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ABSTRACT:- The several roles of multipole giant resonances in

heavy-ion reactions are discussed.^ In particular, the modifications

in the effective ion-ion potential due to the virtual excitation

of giant resonances at low energies, are considered and estimated

for several systemsj Real excitation of giant resonances in

heavy-ion reactions at intermediate energies are then discussed

and their importance in the approach phase of deeply inelastic

processes is emphasized. Several demonstrative examples are

given.

*Based on a talk given at the 1st Brazilian Symposium on Photo-

Nuclear Reactions, São Paulo, April 1982.

•work supported in part by che CNPq.

November/I982



.2.

I. INTRODUCTION

In this talk I shall discuss the role of giant

resonances in heavy-ion reactions. As is well known the giant

resonances have been excited by several probes, most notable

of these are electrons, photons, pions, protons, a, etc.. In

the case of electrons and photons probes, although the reaction

mechanism is quite simple (electromagnetic), the cross section

however is very small. A larger cross-section is obtained with

hadron probes, with a price paid: a more complicated reaction

mechanism. The question of the nature of the background seen in

the spectrum of hadron-induced nuclear reactions is still a rather

subtle one.

The usual interpretation given to the background

is based on the contribution of multistep processes. It is

suggested that multi-phonon excitations (of several multi-

polarities) results in a spectrum composed of strongly overlapping

broad peaks that would show up as a practically structureless

background below the isolated, rather prominent, peaks attached

to one-photon states (giant resonances). It is well-known that

in heavy-ion reactions, the multi-step processes are the rule

rather than the exception. One would therefore expect that

Hi-induced reactions leading to GR excitation exhibit more

complicated spectrum, whose back-ground is of an even more subtle

nature than that of the reactions induced by simple hadronic

probes.

Nevertheless, the excitation of GR in heavy ions

has, in the past few years, been shown to play an important

role, especially in the mechanism responsible for the large

energy loss encountered in deeply inelastic processes. These
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processes occur at cm. energies of the order of 2-3 E , where

B
E is the height of the Coulomb barrier. For very heavy ions,
o

these processes almost completely exhaust the total reaction

cross section at these energies. They represent events where

the two heavy ions emerge from the reaction after having lost

practically all their kinetic energy into intrinsic excitation

energies.

Aside from their importance in deeply heavy-ion

reactions, the GR's may have a role in the effective ion-ion

interaction appropriate for the description of heavy-ion elastic

and quasi-elastic scattering at lower energies. At these

energies, the GR's enter into the picture in the form of

polarization components that should be added to the bare

interaction.

This paper is organized as follows, in Section

II, the polarization effects of GR's at low energies are discussed

in the context of elastic scattering and the optical potential.

In Section III a brief account of the experimental evidence in

support of the direct excitation of GR's in intermediate energy

heavy-ion inelastic scattering is given. In Section IV, the

relevance of these excitations in deeply inelastic heavy-ion

collisions is discussed and, finally, in Section v, several

concluding remarks are made.

II. EFFECT OF GIANT RESONANCES ON THE HEAVY ICW OPTICAL POTENTIAL

At low energies, the heavy ion elastic scattering

angular distribution is characterized by several features; at small

angles the cross-section oscillates about the Rutherford value
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{-— (0) = 1) and eventually, at intermediate angles, drops
R

rather rapidly to small values, indicating clearly the presence

of a phenomenon reminiscent of Fresnel diffraction. The only

explicit information about the nuclear structure seems to be

associated with the size of the system contained in the grazing

angular momentum extracted from the value of the angle ®-\/A >

at which -p- = 0.25 (quarter-point-recipe) .
R

Nuclear structure effects in elastic scattering

become more conspicuous at higher energies? and larger angles,

manifesting themselves through characteristic oscillations in

ael
- — at angles larger than the grazing angle ^\/A • The
R

oscillations arise from interference effects related to specific

nuclear structure aspects of the heavy-ion system (coupled

channels). Some of these coupled channels effects may, in some

cases, become important even at small angles. This is the case

seen in the elastic scattering of deformed heavy ions, where

multiple Coulomb excitations are important. The strong Coulomb

coupling of the elastic channel to the collective inelastic

channels in these systems is seen to result.in an effective

long-range component in the ion-ion potential. This component

is found to be predominantly absorptive in the case of coupling

to low-lying collective states. The reason is that these states,

being low-lying, are excited with such high probabilities and

very small energy losses that a treatment based on the sudden

approximation is quite appropriate. The reason being that the

reaction time is much shorter that the vibrational period. This

basically implies a loss of flux from the elastic channel with

very little change in the effective real interaction. In contrast,

giant resonances, being high-lying states, have a much smaller

vibrational period. The system, therefore, reacts adiabatically,
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resulting in a change in the effective real interaction which

becomes more important at sub-barrier energies.

To see this more quantitatively we consider below

the amplitude for the excitation of a vibrational state of

multipolarity \ , and excitation energy ÂE. , using first order

time-dependent theory'of Coulomb excitation .

«o

— Til- (1)

The interaction, V(r(t)) has a matrix element <n|V(r)|0>

proportional to r(t) Thus we have for (»)

t '<«']

The largest contribution to the integral in Eq. (12) comes from

the vicinity of the classical turning point, r. = r(0) . Thus

by expanding r(t) = r. + j r. t , and keeping lowest order

terms in t , one obtains the simple estimate

(3)

where C is a constant, r. is the radial acceleration at the

classic-«1 turning point and u>, = -sr • Introducing the average

collision time, T
C O / # = > w e have finally '

tP!
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(4)

Eq. (4) clearly shows that the quantity that decides upon the

strength of the transition is W^T .. , which has the follow

simple relation to the relevant physical variables

"cm.

z
T

where n Is the Sommerfeld parameter , n = -£=r , v being

the asymptotic relative velocity.

For heavy ion (z z >> 1) reactions at low

energies, n >> 1 , therefore one expects wxTco££ >:> *

giant resonance excitation and u\Tco/f
 <K *• ^ o r excitation of

low-lying collective states. This indicates that a^R(«) << 1

and accordingly very little amount of flux is lost from the

elastic channel. On the other hand, a^ (°°) - 1 for the excitation

of low-lying states, which reflects the need to incorporate into

the elastic channel optical potential, the resulting, absorptive

long-range component

The fact that a^R(«) << 1 for heavy ion

scattering at low energies implies that the system follows

adiabatically the motion. This in turn implies that a way to

account tor the GR polarization in the optical potential is

simply to minimize the multidimensional potential energy surface

with respect to the deformation parameters.

To be specific, we consider the polarization

effect due to the coupling to the giant quadrupole mode . Then
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the potential energy is taken to be

(6)

where Q. is the intrinsic quadrupole moment of the projectile

(p) or target (t; nucleus, given by

'• -'" &

8-(i) is the quadrupole deformation parameter, R . the radius
í Of 4

and C, is the spring constant of the assumed harmonic vibrator.

Differentiating Eq.(7) , first with respect to 8. and then with

respect to 8 , setting the resulting first derivative of V

equal to zero at each case, we obtain

(8)

Using for the spring constants the value 14.8 MeV , obtained by

assuming that the isoscalar giant quadrupole resonance at an

excitation energy AE = —r/r MeV , exhausts the energy-weighted
A '

sum rule, we finally obtain the following estimate for the

polarization correction (second term on RHS of Eq. (8))

AV y* \ * * / (

The factor j (* 1 + j) comes from the approximate inclusion of
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the isovector quadrupole resonance (AE^_2 * 2 AE^ ) which gives

the factor 1/4.

Similar procedure may be followed for the obtention

of Av due to the isovector dipole resonance (GDR) . Cne obtains

(10)

vjhere N = A-z , is the number of neutrons. In deriving Btj. (10),

the Goldhaber-Teller model is used together with the empirical

excitation energy value of ^E
GDR = 8° A~ ' MeV.

It is clear from Eqs. (9) and (10) that the giant

resonance polarization is represented by an attractive, real,

long-range component in the ion-ion potential. Though this

component is small (e.g. in 40Ar + 60Gd , V__D = -0.2 MeV at

r - R B , see Table 1 where AV is calculated for several HI

systems), it may be quite important in those heavy-ion processes

that are sensitive to the tail of the nuclear potential (quasi-

elastic reactions populating discrete states). lhe GR polarization

component may also be important in heavy-ion fusion at sub-barrier

energies where barrier penetration is the dominant mechanism. A

slight lowering of the barrier height, that would arise from the

inclusion of AV__ , may result in a significant increase in the

fusion cross-section over the value obtained from simple one-

dimensional barrier penetration calculation.

It is of interest to compare the purely real

polarization potential discussed above with the predominantly

imaginary dynamical polarization potential arising from the

coupling of the elastic channel to low-lying vibrational or
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rotational states. Owing to the small value of u>, T ». in

this last case, a sudden-limit treatment of the excitation

process is adequate. The resulting dynamical polarization

potential, has the :

Loss equal to zero)

potential, has the following simple form (setting the energy

r

where the coefficients a-, b- and c« are complicated functions

of the center of mass energy, E , the reduced transition proba-

bilities, the Sommerfeld parameter, n , and the orbital angular

momentum. The numerical value of j AVQ j is comparable to

that of AVGQR .

Whereas the consideration of Av\,-_ results in a

slight change of the real ion-ion potential, and a subsequent

slight deviation of the classical trajectory and the deflection

function from the Rutherford ones, the effect of AV__p(r) on

the elastic scattering cross section is much more drastic owing

to its absorptive nature. The inclusion of AV___(r) in the
iaetcalculation of .fl results in the following simple form for

the cross section, valid at sub-barrier energies

(12)

where F. are functions related to the coefficients a., b. and

c. and f^ie) are simple function of the center of mass angle.

The presence of the exponential factor in Eq. (12) results in a
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significant damping in the elastic cross section that starts at

small angles and extends all the way to back angles (see Ref.(3)

for more details).

It should be stressed that the real nature of the

giant resonance polarization potential V_rtT. and V̂ ,.,, is a
(JUK (JUK

direct consequence of the adiabatic nature of the excitation

process encountered at the sub-barrier energies we have been

considering so far. At higher energies the excitation of giant

resonances is believed to be responsible for a significant part

of the total reaction cross section especially in cases where

deeply inelastic reactions are found to dominate over fusion.

This implies that if one were to construct e.g. V to be
GUK

used for the calculations of the heavy-ion elastic scattering

cross section at intermediate energies, one would find it to

contain a strong absorptive component. In the following section,

we shall discuss the experimental situation of GR excitations

in heavy ion collisions at intermediate energies.

III. GIANT RESONANCES EXCITED IN HEAVY-ION REACTIONS AT

INTERMEDIATE ENERGIES

As one can see from Eqs. (4) and (5), as the

energy is increased, the factor in the exponential T
co£/

Iüx '

becomes smaller, even for the excitation of giant resonances,

rendering the amplitude a^ (•) , for these excitations, appreciable.

Note, however, that at the higher energies, considered here

(ECM > 2E ) , it is the nuclear excitation (short-ranged) rather

than the Coulomb excitation (long-ranged) of the giant resonances

which is dominant. This has an immediate consequence of restricting
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the excitation process to the surface region of the nucleus. A

result of this localization is the characteristic Fraunhofer

pattern in the inelastic distribution. Employing the usual

terminology of heavy-ion physics, the above pattern in the angular

distribution results from the interference between the near-

and far-siJe components of the amplitude. Cne immediate

consequence of this interference phenomena is the Blair phase-

4)

rule , which says that the oscillations of the angular dis-

tributions of inelastic transitions to odd multipolarities are

in phase with those of elastic scattering, whereas even multi-

polarities are out of pnase.

As an example we show in figure 1 the data on the

light-heavy-ion system 12C + A1Kl at E = 82 MeV studied by
c

(51
Betts et al. . The Coulomb barrier, E e , of this system isECM
about 22 MeV, so we are talking about = — » 3.0 , i.e. center

of mass energies well above the barrier. The angular distributions

do show the Fraunhofer pattern, with the Blair rule approximately

satisfied. One also sees clearly the large background in the

spectrum, which is customarily attributed to multiple excitations

of several GR modes. As has already been discussed earlier,

this interpretation is not the only possibility. Multiple

excitation of incoherent modes might certainly contribute as

well.

Another attempt to observe GR in heavy ion

reactions was made by Buenerd et al. . These authors looked at
15 9(1 208
C inelastic scattering on Zr and °Pb at E12 = 120 MéV,

and 14N on 40C , 90Zr , li7A« , 208Pb and 209Bi C.t E

- 161 MeV. Fig. (2) shows the spectrum and angular distributions

at E =11.0 MeV and 2.61 MeV of 208Pb (14N , 1 4 N ' ) . One

notices that in the present case of a heavy target, the GQR
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exciation cross section shows a distribution in angles which is

more of a Coulomb-nuclear interference type (near-side phenomenon/

no Blair phase-rule) than a Praunhofer type. This is primarily

a consequence of the larger Coulomb interaction (n >> 1) and

excitation than in the C + At system mentioned earlier.

Similar features in the angular distribution as

the ones mentioned above may be seen in the data of Doll et al. ,

Fig. (3). These authors measured the inelastic scattering of

1 60 (E = 315 MeV) on 208Pb and 12C , Ln the Q-value region

corresponding to the excitation of the GQR in the targets. Again

one sees clearly the near-side dominance in 0 + Pb and

near-far interference in 0 + C (for comparison, n ( 0 + C) =

=1.7 and n (160 + 208Pb) =23.3 , both evaluated at E., =
1 60

= 315 MeV).

In all of the above cases, several GR:s with

different multipolarities were identified. It should be clear

from the above discussion that the disentangling of nuclear

structure information of the GR's (e.g. damping width), using

heavy-ion inelastic scattering is more complicated than in

light-ion-induced reaction. This is principally a consequence

of the much more complicated nature of the background in the

former. However, the observation of these resonances in HI is

important in so far as the interpretation of the nature of

deeply inelastic reactions (DIC), is concerned. The relevance

of our discussion in this section to DIC becomes clear when one

recognizes that the energies at which GR have been populated in

HI reactions (ECM > 3E_) correspond closely to those at which

the DIC cross-section becomes a major part of the HI total reaction

cross section.
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IV. GIANT RESONANCES IN DEEPLY INELASTIC REACTIONS OF HEAVY ICWS

The usual scenario of heavy-ion reactions is that

at CM energies, E_ u , close to the Coulomb barrier, E_ , the

tcial reaction cross section, o , is almost completely exhausted

by complete fusion, o . This last process is characterized by

a ccmnLete amalgamation of the two ions to form a compound

nucleus. All relevant degrees of freedom reach their equilibria!)

values in this process usually viewed as statistical. At center-

of-mass energies E ^ •> 2E B , a starts deviating appreciably

from o_ , and at higher energies, -— << 1. The usual interpretation
R °R

of this phenomenon is thti occurence, at these energies, of a
process intermediate, in complexity, between fusion and qausi-

8)elastic reactions

This new mechanism of the heavy-ion reaction,

usually referred to as deeply inelastic collision, involves a

partial equilibrium of the system, and might be accordingly

considered as the HI-analogue of light-ion-induced pre-equilibrium

reactions. The difference between the two reactions is, however,

quite clear. Figure (4) shows a typical spectrum of a m-induced

reaction at intermediate energies. For comparison we show in

the inset a typical spectrum of a light-ion-induced reaction.

The rather wide hump centered at the exit channel Coulomb barrier

is the DIC component.

The picture employed to describe DIC is that the

two ions after reaching the interaction zone, suffer a large

amount of energy loss, exchange many nucleons and emerge as two

highly excited, deformed, fragments. They do not fuse because

not all the degrees of freedom reach their equilibrium values.

Several macroscopic variables are employed in the
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description of the evolution of the system. In particular,

owing to the classical nature of relative motion, the detection

angle (deflection function) is used as a measure of the reaction

time. The longer the reaction time is, the greater would be the

energy loss. This last observation has a clear consequence on

the angular distribution. Depending on the final fragment masses

and the total energy loss the angular distribution shows a marked

evolution from side-peaked (for final fragments equal to initial

ones) to forward peaked. Fig. (5) shows the spectra of heavy

particle products and angular distributions in Ar + Th at

E_M = 330 MeV.

Other macroscopic variables relevant for the

description of DIC are the mass, charge, orbital angular momentum

and charge-to-mass ratio. It is now evident that the charge-to-

mass ratio equilibrates quite fast (T ,a - 1.3 * 10 s) ,
it / Pi

followed by the energy (T D = 3 * 10 s) , the orbital angular

-22momentum (t» s 15 « 10 s), and finally the charge or mass

(x s 60 x 10~ s). Actually in most DIC events the charge or

z
9)mass never reaches equilibrium

The equilibration process associated with, z/A

z and A , in DIC, is nicely described by a diffusion equation'-0)

The important point one discovers from this description is that

the width, r , of the distribution P(x,t) of a given macroscopic

variable (x = z/A , z or A ) , satisfies the usual diffusion

1/2

relation r « t ' . With the association of t with the

deflection angle (see earlier discussion), one reaches the

conclusion that the larger the deflection angle is, the larger

the width of the distribution (T « 8) . Larger angles, in our

case, may be obtained by simply allowing the system to scatter

to negative angles. The "angle" variable (which is connected
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with the nuclear reaction time) is measured from a reference

angle, 9 , related to the position in angle-space where quasi-

elastic processes {small energy loss) reach their maximum values.

A very nice demonstration of the above picture is seen in fig.

(6) which represents the width of the charge distribution in

the system 40Ar + 232Th.

Many more evidence has accumulated in support

of the above diffusion picture. However, the question of the

relaxation process associated with the energy variable remains

uni?tteled. A simple diffusion picture as the above was found

not to work so well for the E-relaxation. This clearly points

for the need of treating the evolution of several of the

collective variables associated with the E-relaxation process

in a completely non-statistical, coherent fashion .

It is here that the GR,s come into the picture. Within

the DIC model developed by Broglia et al. the GR,s are explicitly

involved in the removal of energy from the radial motion to

intrinsic excitations. A set of coupled classical equation?- of

motion that involves as coordinates, the vector that specifies

the relative position of the two heavy ions, as well as the

usual variables that describe harmonic oscillators representing

the different nodes of collective vibrations, are solved. In order to

guarantee that the energy deposited into the GR,s does not return

to the relative motion, these oscillators are rendered damped.

The damping widths attached to these oscillators represent, on

the average, the fragmentation of the GR due to its coupling to

the non-coherent, statistical, (ph) , degrees of freedom.

What one usually ends up obtaining from such a

model, are average quantities: the energy loss as a function of th<:

impact parameter, the average deflection function, and the
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classical cross-section. In order to smooth out the classical

singularities in the classical cross section (caustics) and to

obtain a measure of the dispersion in energy, Br^glia et al. ,

invoke the zero point motion of the harmonic oscillators which

generates dispersions in measurable quantities, of a purely quantal

nature. This is to be contrasted with the purely statistical

nature of the dispersion that results from a transport (diffusion)

interpretation of DIC *.

One should mention that the Copenhagen model for

DIC does contain some statistical aspects as well. In order to

reproduce the average energy loss, it was found necessary to

involve not only the GRrs but also particle transfer treated as

a diffusion process. This last mechanism was found to be

responsible for as much as 50% of the average energy loss. One

would expect, therefore, that a significant part of the widths

(dispersion) of the disrributions of the observable macroscopic

variables, arises from statistical fluctuations related to the

diffusion of particles.

It seems clear that both quantal and statistical

fluctuations are present in DIC. The quantal effects are mostly

operative in the approach phase of the collision process.

During this stage GR,s may paly a dominant role as "doorways" to

the more complicated p-h configurations. A recent discussion on

unifying both statistical and coherent effects in DIC may be

found in Ref. (13). Actually the importance of GR,s in the

processes involved in DIC has been clearly demonstrated through

the rather extensive TDHF calculations that have been performed

14)
in the last few years
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Though in the discussion we have had so far, we

have considered the isoscalar GR,s; recently several t> íggestions

have been made concerning the possible importance of the isovector

giant resonances in the charge equilibration process. It is

suggested in Rei. 15) that the experimental width of the Z

distribution at fixed mass asymmetry might be related to the

thermal and quantal fluctuations of the axial component of the

isovector El mode associated with the intermediate complex.

The authors of Ref. 15 ) suggest further that the rather small

widths of the Z-distributions observed in asymmetric systems

such as Ar + Au , are predominantly thermal in nature,

whereas the large widths observed for nearly symmetric systems,

86 98
e.g., Kr + Mo , are quantal.

The above suggestions, though not directly

confirmed by experimental finding© point clearly for the possible

role of the giant dipole resonance in the charge equilibration

process in DIC. It should be mentioned, however, that a completely

different interpretation of the charge width can be found in

Ref. 16) where a simple diffusion picture is invoked together

with a proper account of the Pauli blocking effect.

V. CONCLUSIONS

In this talk the role of giant multipole resonances

in heavy ion reactions has been discussed. It is seen that at

low center of mass energies, the GR,s enter into the picture in

the form of polarization effects modifying primarily the real

part of the ion-ion potential. At higher energies the excitation

of the GR,s become possible. Several illustrative examples were



.18.

presented demonstrating the existence of the GR peaks on top of

a rather complicated background. The possible importance of

the GR excitation in deeply inelastic collisions was then

discussed, both in the process of energy dissipation and

equlibration, and in determining the width of the charge dis-

tribution at fixed mass asymmetry.

In conclusion, the giant resonance excitation in

heavy ion reactions should be considered as an integral part of

a procens involving necessarily many collective and intrinsic

degree's of freedom. The interplay between the resulting coherent

and statistical responses of the system is a dominant theme of

present day research in heavy ion physics.
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System

40Ar +

40Ar +

160 +

160 +

208Pb •

238U +

160Gd

148s»

148s»

208Pb

208Pb

238ü

3.77

3.48

4.99

9.45

1.39

2.3

WeV.fm6)

* IO5

x IO5

x IO4

x IO5

x IO7

x IO7

6.239

5.71

1.08

1.892

2.37

2.45

(MeV.fm4)

x 10

x IO3

x IO3

x IO3

x IO5

x 10

TABLE I - Numerical values of the giant resonance polari-

zation potentials for several heavy-ion systems.

These potentials should be used in the description

of heavy ion scattering at sub-barrier energies

fno overlap of the heavy ion densities). A

reasonable value of the minimum radius down to

which the AV's of Eqs. (9) and (10) are valid

is - 1.6 (A1/3 + Ay3)[fin]. The values of AV

p t u w

given above for the 0-induced reactions should

be considered with reservation, since the estimate
AE1 ~~I75 *MeV' f ° r dipole giant resonance

A
excitation energy is really valid for A > 40.
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FIGURE 1 - Energy spectra and angular distribution of

inelastically scattered 12C on 27A£ at

., » 82 MeV. From Ref. (6).
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FIGURE 2 - Typical anergy spectra of inelastically scattered

14N (top) and C (bottom). Also shown are two

angular distributions of N in the reaction
2 0 8Pb( 1 4N, 1 4N). The figures were taken from Ref.(6)
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i n e l a s t i c a l l y scattered 16O on 2 0 8 Pb and i 2 C
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FIGURE 4 - A schematic plot of a typical heavy ion energy

spectrum at intermediate energies. The broad peak

centered at E_ close to the exit channel Coulomb

barrier,corresponds to the DIC component. In the

inset we show a typical spectrum of a light ion

induced reaction.



Figure 5 - Energy spectra and angular distributions of several

nuclear species originating from the reaction

*°Ar + 232Th. From Ref. (8).
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Figure 6 - The width-at-half-maximum of the charge distribution

squared, vs. the cm. angles (i.e. interaction time)

for several systems. From Ref. (8).


