the indices L,J =1, ..., A
and m,n= A+l, ..., N denote the hole and particle states, respec-

tively) and hence the generalized coherent states read

m ¥ 1
1e> = exp{Z ¢7 ol a; ] IHF>
m (4.10)
Again, these are the quasiparticle vacua for the varticle nunber
preserving version of Thouless theorem. The complex variables C :'l are
considered to constitute the rectangular matrix with A rows and
N-A colums ; the upper index is introduced for future convenience.

These variables determine M, M = A(N-A), bosons b T The well-
known formula for the norm of |C> reads

L£cigc> = deml(ICA)_r CC+) , (4.11)

where the absence of the square root in comparison to eq.(3.5)

should be noted.

The specific weight is given by

~ A N ~ .
‘-2:2: (W= Ym)= N [ -A4 = Nj , wvaz
= M,Ai"“‘"' L4 ~ —~

where the vector A 4 was disregarded. Hence the weight function
. e

w(C) reads
- N..4

w(C’):W[deJr(T(A) C(,”)] > 43
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W= _l_‘A(N-—A) hlt_—]A ©+a)!
voa V! (4.14)

aml is identical to that obtained in refs.13'15) .

All states of the considered representation are ob-
tained by creation of particle-hole pairs in the vacuum state

|IHF D, eq.(4.9), i.e.
+
|W>=(Q+MAO.L‘),__(amk O.,'_k) lHF—> (4.15)

and in terms of Wick theorem the boson image of |W)> is given by

¥y —|Y¥) = b;:;T}aT:T... b‘:k'ﬁT lo) . (4.16)

vhere the square bracket denotes the antisymmetrization of the enclosed in-
dices.l%?e boson expansions of generators (4.1), originally derived by Rowe
, Yead
n (4.17a)

oy = by 1 —V%J’OS"TL;‘T}:J ,

(4.17b)
+ P VVI"' n
O.M Q'Vl «> LZ ADL L’)"l ?
+ ) _ MT i1 (4.17c)
(4.174d)

+ m

In terms of these expansions the fermion number vperator ﬁF,
eq.(4.2), is identically mapped onto the number A, as it should
be for the representation in question. The boson images W) of
the orthonormal fermion states |¢> are orthogonal and their

norms read
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(VIv) = k! = Ng : (4.18)
for — "m w
Ny= Z b, Tb, . (419

Hence Holstein-Primakoff-type hermitian and finite boson expan-
sion correspnnciing to the Dyson-~type expansion of egs.(4.17) is
obtained by multiplying from the left-hand side the images of

egs.(4.17a) and (4.17d) by E{l/.fn"} and E[F:?} ; respectively ,

while leaving those of egs.(4.17be) unchanged, i.e.,

a0, E{Amrj(z;:t%bjujm;’), (420

ot o, < Zb?rb‘? . (4.20b)
' i

o+ . X o I et (4.20c)

& ay > S -2 by ThT

(4.20d)

The F operators should be calculated as given by egs.{2.32-33) with

the ;‘;B operator of eq.(4.19) and the maximal nunber of bosons

W = wun {A, N—A] . (4.21)
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5. ALGEBRA sp(N)

Suprose N is an even integer and each single-fermion
state J}A}:I.s in correspondence with somc other state |i/, MER
}7‘-/4, . Let the phase factor sﬂ::l be defined for each s« in
such a way that s/; = -s}u « Obviously, the above conditions are
fulfilled for the time-reversed fermion states which is indica-
ted by using the usual notation. The reference to time-reversal, .

however, is not essential and is not used in the followina.

A
The operators B v 2

a3

B

= ot - + - (5.1)
form the symplectic, J) = sp(N), algebra which is the classi--
cal 2M”alge.]:xra c, with the rank L = N/Z. Let the ~th state be
called positive (negative),,u)() (}4( 0), for S/;.= +1(-1) . The

Cartan subalgebra is given hy

A _ A - _ +. _ +
H,,_ = B/*F- w O “ﬁaﬁ _F»;v-/,no, (5.2)

L)
vwhile the E . generators are related tc positive roots as

p
-4
A A 2 < (5.3a)
E=B 80" , 00k, Br gopom,,
A _é £ 9< = W.~wW (5.3b)
Ey= Bz y Oy, for LML

and to negative roots as

-4
A A 2 - -
E,.‘:E= B{vz(i*gro) , O<o¢pm, for ge-py 2P (5.02)
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) A
E’ﬁ = [5/“5 , 0<v<u ,(LV-AL“:—,I:J‘\,*'”\,&/,

with the relation between both cets :

fm»>

-+ Bt - B
= = = bz . (5.5)
fd = A

The components of the weight vector of an allowed representation
can only equal to 0,%1 ; hence only the fundamental and identity

representations are allowed :

j = 0 (5.6)

or
S
[ | -l —
J= Zowy= (44,14 0.0) |, (5.7)
r~ V=4
where tilde distinguishes the seniority quantum number>’  from

the single-particle index V. For the «iven highest weight j
A~
many hichest weight states |3j can be found in the fermion
e

space. In the subspace with particle number A, however, the
5)

¥=AA-2,.., 4(0) (5.8)

being the maximal number of decoupled particles in a given

renresentation.

. ~
Let the positive index d =1,2,..., YV nunber the sta-
tes decoupled in the highest weight state, and the index p=3+4,

¢ ooy N/2 the empty or paired states forming the seniority zero
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core, i.e.

Hchj,>=l,*l>' (5.9)
" . _ (5.19)
HPI;L> = O

(cf. eq.(5.7)).

The poslitive and nonorthogonal to ..J.. roots, Mg - W and
Y3 + W (d £ m), single out through egs.(5.4) the generators
which determine the generalized coherent states 3

- 3¢ n

I¢>=expl ZEX B -+ Z e B; jl > (5.11)
AP{ Pd Pd “Pa o d ?

where the factor (1+ "Yd,u ).-': , egq.(5.4a), has been included in

the definition of 'é’d}‘. Hence the boson representation involves

= 29 (N2 ~9) + S(JY+1)/2 different bosons. The specific

weight reads

3= Z(Wd ....P>+Z-(‘“’ "W) = (N- ""'4—)‘)’ (5.12)

and thus the weight function w(C) has the form

Yo g <dle ~N+3J-2

= £ C

w(C) re> o (5.13)
In the case 9 = 1, when the representation space contains

states formed by one fermion coupled to an even core, one
has ‘with obvious notations
x A x » .
I¢> = { C.B,tC B__}|J> , (5.14)
>4 s 41 J =

le> =4+ Z G+ alcl’ (5-19)
bl > 4
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~Ll-N -~ N-
Ww(C) = 4Nl <CIc> ’ (5.16)
and the boson expansions for generators (5.1) read

"
BM. - b ?
fa ‘r —
2 ~ T (5.17)
P 4 Ul
Bup <> bu + T5absh for lp) >4,

AB}AI &> bL ('i"ﬁs)"'zs}zbflﬁ -p"' lﬂl >4 ’

t T '
where the bosons nl and b}; correspond to complex numbers C and
C/u , respectively, and
Ng=blb+= blb, .
lmi> 4
Creation cof tiie hcsons bL_ and b corresponds to the excitation of the
odd fermion from tke state 4 to yr and to the flin nwrocess 1-—5',

respectively.



33.

6. ALGEBRA so(8)

The algebra so(8) has been studied by Ginocchio”)

in order to provide the microscopic justification of the inter-

18)

acting boson model . It is composed of the monopole and qua-

drupole fermion 'pair creation operators,
-
+ ot
S+‘5.'.Z—(‘) a_-maj_m 6.1)
S .
ke 3/21'

D Z:- (-4) l_(z.)*‘sz *“] {-5-”3 ij [ )
s

the comespondmg pair annihilation operestors andD/.A and the single-

A N A A n
particle operators Sg = .-%-(J')_- N). Sp= Sp and P; =1,2,3

p,“ = (-1) Pf#,as defined in ref. . The integer number

k defines the j values included in the valence shell, k+-g- >3
Zlk— l, while fl= 2(2k+1) is half of the number of the valence
states. The brackets [ J denote the standard angular momentum’
coupling and ﬁF is the valence fermion number operator. The
commutation relations between above generatcrs, as given in

A
ref.”) . can be presented in the canonical form for the’I-‘I- and

A
E  generators defined as :

o~

A A ry Ay 5 .
H, =-5, , H, -—(ZPO-J?O)/z{g", (6.2ab)
l:'h T %f)ol N H = -(2[—’41-1?:")/2r“1 (6.2c4)
A Ny A

E(—i,nppf D:Z/ﬁ—' , E(-L,O,tilo)_ D+1/F’ (6. 2ef)

- _lsAy  AF (6.2g)
E(—i,o,o,t,i)’l(s ) r
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E %153 E(o_140)=({._2-',§>:-ﬁ"f):)/ﬁ'5', (6.2hi)

©,-4-:4,0) T30
” _ Aq  AD I-\ - a4 » 3= 22 g7
E(O,'i,O,H)_ E=E )/{?’ E(QQ~1,¢4)(€P1+ 257 15E ) €550

where the four-dimensional root vectors g are written explici-
tly. The %oL generators for positive roots can be obtained by
hernitian :;njugation. Due to the high symmetry of the Dynkin
diagramlg) corresponding to S0(8), five other equivalent solu-
tions for the’El and ﬁa‘ generators can be found by means of
rotations in the root.:;ace which do not mix the positive and
negative roots. Tie state lcoré> , for which all valence
single-particle states are unoccupled, 1s the highest weight

.
s

state with the highest weight

2
:"(%,O,O,O> , Hleowe>= $leove> . (6.3ab)

A A
Only the generators S+ and ?:; : 2q.(6.2e-g), corres-~
pond to negative xroots nororthogonal to Jj and thus the genera-~
Vaed

lized coherent states read
%A+ 2 H A+
I¢> =expyC S+ 2. C.D }lwre> (6.4)
| Peniratys .

The complex variables C and QP correspond to six boson creaction
operators st ana %L,, respectively. For the eight-dimensional

fundamental representation with =(4,0,0, 0, ie. f1=2,

3
.
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the overlap <C lc>can be calculated by explicit expansion of the
e#ponential function in eq.(6.4). Alternatively, one can rotate
the root space so as to transform the weight'lr_\;j into the spinor
fundamental weight Mg= (%,-;—,%,—;—) and then use =q.(3.5) for

N=4 by identifying the variables C and (3“ with the six indepen-

dent components of the 4x4 antisymmetric matrix 9“\, .
Based on eq.(A.12) of part I one obtains the overlap

<cic) for arbitrary S2:

J).
'y .
<CIcy = (4+z:c:+2zldl+lzu)d ¢-ci)=, o
/4.:-2 ra=-2
while knowing the specific weight j ’
o~
7+ (s,0,0,0), (5.6)
the weight function w(C) can be presented as :
-£.¢
w(d)- W(A+2ldl-r2Z_|C l+'7(-l)d G- Al ) (6.7)
M==-2 r-2
6 (2/2+5)! (6.8}
W= (‘E) "2 (am)! (2e) .

The Dyson-type boson exnansions for generators can be

obtained by expressing their action on the generalized coherent
A,
states in texms of differential operators. As the operators S

Ay
and D commute, one has

A
L ) » Ay »
sic>=01IC> | /‘IC'>=8/“IC> . (6.9ab)
where = c)/ad ’(")/ad . Calculating the commutators of

s with
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[ A, 2 > A

C =c~5*+£':2 i D/: : (6.10)
A A ”A 2 AZ V
[c,5)= 2C75 + Cu B, (6.11a)

pe2

N oA &1 *5 2 ognx w2y 4t (6.11b)
= - - b - N
[c,[¢,8]j=-4c"C-2(Z C.c.-c™)sT,
one obtains in terms of eq.(C.1) of part I

; o A 2 o~ . % 22\ 5
s1c>= " [019-28)~(Z CiGi-¢**) S J1cove> -

(6.12)

% N 2 _x » 2_ ~% % x2 ,.’(
=[c (ﬂ-zca-zjgfﬂa)- (Zi-_zcﬂc,..- c?)oJic>,

where the abbreviation E,«. = (-1) C_,, was used. After simi-

ol
lar considerations for the generators 13“ ’ go and %’: the Dyson-

type boson exvwansion can be ekpressed in the fom

,é - s, St ST(JZ-ZI’\‘IB)-(iZ&LdL-S"sT)s, (6.12ab)
ME-
6 ‘_’d/% N AD;"") d;(ﬂ-2ﬁ3)+(§zgftd}“ 5“57)3;‘)(5,12@

(6.12e)

50 > - f(ﬂ-ZNB) ,

»

L ad I
- “"‘2 O";’-

(sfa+d}s)+20{§_ g_éj [-dTJJ;’,‘.= 4,2,3,(6.126)

~ Vot -~
where d/u = (-1)d and Ng is the boson number.cperator

2
9 - t (6.13)
NB - 6T$ +}4§_2 d/“ d/"“

In egs.(6.12bd) one should note the appearance of the boson

pair creation operator Zd}d}“ STST corresponding to the

/bl.
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similar expression in the weight function w(C), eq.(6.7).

The above expansion is identical (up to an unimportant

factor) to that derived by Geyer and Hahne 20) . They used the

generalized Dyson expansion (sect.3) for the generators of the
s0(8) algebra, which requires the introduction of collective as -
well as non~collective bosons, and then truncated the boson
space by retaining only its collective part. Our derivation is
based on the properties of the so(8) sublagebra only and does not'
makes use of the non~collective bosons in the intermediate steps.
The equivalence of both methods hingcs on the fact that the so(8)
generators ﬁ-—o{. 1€9. (G.I)Tforxj’)(‘)‘ and”i given by eq.(6.3a) are

g
at the same time the generators E_d. of so{2N} , eqg.(3.1), for
Ao

d.l) 0 and j beiny the spinor highest weight, eq.(3.2). Hence
’M

pa
the so(8) generalized coherent states, egq.(%.4) for the discussed

representation can be obtained from those of so(2N), eq.(3.4), by
setting some complex variables (},\, egual to zero and expressing C
and C/‘ by the others. On the level of boson expansion this corres-

ponds to removing tne non-collective bosons.
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7. ALGEBRA su(l+1)

2
Suppose that one can find (1+1) 1linear combinations of
of fermion and bifermion operators which fulfill the commuta-

tion relations of the unitary, ﬂ= u(l+l), algebra :
A A A A
3. . =0 R .
E3b,) 2 BWWL] 5JW\ BLV) &Vr BW\J > (7.1)
4 n . .. .
BLJ = B,; ) .,,J,m,n=o,4,...,l. .
Such a supposition is essential for the interacting boson modells)
which makes use of u(6) algebra (1=5) expressed explicitly by
Schwinger representation in terms of six boson operators sf and
d/t » M= =2, ...,2. One can relate the index i = 0 of eq.(7.1)

to the monorole s boson and i> 0 to the other multipolarities.

Similarly as #n sect.4, the linear Casimir owcrator
n # A
B = L. BLL L {7.2)
=0

will be kept throughout with the convention allowing the addition

of the vector L
4 - Z v, 7.3)

Vst L__o Foaad (/.

to every weight vector with an arbitrary factor. The Cartan -

subalgebra is given by

A
Hi, = B (7.4)

(%

A .
and the correspondence between E_ generators and roots « reads
% P oaad
Pl

By =By , it frgewi-d;.

Al

(7.5)
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”~
Examining the spectra of B; operators diagonalized in

the full fermion space one could “pick out all allowed

representations. Let us assume that the symmetric representations

with the highest weights

J = Nuw, = (N,O,...,0) (7.6)

A

are the allowed ones. Then the positive and nonorthogonal to j

-~ -

roots, Woo Hir is= 1,2,..3,1, determine the generalized coherent

states
L * A .
le> = el € B J1§>
=4 o (7.7)
and thus the boson expansion involves 1 different bosons,

T
bi & Cj ; e.g. five bosons for the sU(S) group of the interacting

boson mode117)

The norm of |CP reads

CL . 2 ‘J
{elie>-(A+2Z2)CE; 1) (7.8)
P74

and after calculating the specific weight'g' .

ol

L
T - R (7.9)
3D n) s npo-a = B
one obtains the weight function w(C)

W (44 ZL: IC; 12 )- N-id , (7.10)
is4

(7.11)

w(d)

fl

W

1]

b (N+D)! /NI .
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A
The boson expansion of thegenerators Bjj ‘has the form :

[l

B

g

Boi «> by for >0, 4.

o N-Ry

00

. . T ~ .
BLO > LL(N—NB> .ﬁo‘r L >O,
n ’ .
BI;J.S "’19‘) fo\" b'\) >O)
where the total boson number operator ﬁe is given by
~ L +
NB = 2. b bl. . (7.13)
=4 v

In order to transform Dyson-type expansion (7.12) into
the Holstein-Primakoff type the normalizing operators will
be found by '@ method alternative to that used in
the previous sections. It is easy. to check that all holomorphic
functicens normalizable with the weight .w(C) , eq.(7.10), must
be polynomials of Cq, ..., C3 of the order not greater than N.

Hence the physical boson space Sp is represented by functions
4
-%= n
- [ N* g2 o
P =(ntn)) g 0,

NB: V)4‘+...+VIL\< N

(7.14)

which form an orthonorinal bssis (in the boson scnse)}. These func-

tions are also orthogonal in the fermion sense while their fer~-

mion norms obtained by direct integration read

(N—Ne,)!
N

. (7.15)

<pip> = fddw(E) gl
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Thus the orthonormalizing operators are given by

4

ES 2
6-5= E{[(N'n)’/Nl_—lzj s aF:{[N'l/(N-h)!] j (7.16ab)

for the F operators calculated with the use of egs.(2.32-33)
and (7.13) for the maximal boson number m =N. Using formulae

similar to egs.(2.39) one obtains the finite and hermitian Holstein-

Primakoff-type expansion :

r ~
Bo <> N - NBa’ (7.17)
B, < I?-'{(N—n),zj b; for L >0,

N [a) i‘-

B;, < bz F{(,Nﬂq)"'-j for >0,

» 1 ..

BLJ &« bi ﬂ')‘)' ?(71‘ L >O.

If in place of theT operators the infinite expansion

.~ Ak
~ 1
IN-N = 2 Yu NB ) (7.18)

8 k=0
(21-3)N

¥O-N Y'(‘"L-H(M)kﬂv—' for k>O

is inserted, then expansion (7.17)becames infinite and identical
(for 1 = 5, i.e. for SU(6) group) to that proposed by Janssen

et a1.21) . Bvidently, the series in eq.(7.18) diverges for

Np” N,

In view of the expression for {clc> , eq.(7.8), the

R projection operator ( the boson counterpart of the differential
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operatorﬂ? defined in part II) reads
~ ~ N ~
R = 3 (4."‘ NB) exp {" NB}" ) (7.19)

or in terms of boson number projection operators, eq.(2.29) :

R« 2 NU/(N-w)t B

" O . (7.20)

~
In this way the operator P projecting the bcson states onto the

physical space can be calculated in terms of 65, oq.(7.16a),
Mo A

B - 6—;?2 =2 P, , (7.21)

nw=oOo
which is consistent with the previous observation concerning

the normalizability of polynomials with the weight w(C) of
eq. (7.10). The Garbaczewski-type expansion (part II) is

obtained by multiplying expansion (7.17) by S from the right-

hand side '
A n N A
Bao N (N—NB)Z——Pn ?
A N ine (7.22)
BOL <> . (N°V‘)2En] £94, -For L>0,
W=

B, bf [2 (vt

Lo 6‘, -'—mo( -v) Pn]. for ¢>0,
A N o~
Bl:j s d '6;,-: IDJ %_GP“ :?Or p,j 70

~
with the boson expansion for P, as in eq.(2.29).

Boson expansions for spin operators 30, 32 can be
obtained from egs.(7.12), (7.17) and' (7-22) by making use of the

isomornhism su(2) £ so(3).
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8. ALGEBRA su(3)

In this section the unitary algebra of sect.? is stu-
died in more detail for L= 2, while the allowed representations
are not restricted to the symmetric ones. The well-known example
of the su(3) aigebra consturcted in terms of bifermion operators
is given by the Elliott model 22).

The two fundamental weights of SU{3) are 2-4)

m, = (4,00 ,  ma (4,4,0) @1

and thus the highest weights are determined by twn integers,

usually denoted by 4 and 4 :

J=Ame v pupn, =(hip,p0) . (8.2)
r~
Depending on whether 4 or u or both are nonzexo integers the

highest weight is related to one of the three specific weights :

2m1+2mz.=(4'2,o> ‘Fov- 4?’-‘0'/(4#0) (8.3a)
3wm, =(3,0,0) for 420, u=0, (8.3b)
3m. <(33.0) R 20,00, g

[}

}‘—'-7 ic__?‘ic_ 2

Three types of boson expansions are thus possible for su(3)
each of them being valid for the class of representations rela-

ted to the common specific representation.

For 4 # 0, g # 0 all roots are nonorthogonal to j and
AR

the generalized coherent state reads

*® A

!c>=ex[3{c: é24+ 046 -ra: é203 lﬁé‘> (8.4)

40 )
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where the notation of sect.? is preserved for the Eij generators.
Hernce the boson expansion obtained makes use of three different
boson operators bg, bI, bz related to three complex numbers Cq,
Cy+ C2. The norm of the state )¢ > can be obtained from eq.
(A.12) of part I in terms of overlaps calculated for the two funda-
mental representations. Both of them have only three dimensions

and after a simple derivation one obtains the weight function

- o2 -2
w(C)=W (14 16,316+ 26 ) U 1Gi+I¢-5c.g)’),

(8.5)

~3
W=1 (A+4)(/4+4)(').+/u~r;2) ,

(8.6)
where ed- (8.3a) was used. The boson expansion for the Sij
generators reads

A t T 1
Boo"ﬂ’f/.&-lb,*!a;bzbz 6 LS Mh b -b b,
(.7)
'3zz'e*‘kg£§'*£4;bo ?
A » n -r
Bor b, 80491’4- -ZLZ"ZI’z ’ 8429("0*’5‘54.'62. ’

B, < (Aea)b] + (’A-/x)%'bzbf AR YNV
- (b]- 6 L b~ (K2 L2811 B,

B0 281 - (4]~ 2] éi»b-é( LU -4,

B, > publ (e 16 ) - 2] 441 B b, - £,
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n
The boson images of the Bij generators contain the single-boson
terms which annihilate and create bosons for i< j and 133,
respectively. The complicated additional multi-boson terms ensure

the proper symmetry conditions.

For 4 # 0, M= 0 the positive rootj_=£1 - w2 becomes
orthogonal to the highest weight’i and thus the generator £21
does not enter the generalized coherent state, eq.(8.4), any
more. This can be formally achieved by setting Cg complex varijia-
ble equal io zero.Consequently, the boson expansion in the pre-

sent case can be obtained by setting

b:r, =0 , b,= 21-6162 (8.8ab)

in egs.(8.7). Condition (8.8b) results from the fact that Cy should
be set equal to zerc after all differentiations bj > °/ed,

are completed.

Evidently , as A4 # 0,= 0 represents the syme-
tric representations, the resulting boson expansion is identi-~
cal to that of sect. 7 for L = 2. The weight functions w(C)
cannot be obtained from that of eq.(8.5) by setting Cg=0. This
is so because by removing the bI boson one removes
the integration over Cg from the scalar product in the functional
space. The standard way of determining w(C) in terms of;i

eg.(8.3b), gives again the result already presented in sect.7.
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For 4 = 0,}4 # 0 the root oL = wg -~ w1 is orthcgonal
P =3 P
to j and the above considerations can be repeated in order to

o~
remove the bl boson from egs.(8.7) by setting

+
b: = 0 » b’. = %E;bz . (8.'9)

After changing the nurbering of complex numbers Cj = C, Cf = Cp,and
that of the corresponding bozon operators, the boson expansion

can be presented as

N ~
822 « NB *

A ! (8.10)
BLZ d bb .fcw' L <2 R
A ] ~ .
B © Bl (u-Rp) o <2,
3. ety .
wor DiJ T MG - B for Gje2
voo= BT .ty (8.11)
NP) - o &O N gdtbi Y .
while the weight function reads ‘
~p=3
w(€) - W (L ledi%e/*)” 7, ®an
T —2
W = T (pet)(ur2) (8.13)
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9. CONCLUSION

It was shown how the most+ previously known and also some new
boson expansions can be derived by using a general method presen-
ted in the first two parts of this work. Clearly, besides the appli-
cations presented here for the Lie groups SO(2N+1), SO(2N), SU(N),
sSp(N), su{l+1l), SO.8) and SU(3) many others can be deduced for dif-
ferent choices of the underlying group. Thus every fermion problem
can be transposed into a boson space provided the corresponding
fermion space is an irreducible representation space for some

compact semisimple Lie group.

As indicated by 0nof;i23), the holomorphic functional repre-
sentations, and hence the boson representations, exist for noncom-
pact semisimple or solvable Lie groups as well. If the corresponding
invariant measures were explicitly known it would have been possible

‘to construct the boson expansion for a wider class of fermion

13) the invariant measures

spaces. In the recent paper by Suzuki
were derived without assuming semisimplicity of the Lie algebra
while strongly and explicitly restricting the commutation relations.
Hence many semisimple algebras and their representations camnoi be
dealt with his method. On the other hand it includes the non-
semisimple Heisenberg-Weyl algebra of boson operators. The finding

of an extended approach for obtaining invariant measures appears

then as a natural goal for future investigations.
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