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Abstract

Gauge theories for non-semisimple groups are exami-

ned. A theory for the Poincare group with all the essential chara£

teristics of a Yang-Mills theory possesses necessarily extra equa_

tions. Inonil -Wigner contractions of gauge theories are introduced

which provide a Lagrangian formalism, equivalent to a Lagrangian

de Sitter theory supplemented by weak constraints.
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1. Introduction

The recent advances of gauge theories for electro-

weak interactions and the promising approach of chromodynamics

to strong processes have put forward expectations that also grâ

vitation would, in not too remote a future, leave its splendid

Isolation and find a formulation in the language of gauge fields.

The analogies between Yang-Mills theory at the classical level

and General Relativity, reflecting their common geometrical ba-

sic setting, have been noticed since long, but the essential fact

remains that the Hilbert-Einstein Lagrangian 1s not of the Yang-

Mills type and the dynamical aspects of the two theories are qua

litatively different.

Despite Its charm and success, General Relativity

is not beyond criticism from a theoretical point of view. We

shall not go into this matter here. Reviews on the subject have

been made, among others, by Hehl (1976,1979) and Zheniong (1979)

and, fro» • different standpoint, by Logunov and collaborators

(Logunov and Folomeshkin 1978; Denisov and Logunov 1980 and refe_

rences therein). A yery general point frequently made 1s that Ge_

neral Relativity does not do justice to the entire Poincari lo-

cal symmetry of spade-time. This 1s a common thread Unking (so-

metimes loosely) the old Cartan (1922) theory, through the clas-

sical papers by Kibble (1961) and Sciama (1962), to the more
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recent developments (Trautman 1970,1979; Hehl 1979; Camenzind 1975,

1978; Waliner 1980; Cho 1975, 1976a ). We shall in the following

simply accept the general lines of this criticism as justifying fur_

ther research and take as granted the interest of building a gauge

theory for the Poincarê group, sticking however to a very orthodox

gauge-field point of view. Although allowing for the specificity of

gravitation, we try*to preserve as far as possible the essential

characteristics of Yang-Mills theories, not the least being the dua-

lity symmetry and the consequent conformai invariance. It will be

not question of "gauging" an abstract Poincarl group: this is to be

taken as acting on the frames defined on space-time, wherefrom the

above mentioned specificity arises. This peculiarity Is usually re

ferred to by saying that gauge theories Involve groups acting on

internal spaces while gravitation is concerned with space-tame it-

self. Such a phrasing 1s to be taken cum grano sails: the Poincarê

group will act on the tangent spaces of space-time or, maybe better,

on the spaces formed by frames defined on these tangent spaces. The

Isomorphism between Minkowski space and the space tangent to each

one of Its points is not canonical and the presence of a gravitatio

nal field Is precisely what makes Its frame-dependence ineluctable

(Kaempffer 1968). That gravitation Is more intimately connected to

space-time comes from soldering, a property of the bundle of frames

which is absent in the bundles lying behind the usual gauge theories

(Trautman 1979). It 1s related to the affine character of the tan-

gent spaces and to torsion, and shows itself in any differentiate
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manifold. Its main consequence Is the existence of an extra Bian

chi identity and, If duality symmetry 1s to remain valid, an extra

Yang-Mills equation.

In section 2 we describe the main features of what

we take as a complete (classical, sourceless) gauge theory, stres±

Ing the role of duality symmetry. The point 1s made that the absej»

ce of a non-degeneratt Mlling-Cartan metric on the group 1s not

by Itself an Impediment: theories for the non-semisimple linear

groups 6L(n,R) are quite feasible through the use of the general

Invariants of the adjoint representation. It is, however, a hind rail

ce for groups Including a translation subgroup, like the affine 1±

near group AL(n,R)s GL(n,R) 0 TB and groups of the Poincare ty_

pe Pn = SO(n-l,1)0Tn_, j, which act on affine frames. This case

Is analysed in section 3, where the Yang-Mills equations are obtaj^

ned by using the duality symmetry. Concerning the Lagrangian, howe

ver, the difficulty remains: If the Invariants Introduced in sec-

tion 2 are used, the translationai sector does not contribute to

the dynamics. In order to face this problem, we proceed along the

following line of thought:

i) the Bianchi Identities are purely mathematical statements, inde

pendent of any dynamical assumption; nevertheless, they can be

seen as consequences, via a variationai approach, of the second-

order Invariant of the adjoint representation, for linear, unita,

ry and (pseudo-)orthogonal groups;
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II) for the same groups» Yang-Mills equations follow from a similar

treatment, the corresponding Lagrangian being obtained from the

second-order invariant if account is taken of duality symmetry;

III) in the case of affine frames there exists an extra Bianchi 1-

dentity, which does not follow from the second-order invariant;

this invariant misses it in just the same way the corresponding

Lagrangian misses the translationai contribution;

iv) because we know the missing Bianchi identity to be true anyhow,

we look for an enlarged formalism In which It does come from a

second-order invariant and use the corresponding Lagrangean to

obtain the Yang-Mills equations; these result to be just those

obtained by direct use of the duality symmetry.

The formalism Is presented 1n section 4. It requires

viewing the Poincari group as the Wigner-Inonü (1954) contraction

of the de Sitter group. Inhomogeneous groups are precisely the

usual outputs of such contractions (Inonii 1964, Gil mo re 1974). In

a way, going to the de Sitter group puts translations and(pseudo-)

rotations on an equal footing «*nd 1t 1s finally the de Sitter se-

cond-order invariant which gives the Lagrangian wished for. The

formalism corresponds to a de Sitter gauge theory supplemented by

weak (in the sense of Dirac) constraints ensuring the commutation

between translations.
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2. General Structure of Gauge Theories

Our objetive Is to obtain a theory for the Poincarê

group with all the essential characteristics of a gauge theory.In

this section we shall describe the general structure (Popov 1976;

Cho 1975) we would like to preserve. Because it makes life so much

simpler, the compact notation of differential forms will be used.

A qauge potential is a 1-form A with values in the

Lie algebra G' of the gauge group G: given for G" a basis {J^j of

generators,

A = í. /C (ai>

where the A are usual real-valued 1-forms, which in a given coo£

dinate system {%M} are

A* = /£ dx» H.i)
The componentes A* are the usual gauge potentials. Our potential

A 1s consequently a matrix of 1-forms. Mathematically, it Is a co£

nexion on a fibre-bundle with space-time as the base manifold and

the gauge group as structure group. To simplify matters, we shall

consider the forms as already projected to the base manifold,which

pressuposes a local choice of gauge (or section). The equations are

formally the same in any gauge.

A connexion (Bishop and Crittenden 1965) defines co-

variant derivatives of tensors belonging to any representation of
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G. The potential A is G'-valued and belongs to the adjoint represei^

tation. For a form X= «^X^ ™ t^ s representation, the covariant de_

rivative is

Here, ci is the exterior derivative and the bracket (rather peculiar

because forms of odd degrees anticommute) is defined by

//X yj = [J«,JJX% yh = J. /./

where f^y are the structure constants of G. In words, the bracket

is a commutator if at least one of the matrices has as elements

forms of even order, and an anticommutator otherwise.

The gauge field strength is the curvature of the co£

nexion A, that is, its own covariant derivative. Because in this

particular case C^/^J = A A A , it takes the simple form

F = of A + AAA (*•**

It is a 2-form in the adjoint representation which, in the particu_

lar system of coordinates [%**) , has the components F ^ v given by

F r i-
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An Important operation on forms Is the dual trans for;

mation : given a metric ci>y on an n-dimens1onal manifold the dual

iff of a p-forra

f •

1$ the (n-p)-form

•r •.

where ĉ « det ifMV) and C<^4a..y«(gl 1» the Lev1-C1v1ta anti-iymmetric

symbol. In particular, for a 2-form on a 4-d1mens1ona1 space,

- « - .

The B1anch1 Iden t i t y comes by d i f f e r e n t i a t i o n of ( 2 . 5 ) :

dF +[A,F] = O . (*>V

The covariant derivative of F 1s so automatically zero. All gauge

theories exhibit duality symmetry, which says that (for the source^

less case) the dynamical (Yang-M111s) field equations are just (2.9)

written for the dual of F:

d*F + [A.'Fjn o.
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In the presence of sources, the covariant derivative of # F is equal

to the Noether current densities whose corresponding charges genera

te the gauge group. This procedure amounts to a practical rule to

obtain the field equations from the Bianchi identity. Notice that,

unlike ( 2 . 9 ) , the Yang-Mills equation depends on the space-ti^

me metric,necessary to define the dual ,Howevejr,as a simple inspection

of (2.8) shows,the operator*, when applied on a 2-form in a 4-di-

mensional space, depends only on the conformai class of the metric:

it g i vi?s the same result for any metric h ^ ^ = /a ^v confonnally

equivalent to ^ y . This is the origin of the conformai invariance

of classical sourceless gauge theories (Atiyah 1979). A complete

Yang-Mills theory will be, for us, one whose fundamental equations

are (2.9) and (2.10) in the absence of sources. When a source cur-

rent is present in (2.10) one might be tempted to add convenient

sources also to (2.9) in order to preserve duality. This would mean

that (2.5) fails to be true everywhere. We prefer to adopt the point

of view that duality is a symmetry of the sourceless theory, broken

by the source currents.

Now, equations (2.9) and (2.10) have very different

origins. The former is an identity of purely geometrical content,

coming from the very definition (2.5) of curvature. The latter is

a physical equation,' resulting from the choice of the invariant ac

tion

S - . JL (Ti (FA*FJ tt.a)

H J
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However, also the Bianchi identity can be obtained as the Euler

Lagrange equation in a variational approach. In order to see it,a

digression on the invariants of the adjoint representation will be

necessary here (Kobayashi and Nomizu 1969). Given a matrix XsJa.X*',

the invariants are certain polynomials in the traces of powers ofX.

More precisely, the h-order invariant Ij is the coefficient of 2*

in the expansion of det[I + 2XJ . Take for instance the Lie alge-

bra GL'(n.R) of the linear group GL(n,R) of real matrices n x n.

If XeGL'(n,R),

Z
«.0 * 4! •*•'

x3j

So, the first-order invariant is 7* X . It is a simple matter to

see that the n-order invariant is det X . For unitary and (pseudo-)

orthogonal Lie algebras analogous procedures apply, although in

these cases T A X r O for "*>,*• . The second-order invariant

reduces then to
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Usually, gauge theories deal with semisimple groups, for which

^ b ; s "CiiJ^ ;£} is the well-defined metric of Killing - Cartan. Some

criticism to Poincare gauge theories( and non-semisimple groups in

generel) has been based on the non-existence of a bi-invariant me-

tric on the group (Basombrio 1980), which would make it impossible

to write down a Lagrangian.We shall see that, by using the invariants

above, such a difficulty can be circumvented for the linear group

but that for the Poincarè* case an enlargement of the group is requi_

red, at least as an intermediate step.

As 2-forms commute with each other, F as given by

(2.6) behaves just as a numerical matrix belonging to the vector

space of the Lie algebra. For X » f ,(2.12) gives a series of in-

variant forms involving the curvature. A first fundamental mathema-

tical result is the Weil Lemma: roughly speaking, it says that each

such invariant form has vanishing divergence. So for instance the

case of electrodynamics with G=U(1) : thereTJiF is F itself and the

Lemma says that d f ~ O , which incorporates the first pair of Max-

well's equations. The second-order Invariant will be a 4-form, for-

cibly divergenceless on a 4-dimensional space, so that the Lemma gi^

ves nothing new in this case. A second important mathematical result

is that these invariant forms define cohomology classes (Chern,

Pontrjagin or Euler classes, depending on the bundle considered)

and their integrals, besides being invariant under transformations

of the gauge group, are numbers invariant under continuous deforma_

tions (and so, variations) of the connexion. Such is the case for
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unitary and orthogonal groups, for which these Invariant numbers

are

ã (F,F) =- j-JT^

We come now to the point we wish to make : if we ap-

ply the usual variational procedure to (2.15), taking the potential

components^, as independent fields, we obtain just the Bianchi

identity. In the case of the linear group, for which the whole ex-

pression (2.13) is to be used, we obtain (2.9) and;due to the

(TA flxfefi term, the additional equation

d ( T*F) . O (ã.iéj

This would come anyway from the Weil Lemma for the first-order in-

variant.

The action (2.11) Is a particular case of the inva-

riant

although in this case no theorem exists ensuring the invariance of

the Integral under continuous deformations of the connexion: this

Invariance is now a physical assumption. Again, this 1s where the
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difference between the Bianchi and Yang-Mills formulae lies: the

first is an identity because it comes from the "variation" of an

invariant number while the latter is a consequence of a physical

assumption.

A full gauge theory can be obtained for the (non-

semi simple) group GL(n,R). If we take the variation of /i^Cv^,

we find (2.10) plus an extra equation

d[* T* F) -

As "X*.F- dlTsi A) {n this case, the field traces give a one-dimeji

sional subtheory, a consequence of the nonvanishing first-invariants

the last equation is just the dual counterpart of (2.16). The li-

near group GL(n,R) can be seen as acting on functions defined on

the n-dimensional euclidean space "ft . On this space a global sy£

tern of coordinates{*l) can be used and the generators of GL(n,R)

can be realized by the differential operators A j =-x èj . The

trace is then the well-known dilatation operator -*1}* .[The sign

is really Irrelevant here. It has been chosen so as to agree with

the matricial representation we shall be using later on (see equa-

tion (3.2)/J.The subtheory is therefore related to dilatation 1nv^

riance.

So, a complete gauge theory can be obtained for this

particular kind of non-sem1s1mple group. It is not quite alike the
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usual theories, as It has additional equations coming from the first

order Invariant. Nevertheless, extra difficulties arise in the case

of inhomogeneous groups, sem 1 direct products Including translation

subgroups, of which the most distinguished examples are the affine

linear group AL(n,R) and the Poincari group 7̂ , . The trouble comes

from the fact, to be examined later on, that the translational part

does not contribute to the Invariants given above. The Invariants

for the Iq group, for instance, are just those of the homogeneous

Lorentz group S0(3,l). An extra Bianchi identity exists In these

cases which 1s not obtainable from the Invariants, and one 1s led

to suspect that a gauge theory obtained along the lines sketched

above will be Incomplete for such groups. Our objective will be to

find a way of arriving at all the Blanchi identities also 1n this

case and then, by the duality requirement, establish a complete

Yang-M1lls theory.

3. Groups of frame transformations

The groups AL(n,R) and ? m act on the affine frames

(Kobayashi and Nomizu 1953) defined on space-time or, more conve-

niently, on the affine basis of Its tangent spaces. The affine cha_

racter, or the transnational Invariance, accounts for the arbitra-

riness in the choice of the origins In tangent spaces. Such groups
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are primary, always present and at work in any differentiable

fold. They are consequently more closely related to space-time than

the "internal" groups of the usual gauge theories. This deeper int^

macy is characterized by that very peculiar trait of the bundle of

frames which is soldering. In order to examine this property and ex^

pose its relation to translations, some use of the bundle language

(Lichnerowicz 1962 ;Bishop and Crittenden 1965) seems unavoidable.

Let us proceed to a (very crude) description of the bundle of linear

frames, in the meantime seeking which fundamental equations a ?<,

theory should have in order to comply with the general pattern of

the previous section.

Given a differentiable manifold M of dimension M the

tangent space TpAf at a fixed pfi-M is a vector space of the same

dimension. Vector (or linear) frames on T y M (sets of "m linearly

independent vectors) can in principle be chosen at will. We can cho_

ose one of them for initial reference and specify every other frame

by the tnxm matrix whose elements are the components of its members.

This corresponds of course to a frame transformation. The set of all

such transformations on T ^ M constitutes the linear group G L ( m . R ) ,

which can in this way be identified with the set F~tA of linear fra-

mes on T p M . We want that frames (and components of vector fields

with respect to them) be differentiable. Mathematically, this presup

poses that the union of the FfM for all ?<At has itself been made

into a di fferentiable manifold. This larger, (*n+>na )-dimensional rnani_

fold is the bundle of linear frames B L F (Ai; m A point on this mani-

fold can be specified by ({*w},{ K . } ) where { * } are the coordinates
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to the frame. Notice however that BLF(M) 1$ not a direct product

of manifolds: In the process of making BLF(K) Into a smooth mani-

fold the ("base") manifold M 1s blended Into BLF(H) In such a way

that Its Identity 1s somehow lost. It can only locally (that is .on

a local coordinate patch) be unblended out again. This 1s done by

• local section, a mapping of a coordinate patch Into BLF(M),which

corresponds to a local choice of linear frame.

The spaces tangent t o M can, however, be associated

to subspaces (called "horizontal") of the spaces tangent to BLF(M),

although 1n Infinitely many ways. Extricating spaces tangent to A*

fro» all this entanglement Is precisely the task of a linear conne-

xion: each connexion defines a horizontal space for everyftM , and

associates It to T ? M . A linear connexion 1s a 1-formP on BLF(N)

with values on the Lie algebra GL'(m,R) of the group 6L(m,R). The

horizontal spaces are characterized by the vanishing of P when ap-

plied to their vectors. Once a local choice of frames 1s made on a

particular coordinate patch, P can be made Into a GL'(m,R)-valued

W o r m on the patch, that Is, locally on N. It is convenient to use

for GL'(m.R) the canonical basis f ^ ; ] . where the matrix A j ha*

elements given by

These matrices obey the Lie algebra commutation rules
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í A\, A\)-.(i' í5, Si-

The advantage of this basis Is twofold: the matrix elements coinci^

de with the components and the equations to be written later on will

have the usual expressions In the particular case of Riemannian

geometry. On a patch with coordinates (x^J t the connexion can then

be written as

r =

which Is a matrix <jf 1-forms (compare with (2.1) and (2.2)), a "gau

ge potential" for the linear group. It Is a 1-fornt In the adjoint

representation of GL(m,R). Just as for the gauge potentials, it de-

fines a covariant derivative and Its curvature

is a GL1(m,R)-valued 2-form, whose components In a coordinate sys-

tem are those in (2.6) with the structure constants given In (3.2).

This is perhaps the place to Insist on some trivial points: curva-

tire (as torsion, to be defined later) is not a property of space,

but a characteristic of a connexion. Connexions are In principle

highly arbitrary, each corresponding to one of the (Infinitely many)

ways of retrieving the spaces tangent to M from those tangent to

BFL(M). Only if submitted (as they will here) to extra equations

and boundary conditions will they become fixed.
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Up to this point, the analogy with gauge theories is

complete. Gauge transformations correspond here to linear transfor.

«nations of the frames on the tangent space at the point?£/W . The

peculiar character of the present case can be seen pictorially as

follows: intuitively, we think of the tangent space as "touching"

the manifold M at the point p. which 1s "shared" by M and TpM.

Else, we tend to look at p as the origin of TpM. However, any point

of TpM can be chosen as the one "touching" M at p. This means that

the choice of origin in TpM is arbitrary or, 1f we prefer, that TpM

is to be taken as an affine space, or, still, that on TpM an extra

transiational invariance is at work, /fccounting for it, a 1-form on

BLF(M) exists, with values in the Euclidean space Rm. This form, na,

med "canonical" or "solder" form, 1s independent of any connexion

and 1s "horizontal" in the following sense: given any connexion, it

will vanish when applied to any vector which 1s not horizontal. Gî

ven a connexion and this always present solder form, an isomorphism

Is established between (i) horizontal spaces and spaces tangent to

M; (11) vertical spaces (the linear complements to the horizontal

spaces in the spaces tangent to BLF(M)) and GL'(m,R). This makes the

group GL(m,R) much more tightly tied to M than would the gauge group

of an internal symmetry.

Let us examine in some detail the above mentioned 1s£

morphism of vector spaces. To begin with, it is not canonical: it d±

pends on the choice of local frames. If we choose for Rm the vector

basis {lj) .where 1^ is the vector column» with 1 1n the j-th row

and 0 everywhere else, each local frame {bj} defines an isomorphism
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h:Rm-»T H by h(I.)=h.. In a local coordinate system {xM}, h1= Kx- èA .

This makes it possible to transform indices (i,j,k,...) in Rm into

indices (/t ,y ,p ,...) in T M by contracting with kj (or K\ , the

elements of the matrix inverse to (h£) ). For instance, the matri-

ces A*± may be seen as operating on the columm vectors of R m,4 il4s

fj J^ , and can be translated into matrices operating on vectors

of T M, AMy= b^hy A*x - These matrices provide a realization of

GL'(m,R) on the tangent space. In the same way, a metric *l on RI"I

12iT^ Is) ^ \ i ' i is taken into a metric <%MV- W^,W* l̂ ;r on the tan-

gent space. The isomorphism between horizontal and tangent spaces

is the composition of the solder form with the mapping k . Given

the local frame (h^j , the solder form can be made into an Rm-V£

lued form om M, with an extra property: it will have the expression

S = Ij. kj, <**M , (3.5;

so that S(h.)=I..
J J

The extra translational invariance on T M forces us to

enlarge the group GL(m,R) to the affir.e group. The most convenient

way to do it to recall the additive group structure of Rra. This cor

responds to identifying it to the translation group TM , of which

the {i.j above are taken as generators. The complete Lie algebra

AL'(m,R) generators will obey, in addition to (3.2), the rules

= O . (3.7J
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In order to represent this algebra it is necessary to

resort to (m+1)x(m+l) real matrices of the form

A =

o . .

Once this is done, the bracket (2.4) can be used. The torsion of P

is the covariant derivative of S:

= dS = dLS

By differentiation of (3.4) and (3.9), the two Bian-

chi identities of differential geometry result:

Due to the absence of soldering in the bundles with general groups,

only (3.10) (which is (2.9)) appears in the usual gauge theories.

The Poincaré group 9H is a subgroup of AL(4,R) and

the above considerations can be applied to It by reducing GL(4,R)

to the Lorentz group. The P̂  theory is a subtheory. This Is not a
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trivial statement: not every subgroup yields a sub-bundle with the

connexion a particular subconnexion of the above F . This is t^ue

only under some strict conditions which the Lorentz group happens

to satisfy (Kobayashi and Nomizu 1963). The translation group T3i>1

does not, so that a purely translational gauge theory (Cho 1976b)

is not a reduction of the AL(4,R) case and does not give a sub-

theory. Suppose the Lorentz metric £ is given on R . The subgroup

of GL(4,R) preserving fc is generated by r ^ = {&À S^ -fc^ fc**M*i .

satisfying £* J^iT jt =£**" • The isomorphism h defined by the

frame {lij will take these generators into J**» •=. K^J H * T ; >

satisfying o,v<r ~5M„ X tr-f* and providing a realization of the

Lorentz algebra on T M. The Lorentz connexion will be the.reduced

Po = T 1 Fo^d , a particular linear connexion of the form

T = A\U\$i->li(l
 tl'^)flJii ' The curvature F^J^^j is

obtained accordingly. In component form, the usual expressions for

the curvature and the torsion are easily obtained from (3.4) and

(3.9). Equation (3.10) gives the usual Bianchi identities for

fj~i sr li/a)Ti*ijtv <***A <**? and, after conversion of Indices by

putting 1? f^ > 4 V= h? hi-V jj* v , the extra Bianchi Identity

(3.11) is ,for vanishing torsion, the origin of the well known cy-

clic symmetry "R r<O**j = O . If Vo has vanishing torsion and the

metric Q v has ze'ro covariant derivative according to fi, (so that

fl is the Lev1-C1v1ta connexion related to <v,v ) , the usual exprejs

sions for Riemannian geometry result. Notice however that there 1s

no compelling reason for doing that here:, from the point of view
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of gauge theories, the dynamical variables are the connexions.

The solder form appears much as a gauge potential for

the translation sector in (3.5). Furthermore, the isomorphism h •

related to a local frame {d^}, although providing the realization

{4"»} of the linear algebra on the tangent spaces, falls in gene-

ral to do the same for the translations: the choice of an anholono

mic frame "breaks" the translational invariance. In Yang-Mills lan-

guage, this choice of frame corresponds to a choice of gauge. The

translational field strength would be oiS , but the non-commutat1-

vity (3.6) of linear transformations and translations creates a coji

pling between the two sectors which is automatically accounted for

in the torsion. As a vector space, the Lie algebra AL'(m,R) is a

direct sum of GL'(m,R) and Rm. We can define a gauge potential

for the affine group by

for which the field strength will be

The Bianchi identity for F ,
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decomposes just into a linear part which is (3.10) and a transla-

tional part which is (3.11). All this remains true for the Poincaré

case, which we shall consider from now on, omitting the indices inf^

Let us now apply the considerations of section 2 to

determine the Yang-Mills equations for a Poincaré gauge theory.They

will come from the Bianchi identities by duality symmetry:

IP,

These expressions show once again that the Lorentz sector does

titute a subtheory, but not the translational sector. These equations

have been proposed by Popov and Daiklxin (1976) on the basis of a

heuristic argument. They have pointed out that, for a Levi-Civita

connexion P , they reduce to

and

respectively. So, this theory includes Yang (1974) and Tinstein

theories. Of course, in this sourceless case, they are redundant.
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Not so in the presence of sources. The sources of the Yang-Mills

equations are the Noether current densities whose charges are the

generators of the gauge group. Therefore, here they will be the

sity of relativistic angular momentum M s 3 % ^\ *• ^x an(*

the energy-stress tensor 9 = XJ O &

= *

d*T +[r,*T] +[S,*F] = *G . (3.18J

In gauge theories, the conservation of the source currents follows

directly from the field equations. In electrodynamics, the Maxwell's

equation d*F = * f implies d*f = d * F = O . In more general

gauge theories the covariant derivative is to be used. From the abo

ve equations it can be directly verified that

("r, *M]\ - o

This last expression is a somehow "mixed" covariant derivative which

takes into account the coupling between (pseudo)-rotations and trans_

lations. Defining X - / 4 + 9 , these equations can be combined into

the expression
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4. Contractions of gauge fields

If now we look for a Lagrangian formalism leading to

(3.15) and (3.16) along the lines discussed in section 2, we come

face to face with a serious difficulty. From the roles played byp

and F , we could expect to be able to proceed in the usual way,

taking T*(FA"F) for the Lagrangian density. This Is not so, as

only the Lorentz sector (3.15) comes out as the resulting Euler-La^

grange equations. The same happens to the Bianchi identities: (3.10)

comes alone from the variations of T%[FAP) . The reason is tri-

vial: the matrix F has the form

and T* (FA£; s T* ( F A F ) , T* ( F A X F ; = Xi if A *F)

These traces ignore the translation! sector and equations (3.11)

and (3.16), precisely thoee peculiar to the theory, are missed. We

shall follow the general Ideas exposed in the introduction to solve

this problem.

Notice to begin with that groups Including translation

sutgroups are the normal result of Inonu -Wigner contractions, which

were originally introduced to explain how the Poincari group 1s chain

ged Into the Galilei group when the velocity of light 1s allowed to

tend to infinity. On the other hand, to give Lorentz transformations
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and translations the same status 1t 1s very convenient (Giirsey

1964} to consider the Poincare group as a contraction of a de Sit-

ter group. We are so led to examine the behaviour of gauge fields

under group contractions.

In the process of contraction, some convenient coor^

dinates are chosen in the Lie algebra which, via the exponential

mapping, give local coordinates for the group ("group parameters").

A limit is then taken which contracts some of the coordinates to

zero while eventually letting other parameters go to infinity. Infj_

nite values of parameters of the original group are absorbed in the

parameters of the resulting group.

To fix the ideas, consider the 2-dimensional Poincari

group P~= IS0(2)«= S0(2) 0 Tg. Its Lie algebra P'2 has generators

{J3J},12} satisfying C V ^ ) «T2; [J3,T2J -T1 ; fTltT2]-O.We

can use for them the matrix representation

1 o i © I / o o i \ ( o o o \ tu A

i o o ) ; T < s o o o) ; T a = o o i . ^ -
o o o/ \o o oi \ o o o/

A matrix B belonging to P£ Is

Ka)
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It corresponds to a group element

'cflB* sR35

where a, = £ - I) ; -|^-Ul B% Í (eft B*-i ) .Í

The usual parametrization is obtained for yfc^B*s|ry ; cM B = ̂  =

-v^/C 1 J~ . if we try to obtain the Galilei group by

taking the limit t-*oo , only Its translational part comes out.

In order to obtain the whole group, a similarity transformation

S g S , with $» (® o'J» has to be done Deforehand( which changes

(4.3) to

f t

\ O

11.1)

The l i m i t now gives'

v*
1
O

(1.5)
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which represents the 2-dimensional Galilei group when applied to

coiumm vectors ( x , t ,1 ). Notice that the Galilean translation pa_

rameter ^ r c a , absorbs the infinity of c (Inonu 1964). The ele_

ments of any matrix in the Lie algebra will be accordingly contra£

ted or stretched, their eventual Infinities being absorbed in the

elements of the corresponding matrices of the final Lie algebra.

We shall here be mainly concerned with contractions

of Lie algebras. As any finite Lie algebra is a subaigebra of some

linear algebra GL'(n,R) (by Ado's theorem), we shall use the devi-

ce of embedding both the Initial and final algebras in a convenient

matrix algebra. This is perhaps an unusual way of looking at con-

tractions, but 1t helps to see them at work and shows in what sense

they are singular transformations. We have already done 1t above,

as (4.1) 1s a particular realization of P£ 1n GL'(3,R). The simi-

larity transformation leading from (4.3) to (4.4) corresponds to a

change of the basis (4.1) to T s = c A
l
ã + c"*<lai ; Tt s c A1 s',

T a = A* % . with the &Ai given 1n (3.1.). This possibili-

ty of different realizations comes from the fact that the commuta-

tions rules do not fix them completely.

Our Interest will be the contraction of the de Sitter

groups S0(4,l) or S0(3,2) to the Poincaré group P., but, to show

the procedure in some detail, we shall examine the simpler case of

the contraction of a gauge theory for the de Sitter group 1n 2 di-

mensions 50(2,1) to a ?2 gauge theory, while retaining a 4-d1mensi£

nai space-time. We shall keep the basis (4.1) for P£. The gauge po-
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tential and the field strength for a P 2 gauge theory will then be

written

r = iui

The Lie algebra SO'(2,1) of the de Sitter group has

generators obeying £jj , J2J • -J3 ; [J 2«
J3^ * "Ji » £J3«JiJ " J 2 *

These commutation relations by themselves do not fix the basis of

generators. If we look for the most general linear combinations of

the A*J € . a i ^ p . R ) , we find that they will be satisfied by

any set {Jx-j of the form

for arbitrary real values of ci , p . As we shall contract SO'(2,1)

to ?2 preserving the SO1 (2) generated by J3, we choose •'•/a . The

gauge potential and the field strength will be

Al ^
AQ AO_

F. =
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Notice that the basis chosen for SO'(2,1) is a choi-

ce of vectors in a 6-dimens1onal subspace of the vector space GL'

(3,R). The ?2 basis (4.1) 1s a choice of vectors in a 4-dimens1onal

subspace included in the above one. The contraction SO 1(2,1)—* P£

1s the limit o/-»oo . Let us look, for Instance, at J1: it can be

any point on a hyperbola branch on the plane CA*yt A a ) . The con-

traction corresponds to a transition to the asymptote A*s . In this

sense, it is a singular transformation strongly reminding the pass£

ge to Infinite-momentum frames. The components of any matrix will

stretch or shrink as shown In (4.7), which is a kind of Interpola-

tion between the Initial (say, for*«l) and the final algebras. Com

parison with (4.6) shows how the P2 fields absorb the inf1n1ties:1n

the limit, c f F / . ^ ; * F/ * F a ; F* = F* ; Ã* = * 4 ; **=«*'<>

and Ãy JS Âl . Always 1n the limit, the fields and potentials are re

lated by

F* =

Notice that Ã ,A are parts (because we are working with only

a subgroup P2 of P^)' of the solder form; F ,F , of the torsion form;

and F and Â the field and potential for the untouched S0(2) sector.

Changing notation accordingly,
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Fo
3 = F r

The S0(2,l) second-order invariant is

=- A- TJI(FAF-OTA TAT) J

for any value of o£ and consequently as near as we may wish of the

asymptotic limit meant by the contraction. The translational

bution is lost only when U~ = O , the invariant reducing to the sol

S0(2) invariant. Suppose however that we integrate (4.9) as it is,

and take vari<

equations are

1 2and take variations in the potentials A, S and S : the resulting

'* [S, T] = o

* [S,FJ= O

When 4~*=o , these are just (3.10) and (3.11) for this particular

case. Notice also 'from (4.8) that F reduces to the S0(2) field

strength. So,we learn here the following: the correct Bianchi Iden-

tities are obtained from the de Sitter invariant if the variations

are proceeded to as for the S0(2,l) theory and the contraction 1s
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accomplished afterwards. The same is true for the Lagrangian

L =- X. T*[FA*F - «-* TA*T) , d

which leads to the 50(2,1) Yang-Mills equations and,with contrac-

tion as the last step, to equations (3.15) and (3.16) for this

cular case.

Notice that, looking In GL'(3,R), the components affe£

ted by the contraction are those along A i, A 3 . A*\ and A 9 ,

involving the index "3". We could call them the "third" components.

The components which relate only to the fixed subgroup S0(2) remain

intact. All the above procedure holds for the 4-dimensional Poinca-

r§ group P*, whose equations are obtained from those for 50(4,1)

or S0(3,2) in just the same may as above those for P2 have been de-

rived from those for S0(2,l). Of course, the fixed subgroup will be

S0(3,1) and the distorted components are those along 4%and A i 1n

the embedding GL'(5,R) ("fifth" components), but nothing essential

1s changed. Before contraction, the equations are (3.11), (3.16) and

The torsion (the "fifth" components of the de Sitter field strengths)

appears directly as in (3.9), because both sides of the equations are
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distorted in the same may (as in (4.8)). The field strength is now

+ a'' SAS ,

S being the "fifth" components of the de Sitter potential.

From these interpolating expressions an alternative

interpretation comes forth: the P4 theory is a de Sitter gauge theo

ry supplemented by the constraints

[ S , T] s O ; SAS : O , {

whose role is to enforce the commutation between translations. One

could forget about contraction, use the action

& J
- TA*T)

taking T and S as the "fifth" components in a de Sitter theory(which

means that F depends on S for variations) and use (4.14) as weak

constraints in the sense of Oirac (1964), to become effective only

after the variations are performed. This is similar to the relativistic

kinematics for a free particle, where the explicitly covariant equa_

tions of motion result from the action S» An/ei»>uAM an(j

only after that the'weak constraint x.A<t*
xs-ca Is reinstated.
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5. Final comments and speculations

If wa accept the arguments favoring a P. theory,It 1s

difficult to evadt the conclusion that the scheme above describes

the general lines of what a classical gauge theory for gravitation

should bt. Being an asymptotic limit of an usual gauge theory. It

will probably avoid many of the problems faced by General Relativi-

ty, such as those related to nonconservation of overall energy-mo-

mentum (Denisov and Logunov 1980) and the Newtonian limit (Denisov

and Logunov 1981). It Is also probable that the contraction proce-

dure turn out to be helpful 1n analysing the question of quantiza-

tion. One could even conjecture that contractions would help clari-

fying the Issue of symmetry breaking in general. H1ggs fields appear

In a ^try natural way In the Interplay of internal and space-time

symmetries (Forgics and Hanton 1980). In the approach above, a group

Is contracteá »nâ (as discussed In section 3) the resulting trans-

lationai sector Is "broken" by choice of gauge (local frames). One

could take the arguments given by Trautman (1979), by which the four-

legs are Higgs fields breaking the natural 6L(4,R) invariance down

to Lorentz invariance and argue tall-end backward: the better known

vierbein fields could be helpful 1n clarifying the meaning of the

far less understood 1<1gg» fields.
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