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Avstract . It is shown that the ususl cut-off proordure (< cut-
off paremeter) employed. in the boson representstion of the farmi-
on field operetors of the one-dimensional two-fermion model (TFM)
ie or. incorrect one ss the commutator of the hermitean-conjugate
field operators at the seme apaco-poiht faile to fulfil s certasin
reistionship which wee pointed out iong ago by Jordsn . The com-
plete form of the boson representation (including the gzero-mode)
of a eing}e fermion field end the correct use of the cut-off pa-
repeter < is reviewed following Jordan and generalized to theTfl,
The cut-off persmeter o correspond3 to & bendwidth cut-off and
Joréen's boson representstion is exact only in the limit <— O ,
The additionel zero-mode termrs mske the exact solution of the bsc-
kscettering snd umklepp ecettering problem to be valid only if @
supplementery condition ie imposed on the coupling eonstanta.Using
the present bosonization technique all the inconsistencies of the
TFMU are removed. The one-perticle Green's function end responee
functions of the Tomonsga-Luttinger model (TLM) ere celculated

end found to be identicel with those obteined by direct disgram
esummetion. The energy gesp appeering in the spectrum of the TFK
with beckscattering and umklespp ecettering for certsin veluee of
the coupling constents is shown to be propor.ionsl to the momen-
tum trensfer cut-off ' which has to be kept finite while «
goee to zero. Under such condit’ons the anticommutetion relations
and Jorden's commutator ere invarisnt under the cenonical trene-
formetion on the boson operators thst diagonaliges the Wemilto-
nier. of the TLM The cherge-density response function of the TFM
with backscettering is perturbaticnelly calculsted up to the firet
order. The cut-off X' spplies in the eame way to terms which dif-
fer only by their spin indicee in the expression of thie responee
function. The charge-density response function is also evaluated
et low frequencies for the exectly eoluble TFM with backecsttering
by ueing Jorden'e cut-off procedure,



1. INTRODUCTION.

Although the invertigation of the one-dimensional problem of
suters~ting fermions started long time »go it wes only recently
that the contact was made between theory and experiment with the
“t*«mpta for understanding the unususl properties of the quasi-

~2-dimeneional materialal. This eroused & greet deal of interest
an the meny-fermion :ystem in one dimension. The present paper de-
8la with the one-dim .-sional two-fr.- ... midel (TFM) propssed
BEny years ago by Luuzingerz end . :rs ized Ly Luther ar. Eunry3
to include the buackecattering ir.ic¢ raction and by Emery, ‘.ther and.
Peechel4 to inr~iude the umklepp ecesttering. There is A c.ose ena-
logy between ihies mcdel end the one-dimensions. Ferm: gus rmrode:
(FGM) whose charecteristic features sre briefly recsl!cd “urtrer
below.

The cne-dimensionsl PGM consists of wear!; interacting epin-
half fermiona with wavevector f renging (in the ground-etate)

/
from -+ to +R, b being the Fermi momartum. As the low ex-

.
cited stetes can be built up by euperposing ' partic.e-hole peirs
in.the neighborhood of the tk_ points & bandwidth eut-off R, ie
introduced much emaller than k. , which restricts the eingle-
perticle steteg perticipating in the dynamics of the system within

the renge 2k, eround i, |, LR -k, <pc Tk, sk . A linegpy

)

expression is used for th energy of these states -“—,ﬁ-/‘“’ﬂ('r"”‘p) ’
where 4 is the Fermi level and . is the Fermi velocity , thus
obteaining two linear brenches of the fermion spectrum ss f lies
near +-k; or --R. o The dynsmics of the low excited gtates is

gorerned by two intersction procesees. The fi- e io the forward



scattering prucess that involves # smell momentum trsnsfer .Thie
prace: - excites & particle-hole peir in the neighborhood of f‘hF

The second one is the backward scectering process with momer tum
transfer near *2k_ thet excites & particle-hole pair scross

the Fermi =ze&a. The excitation energies srsocisted with these pro-
cesees are very smell and consequently both procesges pley an
2ssentinl role in the phyrics of the system. If there ie an under-
iying lattice periodicity end the band ir hself. filled there ic one
mcre proccess whose importence can not be neglected, This is the um-
clapp scattering that excitee two particle-hole paire acrosg the
Fermi ses. The momentum trensfer in this pr.cess is neer tz?{pand
the momentum conservatior if ensured by the reciprocal lattice
vector G -4k, ., The :GM is further epecified by allowing for &
momentum transfer cu’-off R which differs from R_ . This cut-off
is imposed -.n the jrocesses with momentum trensfer neer *2k_which
may be interpreted ae coming from phonon-mediated effective intersc-
tion. Thue the momentum transfer cut-off is reminiscent of the Debye
cut-off,

The FOM aes formulated before is not an exectly soluble model.
Various atempts have been made tc get approximete solutione. The
model with backecettering and bandwidth cut-off hes firstly been
treated’ by summing up the most divergent diagreme (parquet spproxi-
-metion) thus lesding to e typicel problem with logerithmic singu-
larities . Thie approach predicts a phase trensition which can not
be eccepted in one dimeneion., The lower order logerithmic corrections
have been teken into account by using .he skeleton gresph techniquo6
nsd the renormalizetion group approach7. Beyond the parqudt spprexi-
sation it was found thet all the singulsrities of the vertex and

responses functions are shifted to gero frequency and tempersture
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The momentua trensfer cut-off was introduced by Chui, Rice and

vgrlna end the Tenorsalization group technique was applied to

this -odol9 a8 well as to the model with umklapp scatteringlo

11

A1l this work wes recently reviewed by Sdlyom The spectrum of

the particle-density excitations was also inveetigat9612

in the
model with backscattering in the limit of weak coupling strengths
when the Fermi eea is not too strongly distorted by intersction
Unlike the FGM with backsecsttering and ulkiapp scattering
the model with forward scettering only is an exactly eoluble model.

Weny years ago Tomonaga13

showed that thoee parte of the Fourier
components of the particle-density operstor which co?raepond to
each of the two brenches of the fermion spectrum eetisfy boson-like
commutetion reletiones in the wesk coupling limit , A mocdel hemil-
tonian can be derived to describe the collective exc%}ationf of the
particle density . This hamiltonisan express itself ae & bi) neer
form of two types of boson operators end can straighiforwerdly be
disgonalized (I@monagp mcdel). The. FGM with forward scattering
was furiher developed by Dzyaloshinsky sand Lerkin'® in e very in-
teresting way . They sssumed that the two lineear branches of tlie
fermion spectrum mey be interpreted as being epproximetely deecri-
bed by two independent fields of fermions with linear spectrum of
the form s L,ﬁ Vhe ) « Here fe is confined to the whole
energy bend which is of the order of RF . In order to get physical
résults for the correlition funotions and momentum dietribution of
the fermions neer * k. s momentum transfer cut-off ie needed. Both
these quentities end the structure of the excitation spectrum were

14,15

derived by means of the Werd identity end a version of the

functionel integral nethodl‘. It ie knowr. thet these methods ere

equivelent to & direct disgrsm summation The firet preciee
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statement of the one-dimensionsl. TF weaa masde by Luttinger2

The Luttinger model consists of two types of ferﬁions whoes energy
levels are tV;f- ‘. The non-interacting ground-state is filled from
~o00 to *hr with fermions of the firet type end from -k, to +oc
with fermions of the second type. It ie argued thet this extension
of the allowable fermion states does not modify the physical results-
st leest in the wesak coupling case - as the newly introduced statec

17 showed that

ere far away from th¢ Fermi points. Mattis and Liebd
this infinite filling of the Fermi sea csuses the Fourier components
of the perticle-density operator to eatisfy rigorously the boson-
like commutation relations . The kinetic pert of the hemiltonien was
shown to be equivelent to a model hamiltonisan which containe only
boeon operatore . The model with forwerd scsttering interection (ex-
preesed a8 8 bilinear form in boson operstore) cen be easily treated
by mesns of the canonicel trensformation method and the resultg turn
out to be those of the Tomonsge model . Thies is why both these modele
will be hereafter referred to se the Tomonegs-Luttinger model (TLM).
However it ie worth remarking that there is 8 difference between
thcse models : whereas in the Tomonaga model the forwerd scettering
procees excites a particle-hole pair neer Tht in the Luttinger model
this excited pair may be placed everywhere . By using the boson sl-

gebdbra the'no-entul'diatribution17’ 18

19

of fermions end the one-per-
ticle Green's function wae: calculsted in the TLM . A momentum
tranefer cut-off was required in such calculatione to get finite

20 . An interes-

2l who ad-

results The TLM wes recently reviewed by Bohr
ting development of this model was attempted by Haldane
ded non-linear terms Ao the feraion dispersion relaeation. The con-
cept of "Luttinger liquid®™ was introduced snd srgued to apply to

8 wide clase of one-dimensionral systems.
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The bSoson algebre of the Pourier components of the paﬁticle-

density operator wag fully exploited when Luther and Peeche122

23

and Mettis infroduced & boson representetion for the fermion

fields operators . Thie representatign wes used to treat the model

3, 24 end umkldpp #cnttering4 . It wae ghown

with backescattering
thet for paxticul;r valueg of the coupling conetante both theege
models are exactly soluble. A gsp is.opened ‘in the epin- end cherge-
density wave rcpectrum ,.respectiveiy , which hae an importent ef-
fect on the infrgred behevior of the correlation functions ., It ie
worth mentioning here that , deapite the formsl resemblance of the
backscattering and umklepp scattering terams in the hamiltonian of
the TFM to the corresponding terms in the FGM , there ere some

important differences between theese models?7~27

. First , en ambi-
guity reveele itself when one sttempte to assign & momentum tranc-
fer to these proceeses in the TFM . Secondly, wherees the momen-
tum transfer involved bty %ﬁbee processes in the FGM ie near “a:R_
there ie no such @ restriction for the momentum trensfer whate-
ver 1t would be , in the TFM .

Although the boson repres:ntation of the fermion ficlde ope-
rotors proved to be of greet use in tresting the one-dimensional TFM
1mere are nevertheless some difficulties in deeling with it . All
these difficulties are related to the cut-off perametef C intro-

Anced by Luther snd Peschel22

The boson representation given bty
luither and Peeche122 is not normsal-ordered fin boeon operstors
#ren normel -ordering is sttempted factors app!yr which contsir di-
vergent summations over an infinite range of waevectors. Luther

and Peache122

"introduced a cut-off parameter o in their boson re-
presentation in such a wey as to simply ensure the convergence ©f

these rum! . It was shown thet the boeon representation i's correct
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only in the limit <x—50 , However this cut-off procedure leads to
some inconsistencies which will be successively sketc..ed hcroze
The one-perticle Green's function and response functione of the
TLM can be celculated by ueing the boson reprecentetion of the
fermion fields operstors and the bosonized hemiltonian. When com-
psred with the same quentities calculsted by the ususl direct die-

[
gram eummationr’? 1°

one csn see that the two cut-bffe (band-
wiéth =n¢ momentum transfer) appearing in these latter expressions
are both repleced by the cut-off « - , Thus o' can be interpre-
ted neither as 8 bendwidth cut-off nor as 2 momentum tranefer cut-
off , but appesre in plsce of both of them. Thie suggests that the
cut-off parameter ot ie & too etrong one e it leaves no room for
the dissociation of the bandwidth cut-off from the momentum trens-
fer cut-off. Another type of difficulty ariees when the backscat-
tering end umklapp scattering are introduced . As ise n]'..l known thee¢
models are exactly soluble for particular values of the coupling
consteante and have & gep in the excitation spectrum of the spin -
and charge-deneity degreess of freedom , respectively . This gep ies
proportionsl to « - and letting o go to zero the gap becomes in-
finite 4 @ physicelly meaninglees result . Instesd of making o<
equal to zero Luther and Emery kept it finite snd interpreted <*
ee ® bendwidth cut-off -, But still Theumenn’’ showed thet in erder
to preeerve the enticommutation relations of the fermion fields
under the ®tanonical ,trensformation on the boson operstors that die-
gonalizee the hemiltonian of the TLM & momsntum trensfer cat-off
% is needed which muet be kept finite while = goes to sero
The momentum tranafer cut-off ' proves to be essentiel to the pre-
19(b) pa  im foet,
the cut-off psrameter 7 was esrlier used by Luther snd hochln

servetion of sum ruléds for the spectral density
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fer deriving the correlation functions of the TLM Yy mesns of

the bosonization technique . However it was pointed out by Theu-
-nnnzg thst the beckscettering hamiltonian (as well es the umxlepp
scattering one) can be diagonslized only if the limiting process is
inverted, that is by letting v ->o wihilg keeping < finite.

J
25 calculated perturbationally the first order contributions

Grest
to the charge~density response function of the TFM with backscsat-
tering by using the Luther and Peschel boson répresentstion . He
found that the expression of thif function does not coincide with
that .corresponding to the FGM (calculated both with bandwidth cut-
off snd with bendwidth end momentum transfcr cut-offe). The diacre-
pancy relstes to the cut-off pasremeter < which does not epply in
the ssme way to the contributions that differ only by their sepin
indices (:.. and ' ). Ae Grest25 correctly pointed out this dis-
crepancy arises from the nature of the parameter o . 88 it if ucged
by Luther e&nd Pesche122 which is not @ true bendwidth cut-off pa-
remeter tut merely & parameter introduced sd-hoc in order to re-
move divergencies.

Recently Heldanell(8) » 26

22, 73

showed that 8 major lack of the
previos toson repregentation ie the ze "o-modes termes associe-
ted with the particie-number nperators. He consistently teken into
eccount these terme and obtain the complete form of the boson re-
precertetion, This boson representstion looks very much the some as

that encountered in the field-theoretieal 1iteratur030

b2 |

sand , 1in

feet , it was derived long time ago by Jordan for ® single field

of fermions with energy levels th in hic sttempt of constructing

s neutrinic theory of.light32

21(a) , 26

The bocson representetion given by

Haldane ie normel-ordered so that there is no need of

the cut-off perametes .« 1n thif expression . However , productrs



of two or more field eperators are to be calculated sad the nermel-
ordering problem erises again. In order to mske finite the sum -

mations over wevevectors appearing in the problems of this type

21(a) , 26

Haldane pointed out an essentially the same cut-off pro-

2

cedure as that given by Luther and Peschel2 aithough the paras-

meter <. has a different interpretation., The boson representstion

21(a) , 26

and the cut-off procedure given by Haldane remove @ll

the aforemen-.ioned inconsistenciee of the TFM . However, there is

3 (and hersafter referred teo os

& quantity pointed out by Jordan
Jordan's commutator) which has been overlooked so far by all thoq,
boson representations (Heldane's included). Owing to the fact that
the Fermi cea of the TFM has &n infinite number of pafticle$ some
overators méy have infinite valugpe when ecting upon the states eof

the system. Jordan31

redefined these operatorg in such e way as
they should be finite end the resulting infinite c-numbers he
controlled by the cut-off perameter oK . As £ result commutator

of the hermitean conjugate fielde at the rsme space-point muset sea-
tisfy & certain relsationehip. Thie Jorden commutetor plays the role
of a supplementary condition which hae tu be satisfied by the boson
repregentation. The importance of Jordan's commutaetor .s directly
connected to the renormelization of the infinitely large density

of particlee. The cut-off procedure given by Luther and Pbochelz2

21(a), 26

and by Heldane do not meke the boeonized fermion fields

to satiefy Jorder.'s commutator. The proper cut-off procodﬁro was
suggested by Jordan31
The eim cf thiz psper ie to gencralize the Jordan theory to
the TFM (which it deecribed by four fermion operators, spin in-
cluded) sné to introduce the proper cut-off procedure , Using

-

Jordan's cut-off procedure it is shown thet the a forementioned
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inconeistencies of the TFM ere @also removed. The-oﬁe-particlo
Green's function and response functione of the TLM are celcu-
lated by*using Jordan‘'s cut-o’f procedure and-found to be identi-
cel with their expressiongj a8 derived by direct diagram summation.
Jordan'‘e cut-off parameter o turns out to correspond to a band-
width sut-off . It is shown that the exact solutione given by Luther

3 and Emery , Luther and Pecchel? are valid only if the

and Emery
gzero-mode terms are sbsent . Thie requiree an additionel condition
imposed on the coupling conetants (g, T 44 =30V respectively).
Under such conditione the diagonalization of the hamiltonisn cen be
done without keeping o« finite . The energy gap eppearing in thnee
modeles is eshown to be proportional to ) (not ot ) having thus
a finite value. Thus we may safely let KX go to zero while keeping
T finite. It follows that the anticommutation relatione of the
fermion operators and the Jordan's commutstor are invarient under
the canonical trane{ornation on the boson operators that diagonseli-
zes the hamiltonisn of the TILM ae it should ve?? + It is worth
resarking here that Sdlyo-28 interproted an argument advanced by
iooz‘('). a8 pointing tc the necessity of keeping finite the cut-
off parameter o( appearing in the expression of the energy gaep .
But 8 closer oxaninntion of the Lee's.ergumsent, as derived froms the
BCS gap equation , lan¢a to the conclusion that if a momentum
trensfer cut-off T is introduced such ase Y & &t the gap be-
comes proportional to this latter cut-off ¥ |, as results a'so
f1rom the present theory ; and therefore Y1 is the cut-off which
hhe to be kapt finite , as it was emphasized before . The charge-
density response fynction of the TFM with backscattering ie per-
wurbationally calculated up to the first order by using the Jordan

cut-off proogdure . It is found that the bandwidth cut-off peremeter
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o epplies in the same way to toth 4g,,, contributions , the
inconsistency pointed out by Grest®? being thereby removed.

Heving introduced the correct form of the Jordan's boson
repregentation snd the cut-off procedure one cen attempt to compare
the results of the TFM with backscettering and umklapp scattering
to the regults corresponding to the FGd . As it ia suggested by
sur resulte there is no major difference between these two modele,
ot least in the overasll behavior and the leading contributions to
 the reeponse functions. This conclusion seems-to be supported by
8 recent uork27- where the general features of the TFM are shown
to belong also <o the FGM , slthough this lstter model is used
‘with en ultraviolet cut-off procedure which differs from the con-

ventional on:, However.Hlldane26

showed that the bosonisation tec-
hnique applied to the FGM with the conventional bandwidth cut-off
leads to & residual coupling between spin-end Fharge-degreea of fre-
edom in contrast to the TFM . This reeidual coupling is expected

to be effective for large values of the coupling constants, There
is one more point worth mentioning when one comperes the resulte

of the TFM with those .of the FGM . This is related to the sca-
ling equatione of the renormelization group approachzs' 3 . Tw
correct uee of the cut-off parameter < presented in this peper
will surely throw light .upon this uneettled problem . This poing

is left to @ forthcoming investigetion.

The paper is organized se follows . The Jordaa's bosen re-
presentation ie reviewed end generslized tv the TFM ifn Sec. II.
Section III. ie devoted to the cslculation of ci.e one-particle
Oreen's ‘unction and response functions of the TLM . The TFM with
backecattering end umklapp rcattering is diagonslized in Sec.IV,
The churge-density response function of the ‘TFM with backscattering
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is perturdbetiensliy eslculated in Sve.¥. The same response func-
tion is evalusted st lew frequsncies for the exactly seluble TFM
with backsoattering alee in See.V, A summary eof the results is
included in 8sec.VI. The peper onds with an Appendix ip which four
objects are intreduced in sueh o way ss to ensure the snticommuts-

tion relations of the four 3ifferent field aperstors.

L3

II. JORDAN'S BOSON REPRESENTATION,

I‘t 0(61 ’ g L N ?':7 IS :4 LMo 45-;_') s M int'gs“ n ‘8
the destruction sperstors of two types of fermions with the p-n-
perties

* : (.2}

L - - -~
A Iy Y TR R FPIRR.FUTE SR PHE S

L being the length of the box the system is corfined to . Undsr

such cisfcumstance .Jox-thn31 proved thet the opsrator
' , ')—\ o(‘ d + (2 3 2 :'
b,L = 4 ng ,i Zh_z J th Lb. )

where R=230',, , ™ integer , setisfies boson-like commutstion

relations :
f _ (2.3)
LL’A‘ L‘”ﬁ.] = Lzu)"i_h‘ob_h,

The proof is as followe. lLet us firstly esuppoes R,k'20 . The ope-

rators Ek and E’LL, may be written ss

by = L oot o LD, ok, o AP
= 1 - 4 4T 9.
R z;; RN AS2 oL;r.k A 4 2>k % 2ok
bt 5 ot , +
R A o P STV VA >_,ok LD R TP
9 4 Thi-g Tag Lq)hj 2~k 9 .

9>0 , 0(_2(k,
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JBor k3R 70 we have

K] + S . +
[l)h. bk']' - 422‘: d‘é? Vd“l‘ b R °'\’O a peteopi T ZJ;(&(L&&Z*"’H*
ERE .

2 orgak 3.9
ST« 55 Lot Lo~
HPRoRR Y LR LA S TR bk Spp!
' A -2

since we noticed thet

:}f\ Mgl g _ lr v ‘i“".r'-l . ZJ &ézc’ka,hsk’_i;—_o -
S ol T R . ’ pid o o< ot
CLgLk g ? ¢t 2<k-R.
Similexiy we hsva for
th b S ' C R I PRy )
L o T TIRY S AW Y B L ey s 49+k-R't
i PRSI ¢ ¢ Lo &,‘z)k
; . - M 4t -
¢ FRPRY N A R T "D YO
PRI E L kR
Fer % » v filowe immedietely
il v - : . o,
PN - o AN LN U

4 <y

for e 3~ ¢ "ing Lhe .roof we have still to consider k20 , k<o,

.1 th:.r ams ee have ‘L"h;, 'U’b." b_pi] end for k>0 we get

e g, -

5 R ', —- ),k _ 5 -

at SRR VbR, 4{,/,, 24 M?-h-uz'-?_ - %’Jo(‘h+"~"?_°(‘i _
\— b4 < -
7 “re 'Z,’xzz =L

04.42_01\4h-+k'~2 + Z—io(li O‘Zh+ll‘z =0
7 .

.~ ‘h
Lot (g = 2254, 277 be the fermion field operator
lig .
whose Fourier components a# obey the snticommutation relationes
; (2.4)
, A + . -
1 /"’a']t’}'=0 J {‘Lﬁ_; a/‘( L= Sfbf"' ,

the wavevector f: being given by /,zzrl_j*m , m integey., We define
the operators °‘éz by the followinz relations :
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L,z Ala Ll (2.5)
S ‘Ek fad +4“Z*“—"> ) Fp= r‘:(ok‘\flﬂm +1% U)
2 z’.,-fl’ N

°(1 = .A'L a+ y 4 "
? ﬁ( R e U uzko(*-/v‘t' ~Rapel)

where ¢ = i‘(/uru:f): zEC‘('nH/Z), m.  integer. One can eassily
see by using BEqe. (2.4) and (2.5) that the operators Ocdifixlﬁl
the conditions (2.,1) . let us introduce the Fourier components

¢(~k) of the particle-density opersior

(R = ST, ot ' . (2.6)
3_): ﬁJafLa'f.+k ) g (.h);%'d/l_d‘,_-sz(h), h)() .
/
With the sid of Bqe. (2.5) we get
(2.7)

(*k‘: ! = 4 =
fl=R) %¢f4ﬁ+p~ %01\47_042-"-7_ = bk )

¢
o - —

where we used agsin the propertyA %}: 42“‘4&-1 Z’“d‘z“él-z =0

for AR>o o It follows from Bqge. (2.3%) esnd (2.7)

¢ + —A . ‘208)

[9“), ¢ter)] = RS LR, ls¢k), ¢t0] =0 , R,&'>0

J

13, 17

thet is the well-known hoson-like commutation relations of

the Fouﬁonpomnts of the fermion-density operator in one dimen-
.eion, ‘l'omonagl:l.5 derived these relstions within the approximetion
of wesk ccupling strengths (when the Fermi ses is not too etrongly
distfoted by interaction) and Mattis and Liobn used 8 "unitarily
inequivalent” perticle-hole representetion to get thea.

We psse now to the Jordan boson representation. Let ue sgsuse
that the field operator Ly'(x) correeponds to & one-dimensionel
meny-fermion system with cyclic boundery conditione on the bdox of
length L , -Lfz <*4L[2 . Throughout this psper the calculs-

tions are performed under the sssumption L -—> oo eo thet the sum
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‘% may be replasced by ('L g.;,b . The single-partictle energy
levels are A being the Fermi velocity and /f=zlt'”~ y n
integer , the wavevector . This system is governed bLy the kinetie

heailtonien

Hymve T b e e p gy = e T pohsg o ,?’ plaga -, (29

where 4, (a%) ie the destruction (creation) operstor of the single-
particle state labeled by the wavevector f . These operators obey
t.t-ne anticommutation relations given by Eqs. (2.4). The .ground -
stete 10> is filled .with psrticles from -~ to k_, k. being the
Fersi momentus , 80 that the ground-state energy is £, 6 = <oll o) =
= (' Ly, kE . Instesd of working with the particle-number
operator %m*"aﬁ_ which hes an infinite value when ecting upon (o>

) |

Jordan ueed the "charge" operstor

- (2.10)
B= 2, ~hq — a Al = aba +5 (aga
ke T peo P F fm"’“fso”‘)
which counte the perticlee with >0  minus the holés with fc0 e
When applied to the ground-stete thie operator yielde Blo>=Gm'Le.l),

Let us introduce also the quantities

Lk LRy

V(*)z 1wt Z h.—“/_L ﬁg(_h) ’ F()‘) - &V(ﬁ) = 2% [:4 2 2 S('hﬁ , (2.11)
k>0 PSS k>0

where ¢(-k) is defined by Eqs. (2.6) . The particle-density oper @

tor can easily be expre.sed as -

o ymy = 012 2k*4;aﬁ+h =504+ B'R +ny [F(*) +;+(,)} .(ﬂn)
ki : 1;&0

In order to control the divergent eum in BEq. (2.12) Jorden intro-

duced the cut-off paremster « >o_ by

W iy ~ 3,: (b Ghmioa )" @ (- ity (2.13)
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and found
o (S
ka(wuzh)] (n-inty < ';) R a;‘:{/L - L“I‘Z:, 1;; (aﬁa; -1) + (2.1:)
] o
*kvl) "‘% Ly 3 - L
NERD I ¢ e ;. /(fk“r[," (hTheLl g kx“;rtzﬁ";,_.
l‘;k)o /- k>, ’

which for smal® X can be written as

, , (2.15)
,f!y(x-c«/z)fg»(x-wh) . aé-— + 'R+ (2x ! [F(*) + {‘+-.",] + Dehy,
- X

Similariy we define

, , o (2.16)
W w iy = lwa i v'-“’z)[\gua+&°‘iz)}f
oL-5 o
and have
+ .. A4 f N .
Woridghrady) = & = LB GO Fo e FT] e &Y, o
80 that
{Lk)’f(u)‘w{y.)] Qm)m{[g’aﬁ—“*w) Wr- ey - L'ju‘.v-w'*/'z)[}g’”* "‘/zf)]+l{:‘(?.18)
£ (o} -
2:00'R n"".}r'(’f-" * F+""")}

e and so far overlcoked

This commutatnor was pointed ocut by Jorden

by the theory of the TFM . It represents an addit,unel condition

which has to be satisfied by the boson representation of the fermion

field. Let us note 8 useful reletion which cean be derived from Eqe.

(¢.14) and (2,15) :

L. \ F[‘K»‘“‘ ’]‘3"2‘ ) = L2 ‘ 4/‘4/b 1201(1 Fh z'::;aH:‘BﬂLO(“"(z.lg)
oo P

Using the a‘n.icomtatorﬁly W, ylyy - 5'(x-yy.  end Eqs, (2.15) end

(2.18) we remark that (%Lj' stands for 5 (0. .

One cen easily verify that the conditions
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g orait L o
R e R) = L

* . . ik ;
Yo .y, ptek) =2 ﬁu*) ,Llyw,B] =l  (2.20)

sre satiefied if ly(» ie of the fora
Wty LUk ’ (2,21)
ly()‘) = ‘Xlﬁ) L. £
where X{) should be chosen in such s way as
[ (2.22)
AW, ehks] = [, ¢ Erl =0, [R0, B = Alw
We used here the fact that B commutee with ¢{ k) and ¢"/-k). Let

us introduce ‘the unitary operstor S which is defined by

-4 -4 ) - -A'iil_";\ R _ L'ZI'[L:q)(, 2.2
5“‘,’..5 =t S“;LS = ‘jﬁzn‘/;‘, SB’(*)S'=1 Win Ty 5 ‘j’ﬁ‘%)( »

One can easily see that

15, 50k)) = s, g*rr) =0 (2.24)
and
%es“l ) ;‘)A"Tl a;a/" — 2-_:' d,d;‘ == 6-1. (2525)
f‘ mhh [P Thit
I
that is
- - |
s8] = -3 Is«j@g A
Similsrly we have '
, —1 - + 5_‘ ( + \ et " B 3 ’
SHS = Vg 7 {La}aﬁ+VF IR Apdp- -axl ZJ At (2.26:
pr2uc ho<oamic S
2 e H Y S samlty (e v
Re oy \ ' O‘-?,, s I
b LTS
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{s,n,] = - L' (Rl § = ot V.S (R+1)) . (2.26)

Loeking at Bqe. (2.22) and (2.25) we find that X(*) must be of
the foim

Ky= ST, (R, A, (2.27)

where A (B, x) hes to be further specified. Moreover

- - , ~av Chx .
CAWS = S A By = £ T T g i,
whence
c2w 7

olB,x) W+ P (84,0

that ie
) (G Bx

Noib, ) = KO % ) (2.28)

K() being & undetermined function of % . In order to find K(x)
we investigate the equation of motion for the fefmion field
. Wy (VI
(W, ho) = -“’ci Yoy = -4V, é;&) &P (2.29)

+ * Viey  VIx)
Moy oV LV ) 4 )
A A(m) e\-é'; [.c. & L "’J = DA, H.) ¢ 2 7

| VT VL
ety [ &V ETP0RY

—+

Using Bq. (2.26) we get straightforwerdly

0, Mo Qs 2xLty 7 (-112) Kol® )

where wo used the commutetor (R, M.l -0 , Teking into sccoun- the
reletion

' 2,
Tet-m), Ho] = vy kgh) (2.30)
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we get similarly

C Ve W Craviy gvu)]
- H s '

C 2 [P TR - &
. ;oJ‘ Ve

Introducing these results into EQq.(2.29) we obtain the equation
—‘* i h( ( )") = an‘\ P)“}Z,) %o(B, )‘)

whoee solution is

et LA (B-1h) x

, 2.31
rxokgjf\> = £ £ ) ( 3 )

£ being a constent. Therefore K%)= 2 JL‘ 88 on¢ can see by
comparing kqs. (2.28) and “(2.51) . Bringing together the results
given by Egs. (2.11).(2.21) , (2.27) end (2.31) we obtain the °

Jorden's boson representation San

YW =2$ %[mu(e-m)q uA_zuL‘ZbJ * ‘s”ﬂﬂ«r{uu b ;HX" +32)
k>0

It etill remeias to check up whether the anticommutation relations
i 4 20

and the Jordan commutator given by Eq. (2.18) are sstiafied by
thie boson representation. In order to do this we follow the Jordan
pres._ription (2.13) end (2.16) of introducing the cut-off parsmeter
K + When using thie cut-off procedure and the boson represents-
tion (2.32) for calculeting products of two fermion fields we en-
counter sugs of the type
P(3) e 2x Z:‘ gt cRZ / Rez >0, ko . (2.34)

For L3/ « 1 (comdition fulfilled for eny fixed Z end L.~>oo)
thie sum mgy be approzimated by

fEy = —tm GRLYZ) + Ly ) (2.95)



and this appreximapien will s weed threughest thie pager. Iy

streightferwerd eslculation wo get for ‘¥
{\y“’r‘s’(‘l)'[" <& 5“‘*’»{“‘ ct .(Q-'Mb*'a)] u'..‘:-zil.‘z.k‘( Fad -‘“)g (-h% (2.96)

. tﬂ,[zuL"pr\ l‘t‘:hk ‘b’) S(""%i St -{Eigy &+ %"‘['(’7)]} -0

and
W)= Eéﬁ,.,,(_uac‘(%-m)ﬂ(*%nu‘z. AL *m]‘,ﬂ L:‘;:;L*t "SH.)}L\QO (2.97)

due to the lest exponential factor which is equal to sero. Using
‘the cut-off procedure given by Bqs. (2.13) and (2.16) we obtain

(O’ Wiz b o530 Bothyinegl) espak £ 8-ty ol « (2.98)
(DI U(Q‘ EH-\II:. -Ak‘é. dlh.\ (—-h) \ 111.{ a L"Z\ g k&‘_‘“ -olhr_._ ih\p.nb).

‘?[n ko o

9('"] fu‘- £(x-9)]

end

Wy iptne o)) = [ asp{-iox CH{®1230-9)) Ao -2t el *] (2.39)

S 4 “11 + Ay
l)o -

l‘ﬁr.iln o TJ h” P ‘LHL < ba‘h“h) e ""')1 U\’\.\V a2,
iy —a £ (. £y
Ha ”"\ ¢ (- n)} }

eo that
19 6y, W = ef Ly “1{”1’-‘8(* )l uhzwLM‘Z L (M 2R oty u}(z .40)

ke
( ?) g"i\J J—i—— VLI YC S 9)
d->0 0( + (7‘."3)1 i

. nyr,L_,_tL-t 5, L (n

k>o

1] -
It follows «<-._L.* 4 £, being @ constent with |i=1 . Simile-

rly we have from /2.38)



<

. +
WO 0ty L 12 g frattpsty 0.

. - - ' (2.41)
"F["”".E“* kS S op e D et o) -
L +'B ¢+ (21)1[F'(r)+F (r)] +TA S &L* +(21)‘TF(7~)+F (r)]}
+ O ,
where :...: msens the normal ordering of the boson operators;
from Bq. (2.79) we get
g(l‘fle‘h)[lg{’“‘ ""‘}Z)]-‘.: zli;\ - C‘B -(2l-)‘[F(*)+ F+(*)] + (2.42)

T
+ r*:it'B +(2.!51{_F(>t)+f—_+(7~)]} M Oty .

Thees expressions agree with théu given by Eqs. (2.15) and (2.17)
and one can easily see that the Jorden commutator (2.18) is ob-
teined by this bosonizetion technique. We notice that the factor
l’f”(‘"”‘) eppearing in these cslculations may be consider as
@ sheorthand notetidn for its first-order power expension sy «k/,

In this way the limit «—o may be safely trensposed with the sum-
mation over R . This done, the velidity of the Jordsn's boson
representstion (2.32) end the cut-off prescription (2.1%) snd
(2.16) are completely estsblished . We should get now the form
of the hamiltonien H' given by Bq. (2,9) in- the doson repregen-
tation. By straightforwad calculation we have

4 S”*L‘g(r idly )J Vi Lat O ,&—A ¢ /u L% "ﬁz;_:t?* (“/»‘* 1) = (2.43)

Alm P - n PG ),

&d\ ;‘>o /'/l' ,.,Qo

snd compering with
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14 ~ LN &,
S R o M 5 lﬁ'&4/4¢‘1> (2.44)

/‘dY\[‘Jj*"“"/",‘j ‘\5.)‘%&/1; = Loa R oaga

we get
<~ ‘ﬂ\ ) 5" 1—7“’( . ' A ( (2 45)
L aa aa, =~ = / o .
F)v phn f; /L/f" lFoLL-’—c)a\/*u*(wZ)JLg(x 2 -
W
From Eq. (2.41) we obtain
'L '
\A;tu(»a Ux@/v‘ 2.+ R TN B+124€4L~k‘§(~k\ > ‘/ (2.46)
~ lld\ h)o :
and 1ntroduc1ng 1t into Bq. (2.45) we get
o L 44/‘ A ¥ 1/1 R T g+(-h3()1(~le) ¢ T(e) (2.47)
1;3 /L o i
whence
= LS + _ i1, 2 -4 .. .
4 = J rZ ‘/tﬂ’\d/‘_ \/ .Z f =T, ./F P, 4 20/, VF ) Jg ._.E-\)gy,_ Q) . (2.48)
/‘ R0

One can see that Eqs. (2.26) and (2.29) ere setiefied by this bogo-
nized form of fﬁo . From Eqe. (243) , (2.44) , (2.46) anc (2.48)

one obtains elso

* A .-
e L B L e
)A"“\{"ﬂ‘#‘)} Sk ID{/“;; APe f ° )

which egrees with Eq. (2.19), , end

Scnt Mkw 'r.t.s)‘*al/l)c‘ dmtf x-w\’T’ b, FIRERE N | VA-{H ‘4 C'(&)
r ‘o .

Lit o

This latter reletion cen be obteined also by ueing directly the

bosgon representetion of the fermion fielde, It ie notewerthy thet
the expectation velue of the product _ W lr- “h) Yir-Cey ) given
by Eq. (2.41) on the ground-stste is andl LA S ,
whence one mey interpret - as » bandwidth cut-off.

#e pass now to the generslizetion of the Jorden's boscn
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representetion to the set of four fermion operstors sppeesring in
the theory of the TFM ,

P , (2.49)
W, =f'l._xa f yal i - : .

Jas()) u% J/-s )ad,u_(,lqd’l Slj ﬁalé;f/érssl } J}“g}s; 3/‘5JA’ =

where

1=41 /L:zm']‘m_ , m integer end s=*1 is the"

index . The hemiltonian of this system is given by

{1

gpin

o=V E K Z_) /( 4 d -V i 2t 4 (2050)
o =7 F “gs fks s ipa, “V.T pa, ot =
5}0 , 4 S pco /'5 ks Sﬁ)/j; ¥y
v 2 fq/u" gt 2 }(a;“’ys_,) Ve ZJ'ﬁ”zﬁs"aﬁs SV TS L“Q,S"lr,s— I
5/, s/fLD SI,Lo ‘S,*?D

end the Fermi 8sea it filled with particles of the first type (.1
from |

AR
foeoo to /.:ru,; end with particles cf the second type /-2
from o= R to /\:100 . The "charge” opereators ere
. (?.51)
a4 T L4
E -;—:‘ 4,5 ’,'5 ‘,'\“iqu’s#) s _) =2, 4 Lo

- NCYTIR:/ A

11;5 21,5 2/:5 1450 )
fpre n 0 e e e
which commute with i, . One cen e®sily see thst the operstors

475 end 3,,, defined iay

ol

S 4. '{5(, + sy (2.52) ’
19s™ 7\ Ag-il's T At a, -1/ '
[AdNN CRRNRS ] gl ) s T '_"LANI-L"; + 0(1ﬁ+vt'5> ) .
o, L/t .
295 = X1 Qq st — a 4\ at
=N T-ga s 19-l's L
z 7 ? 7 f,s- = *‘ﬁw"—"ﬁ /,-I:L5,,
! 4+ -
19¢ = A a,._ I a0
T\ mq-ls T Ty —uLs [= -
vz TR s P’»;, W i Bapent)
1 [ At
254 LA ity — A it * ’
S 2¢-1L's 2-9 -k S) - Ay . ;
2 Ly E \(—L(‘»P‘/\f(.lL_ls "@2%?;}[,"5)
. )

where g - zriC!) =2 il o™ tip) , » integer esatisfy the
conditions (2.1) , so thet the Fourier components of the partiecle-

density operator
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iy = by = 5, ab, q - TRy, o

L 3 2‘, ‘rs ‘)}ns LS ZiJ 1?5 Lk_zs (2053)
Golev- el e “‘4; t1es 12 sv= i 2o, 2
T Les - ’1 r / i 25 .quh-’z‘ ) h‘>o i

]

obey t::e Loeon-iike commutetion reletions

| | (2.54)
R R I R “43 R {f’ij,,f.r K)8aie kst =0, B >0

where the uppér (iower) eign correlponda to 3"&" A2y o.In 8ddi-

Vi

tion sny commutes with any Bés snd

stf [N
(2.5%)

« ) .
Co, f s ) ;
PR F{o) Ve k. S RY o R "“191 =0

Likewise as before we introduce the unitery operstors >J£ L s T

(O

Sjque", gj"; L Upials vl e e (2.56)
with the proportiee
€y Bag ,J =S4y 05, ‘,~8457 D+ r- 519565 8,0,/ (2.57)
Sys )5; - H, 1ol ‘LB&S il )
end S One can straightforwsrdly check

45)5j5’( k-)] {Sds gds/(i—k) ) O
up that sll the properties of the field operetors listed below

g ;"k,. (2. 58)
\ ,[3" [ 7 = . - «
L&}é’ ) '53"('”').3 TP i L%s”‘): 33 ool = 2o K1t

Sicaredny 1 Saaw
G5 535()‘) 535 = 3155, '3 * ‘5’35(") + (I~Saa,b“$s,) %,3,51 %) I

{ {r 1= gav 2 - .
L‘st ) lHo) = FaA Ve In H’a;(r) ) \tg 65(1-), Wys' 0] = Baa'%y“‘ 1y
B Gy ) - o

CWhin (o] = L :
thjs(f))"fas(*)J' = 2L Bas T Wﬂqu(” fF;sr")]
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- ' kg
vhere gs(r>= a2 2 e, (TkY are eatisfied by the boson re-
Lo ")(J:’
presentation
l'\)“;q,_ L,{IS:‘; 4.{-0 JR(IW/ ,'/)’\ _ "4L'_‘T(h” _ L Fiky (2.59)
e Y A eaﬁ ’ J"'}L&Z”L’bo"k Sasfﬂﬂﬂﬂzntgzkh Sﬂﬁ-(“)?))

provided $hgt the Jorden's prescription ie used for introducing
the cutesff parameter o =

R .'.‘) L te ‘ka"‘—— "-‘Q/ N ; \‘+ o ( -
A e e T T B DA *oa Akl 1\&;) R T

}

. 4 , ; e . '
Ly 4 (,A,“A LKA{'(X TAcw’z) L‘-gés(n‘?luljol‘{’

The coefficiente €y, @re chosen in such s way as to esatisfy the
re etions
TR , | (2.61)
I gs HERRETR K1 ‘C’é‘ﬂbd’“ﬁ =0, [4s) +104'5").

Their conetruction ie given in Appendix”

. The Jorden boson re-
preeentation (2.59) is normal-ordered in the boson operatore end
it ie complete since it coneistently includea the modee correspon-
ding to k- .- (through the 835 operators)., The bosorn representstion
(2.59) hes also been de:ived by Haldane?1l(®), 26 by means of an
entirely different technique. However Haldane's spproach does not

include Jordan's commutetor snd the preciss fors of the cut-off
21(a), 26

22

procedure (2.60) ies not specified in Heldane The present

boson repressntation differe from the usual one by having not
explicitly introduced the cut-off persmeter o Instead of this,
the repredentation (2.99) 1is used together vith Jordan's prescrip-
tion (2,60) snd one may essily see that the prerent cut-off proce-
dure ie¢ more specific tharn the ueusl one in which only the factor
cC Ry appeers. The hamiltonien H given by (2.50) be-

<ome® in the dboson representstion
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~H-OT—TlC|V 2;_, 87— -4 "
35 ds .+ w L VF L
45,‘)9

§;51?fll‘~§z’.s{q:k) (2.62)

& (8, H].o the additional sero-mode contribution sppearing
In { hes ne notable effect on the energy epectrum of H_ which
can be described either in termg of one: fermion excitations or in

torms of ¢ -oxeitniona”

Finally, let ue investigste the effect of thé cenonicel trane-
formation
Qislvp) — ?35(7") = Gy e, (Thy + mmet. (= (2.6%)
' s i )5’3‘5 (7 ey ,’
where }-1 for 2-2 end T-. for 4= 1 Vs (k) —w (k) = 4
w83 g STk

the enticommutation relations of the field operstors and on the

y *' >0 being a momentum transfer cut-off ,on

Jordan's commutstor . We shell prove that these relations are pre-
served by such a trensformstion provided thet « --o while V' is
hold finite . This invarisnce was px'oncl29 for the ususl cut-off
pl:ouduu introduced by iLuther snd P.cchclzz and it ies shown here
that it holds also for the present Jordan'e preacription of intro-
ducing the cut-off paremster o{ . By streightforwerd calculation
ve got

+ ~
(:’.7(& \ T0h) - - rEY AN Y
‘,%5 p)l Yslyrons- L w3 1"L‘Bas()‘““_|)Jny7‘,{uTl:1 (Bjg~sln)a!

2 oI AT LA LR L U TR PYAN

ol h.»h AL - ot'He /)S)}s(:k)l
- ! Ty tonf I PRy

g (a5 1wy LS R P S

wl n”b- stB) S )’y )

- s, Tibyaoth) Tamy-di! ,
‘”I‘[‘T‘L'E‘h sl (TR ) ey ‘}’w .

>
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-t i b G Ry ralk)2 3¢ k;; S&N) ~
@ "z.L/u. v_'w(p,)'g* _ L ! e—~ (3 ]
AC g K SN

: N R Fabklr-y o o S g -
-@ﬁ'._{—zit'z_,'ﬂ;k N S . 3 thJ.

koo

ceafzam ey 0 g [T s,)m,)}

: ]

-d
. +
: 7T . N o - [ | N .. T -
'_‘,:s(‘t--‘b‘,[ ‘5" R ly,h’\;‘ NES S 635 Cr ""J"7'hi_-“L'(Bas*','1)i]-
N 0z 1-1 —i ’ xdb\afd'l/; FoAEs i "
{uhgj h-v,l!,(;g e ENEYINE

Tilxe s kh 1%y g,

orp {-me E_)_;u?y,’:,n) (4 s Y NED)P

= . taks, ARy -/
')‘hr--zﬁ G2k Vg (le (2 *"w/l__ < J 'l) 33517‘“)]

' ol 7 Erky vd b iy --o
e ok wjiky (oF 1FBTEER g 4R %/\ $3s (Fe)]

o ) o o-rk [ Fok(x g)s wl Fip(an o
“h y ! 'u‘,,"z,) k< [L_ < 3 9 l]}’
de

B g g e 4]

whence

g

","'./ (' v. i u» TAW ! o Ty et i T“

Wae by W] b (0w By iro ] i I ki (€ “’)g},(;é}

L hse )
, o - B 77T P ) ]
ol 2y Wl ARay 4 —_— * ]
’1"[ " 3;\ s _ )ga,(nﬂ 1,"&_1-.1_-;12;, 'V iR (‘.‘.: ‘ich‘a) 3 ("_"'V"]

, el S Faikx Fihy wl 7
"’}b‘_ﬂl" ’;>'°‘ r WS( k) (4 — 2 )!J—s (T.)‘])[—_‘J__~ S, Lqu Td 35'($—b)

T ag)t oD wlyfr-yt



and

[YGS Yy, J :'z' Frp I“L"(BJS-//z).L]n,,,[i{'otg: v,m:““ + /,“]

’“}L:zicxzdw(tz"'“* - o - b
{ 5 (i) gjs(uz)](’rh[h«’_,'iz,v‘lt)e ‘; (’k)]'ﬂ)..[zic’w
Z.w,/b)g*“’"

s Js('rrz] - {x/.L [2«1_'1[5151-//1)1] o r.z.LaLZ_)V(h_)lT A + hh)]-

v Qo £2'x.L_ w[ o
i l?_’ &) < 3’1‘5“‘3]"['—[ wiy Z,V(h)_e“"‘"

.>_> bl o7 7 Y S1s mj“i‘{‘ﬁtl"’
)] ng/+ ”7}

Ly oL?_>: e [ =

= QUWA /_‘ 2 _ / ~o ; w‘-
™ S 2L Z#L. 8 =y . ~ 4 '\l ES
b et 2
- 0
= - *I‘,‘rN ~
b 835 . L[{ﬂ/x} 4 ng/x)]
Similerly one cen vee that %L?as(r)J %s(‘o)} — , 80 that we

may conclude that all the aforementioned commutation relations ere
inveriant under the transformation (2.63) provided that =« - o
while y is kept finite . It is worth remerking that this conclu-
sion hulds also for & more general canonicel transformation , of
the type we dealing with in Sec. IV, which effects the "chergc”

operators too .

III. CORRELATION FUNCTIONS OF THE TLM.

The TLM ie deecribed by the hemiltonien H-H, + f,

4~ 91/. - '3|s( UN SRS fzs(")_f(s 0)7 +31L ZJ [gu ()5, () ¢lie) ¢ (- h)]i n

>o

v g (1) 1§50 wﬂ 2
43,,@»35’; 6. §z5 v f’,,( +3ML,2 {g,,( R) ¢ _ (-R)+ gzs(“)j’z s{p)]
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where H, is given by Bg. (2.50) and L 4is put equeal te wait .
Using the canonical transformation

e (3.2)
$y(zh = LG g G ], G~ ElgpGo g, (¢ W]

and the bosonised form (2.62) ef H  the hamiltonian (3.1) becomes
H= er;:;?B;, + He + He | (3.9)

M, =( t gy + 2wy, ¥ Cryo (- + —
57 Bt et LS OO0 gl ] Guaguy T g it + o5t )

_ S
= - ¥ g RIS a +
fom g et 00 A ens w0 0] Humgu) Zhsnnm v o'me ).
o]

One can see that gzero-mode term TV, 52; 8;; does not affect ‘the
S

epectrum of Hsr . By using the Mettie-Lieb canonical trsneforme-

tionsn “ft(gg,r) , whose generators are
- ’ (3.40)
SS = I ‘E;; k. (fg“z)[&(-k)_fa.(k) “S’f(m g: (—b_)] )
Scr =2 E) k' ’fv_(k.) [W(—h)h‘i(l) - T:Ik) g—"’(_»] ) (3.4b)

©eo(k) being real functions ef K., the s -and ¢ -operators

become <,
e > - .
53(: R) = € guf7ky e s . Ve(k) 83 (F R + Welk) g% (zry (3.5)
~ . <
T (vy = ¢ R = Volb) 5y(Te) + w‘_(h)O"_;_ (v8y
with /S/'-“L),Mk Sf/"(h) '\ W$Io— (h) - ML (gf/r[h-) ’ zr; L

for ;-2 end j-2 for j-i , snd the hemiltonian H given

by Eq. (3.3) can be broug’ t into the disgonsl form (up to, e conr-
tent)
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H={*(S«)eq‘u,)nw-ssm;.( S0y = W, zJ By, + (3.6)
+ar u r§1+(~‘z)f/'k) + _fa, (’)fl(‘.‘U + 25U r..g_" +(‘h)' br)y Fr*,nq;.(b)]

kY
" {ug51 ( - feay
g™ [VB ML) "970!:3"1-)3 ‘[‘“*“(ﬂqtﬁuﬂl
)

provided thest -

+, -
tamh 2, (2) = -ilf_ﬁi__ la -+ , (3.7)
% b ) tathh'VF s u ha:‘jé'ﬁ"p*‘?wt?u{ )

the upper (lower) sign corresponding to ¢{-) index. A wesk L -
deperndence is sssumed for the coupling conetants 3@, L y of the

101!3,_“_«., [PH’- where Y>0 is a smsll parameter of the mo-

sentus cut~off . For 3., , &.V,. .we heve

8 e, L

(3.8)

Keg X ¥ _ ; . °
7= Y (3"?321)7""4‘ ) Lee= "r—*(gwtﬁu,)/h ’ ;;-““‘ (37a‘-tazl§/urv P

The non-interscting one-partiale Green's function ie given by
G () =~ it T Ly (v domivy 4] i (4 . -9
is ' Is L. ‘S’!s[_‘ SOy, 0) Ve
whery the Joidan’s cut-off procedupe hes been used ; by raguit) ) oy
is the non-interseting ground-qtate of the of the hemiltonisn M,
(Rq. (2. 50)) and the opsratgrs are written in the Heisenberg pic-
ture. By atmightfornrd ealculat,ion we gat

‘ lb;b"l’*' fle(\t)] (3-10)

2
G° {"/t) = — - e e e =’
ir . i"‘-vp"‘" + dekf b)

a8 G (x4 = ~icall Lyt,[»wawh R/ ty;, =) 0] 12> = G (x4

"For the interacting systes the exsct ground-state o~ "l‘(' EYARRIN
, of the hemiltonien H (Bq.(3.1)) .p?nr's in ¢

33.(3’.9! . B using the Jordan's bogon nprountition{ (2.59)) s

. well a8 Egs. (2,57)., (2.61) , (3.2) snd {3.67 we 'pt tor £50
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-«

G.S(X,‘bo) -—d :," ‘;_‘(HF ik)()\- VF{~+ L "“}}"}\&:{hl;}w‘)g(r) + (,.11)

£ f‘[_u,_q‘{,) ral + L _g‘:_ 03Py i)+ Y "";1 { {_q'{»-u,l) .+v~'i,] t

wt po_ \
3 W, f[‘ rrucl)-rrlr' ‘; re.L't\l-ﬂ.i) -rrj T

- {‘V: ¢[4(x+ur4) f,.]l,

where the function {(1) is given by Eq. (2.34) end the kL -depun-
dence of i, (Bgs. (3.8)) has cxpliciuy been uaod'. Making use

of the fact thet the limit « ->c  should be teken while - is
kept finite we may write in Bq. (3.11) for emall values of the

coupling constants

_t[—; {;-qu'_{) *"‘L} = (,E—"U'“;,el':"i_] + % ‘.Y_ﬂ' x-yg 1) '+r1 —,‘:[—A(ﬁ—u;"*)*a“(.(’.l?)

For t <o the Green's function ie given by Eq.(3.11) where <t -—>-«
and Y—-y , so that , making use of the expsneion (2.35) of the

function {(z) we obtein
Gty . L 2epdrelvt + ittt {["‘“t wir)] fr-vg b +.‘-uﬂi
1s " _

(8.13)
il {b\-—u"’fhd(tﬂ[}-ﬂ(-ﬂd-(tﬂ\’h ‘E"“g* rir@] [au gt ey k”L
'st‘:z["“” v *""‘““*'“g*“*"“ﬂk SF"YJ—UVH’A.-(&IJ[}eur-{- -n-(t)'l} *
. (,1‘& [3“1- W (aq”-ﬁ-aqj_)-o- W Lg,u 3"1\—‘);
where V(' Fagu (t) end
.
- & B (3.14)
=, ‘ LI sl" ~
i')’:" E'WS‘,Lr “_—,_“‘"‘ = (al-u tg., )Z/SL/?Z ;/FL .
In the limit of Jwu—0 ~we get
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G, i) a OO (x,t) . doveteied) ]
{Bovgt ese] Laoo vyl (3.15)

-, —ol -
'irl[;wgh vedfaragietol) ’{ vl amub s O a4 (,.uf]} d":

Similerly we obtain G, (W1 - € ~x, t) . One can see that the
Green’a function (3.15) oaléulated by mesns of Jordan's boson re-
presentation and the correct cut-off procedure reproduces the re-
sults odbtained by direct diagram .u-.tionl" 15 in which the two
cut-offs paremters << and ¢ appear. The paremster o may be
associated to & bdandwidth cut-off while T corresponds to a momen-
tum trensfer cut-off. The same is true for the charge - and spin-den-
sity response functione as well as for the singlet - and triplet-
superconductor response functions . The celculetion of these func-
tions is qarried out in the same wsy as for the one-particle Green's
function . We confine ourselves to give the results of thie calcule-

tion &

oA~ + . . -
Nout) = - w <ol T Yy [nviarayyy 41 4, [rvinany, 4] ), (ats),,0] g, Tty of 05 =
= =% G, ) - [—;\,-t)% v [»-U,L ey} [n—v‘L- 3| } &.’

PV Dt s i) [rru e e

LN + : :
Rot)e 20 <01 Ty Lo Wl 4] Y| Trvsstile 4] ¢t Fearsy, T Y Lratry 017

.« 7 L 2,7 o=
{ ¢t [l—v,h-«‘r'(u] [xrypd-veru )]& Bg

'{Y""[»-v,{ r(’r'k{)} [x +ud-0y(y ):(%‘ Re
)

=W Gy (M) G, (~x,-¢)
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- (3.16)
- [xrn‘ul&_)}z‘-@] Lo, ft Y, o) Lf; [.",Llﬂ’lz’ o1}

= G‘,(hﬁ 63, (1) %\-",l[x-uﬁ ~ «'y-'le)][x+u‘%~r’v~'l+)‘lzl-ﬁ! .

. il \'rtz:r -u.t s t'rl({)j[ X+ U.—'!' -~ "J{H]} '3..)

S (b —ax AT Yo, [vt—\v‘-u)}z, Hy

~
o)—

() = -2 <ol T : .
AL 3 wet T b *‘U/;,t] % .[hmwlz'&] 'ffq ["‘*(“J/J_; o] l:)'th(

-(.;u.)’/?‘ °] I:S -

e _
= 200, ) SNRY) { A h Yt rorthy] ["f' Vet ""r'lé)]} p3.

-x#"[x—u"(* O] [xryr -l (] }\_‘5"\

where (b= Ly,qu(d) and P, = [92“:311),/"FFU;,0~ . Similer reeults
are obteined for the k. -responee function. We may conclude that
Jorden's boson representation and the correct cut-off procedure
allow ue to obtsin the ssme expressions of the correletion functi-
ons of the TLM a8 those obteined by direct diogrol‘aumtion }4 12
In these expressions the cut-off parameter o corresponde to 8
bendwidth cut-off while the cut-off pearcmeter y- correspondc to the

momentum tranafer cut-off,

IV, BACKSCATTERING AND UMKLAP> SCATTERING HAMILTONIAN.

The backecettering hemiltonisn of the JFM ie

>

Hb" H- 9e ?;—;['Su(-l)f“f‘) +;,‘,mg,ﬁ/..)] ‘9«1.&-\# ho(m + L*(»)] ; (4.10)
1

+
L‘¢(,‘) = Lx:.‘ (f) %~| (*) Wl.-l(’) hy?_’ (ﬁ) ) (‘.lb)
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where b is given by Bq. (3.1) and k,‘_(;) hes been introduced by
Luther and ery3 in order to simulate the beckscattering interac-
tion in the FGM, where & fermion nesr *h. (fermion of the firet
type in the TFM) is scettered near . (fermion of the second type
in the TFM) snd conversely, the spin being not affected by thies
intersction process. On the snalogy with the FGM we eset the point
f=c in the TFM st Tl an¢ measure the nuaber of particles and
the energy in the FGM relstive to * kR  and M (the chemical po-
tentisl) , respectively. Therefore the non-interscting ground-estate
'>>  of the hamiltonian H, (Bq. (2.50)) ie filled with fermions
of the firet type from J to 4f=o and with fermions of the
second type froa f-e to /4 = so- e It follows that eds[a)ao

e L o> = 0

¥We extend the (g,-) -representetion given by Bq. (5.2) to eall

o
the operators which enter into the boson repreeentstion (2.59) by

defining ® M
;s '
- i B . - »'l 3 "
Bds &3 ¢ 4 33") ) 5,3;”(54;:»3_,) . -ct - (4.2)
. ”$ -y, Cag -:(‘2| ,
Byr= L (8- 8 SR
o= ' J_’); Syq = 50
(M (534 34-, / C' C"( v Gag - (1‘1

fhe kimetic hemiltonien N given by Bq. (2.62) becomes in the

(4.3)

H =y wl @ S {ed 1oy, - e ) '
R O R R AT

}
1

where the upper (lower) sign corresponde to 4 {2) . Turning beck
to the field operstors we mey write

Homte Bk s e (g T ) S

LR .

. - ° f'-a,l e'pe M-

-V, L ~t ¢ —'V;:Zj ‘(d" ) _ B ot B ~ df,
ek s T S g 0 ety 2 ey ).
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ec that we have introduced this way the field operstore {, ., _

aiﬂa.ﬂ, a"ﬁ' « One can raeily verify thet the operetore ¢€,(...
TLIS T P,C fog ot m snd [, giver by Bq. (4.4) poesess all

he p-eperties licted 1 Sec. II, among which

‘. BJS,,S. e . _\ (4.5)
| 10 e L ST Syee= Mo Tamg, (Ree . T 45)

Therefore the (¢ v) -~transformation is ® cenonicel one and the bo-

son repregentetion (2.59) ie walid in this representation providing

the spin index 5 in Eq. (2.59) is replaced by . or. . The he-

miltonien H, , given by Eqe. (4.1e) and (4.3) reads in t - (5o -

representeation
o= Hie s Hie 2o Sl oo+ 00 ] (4.68)
H«g -V ?B.U ffy,,‘ SRyt 'ﬁ4)§<_‘+(~l)g’(—k) *51'“”& ‘..)] +
_ ¢ (4.6D)
¥ (e, + Qus é’;[&(‘ﬂglm r ¢t gt r---)] |
Heo = m 3R / e
to e %—- Sar + 'al",—a(,‘ B 7&/;’ "_V_J\q»l.‘}‘_')qil‘_r) s 0‘?"(”' ( .
h)o i T !.)J 1
+ (ﬁm--qh Zer(+x ¥ (k) + 0“’"{#!. O’*Lb
S~ St (4.68)
and Jz
"L e ,_”' - Vo
5 "R ety g e Dy *m[~:..m_(e,,4/g..)7 (4.7)
ot 5 kY Jler . ) ,"\
BRG] s aw e e T
| - DY -
° = g4 ) tRA - -
't ur%: e e rp (o 2! e lies |
Rye : 2

’raki.n'g the projection of hetn on l¢>"ﬂ'7 - (see Appendix)the
product “;G, can be replaced by | , so thet h, (+) depends only

on « -~degrees of freedom which ere completely decoupled from the
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. ¢ =-degrees of freedom.
lat ue focus our sttention on the hamiltonian H,r ¥given by
Eq. (4.6c). We define the canonical treneforsation (%) oy !lc)
with S, given by Bq. (3.4b) amd T. . — 7. given w”

T T STe T =T flvs -
Bgr <" Bpee = nly T Gyt T e s [Te )z 0. (48)

The hamiltonien Hi~ becomes

H..- = O (So) Omp 1T i O3 =T exp (-46) = 2, 2} e;r + (4.9)

_ +, +,
b 20 vy &{a‘, eiciil) r TN ln]

Yc} =[_VF szth( Fu~74c)] e [{”—J-l (j“" Qes - j"’)A]L

ond
: - (4.10)
{ML\ Q_t,sr’: M..jl__,,r ?:i-_ )
g‘w—?y} t iy
‘where & weak "~ -dependence it assumed for 3. g, , of the form

£ » v+ being the emell, positive persmeter of the momentus
transfer cut-off. Ueing Eqs. (2.50) and (2.62) we get at once
o= T vy T g o 2 Pt v T R lela, o) ~ (4.11)

—Vy P }L‘r':”_a,,o -V S5 h{qt‘h'_r.%.~{) .

pee hr>o

One cen eagily verify that the trensformation (4.8) ie e canonical
one. In perticular we have

~ ~ ~ oy ~ _ ~ el -1 ~ ~ (‘.12)
Saredrgdr - Qd'_ +1 J ga‘"leSa,r = H"_ 3 Ve (GJO‘T‘ !/Iz) .

The effect of this transformation on he(x) 18

<1
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Lr(ﬂ;c* .. S . r. .
o 2e lrsu- fw{-m(e,,»e,,),l] ""‘{4"‘(8..-*'/:)1-] . (4.13)

et [ (6 -1py 0], ""T—"TZ:‘ e
>0
2\ PR WLy ' ‘
1oL p ("omr)o?'-*_’l*‘*ﬂ“‘} ST e Yerg)
. >So i Tl ’
. n’(h‘g—.ﬁ-h} et (Vo w,

‘(V,+w,.)¢-,+tf:)] .
)‘3(&)] . qﬁ[—??LE‘W,(VrfU )]
B>o v )
where V, = cel, o amd v, - auh g, ~ M ere the perameters

given by Bgs. (5.5) . For smsll veluss.of T we may teke the li-
o —ik
mit v~ °c in the sume of the type ;’i.;\hlm‘n T (Verwe) ot ,

etc. , in Bq. (4.13) . Setting Vai(v.¥w,) = 1 we obtein the
Luther-Emsry condition’
S
HFe” . - 2 (4.14)
2L 4 4) Vr- . J We = ~ _l_‘;;- ) Mz&r =~ ‘35__ [}

-

80 that

- (4.15)
- 4 8!

Up = L Lv,; t 428 (3.“,_7“)3 )

The lest exponentisl factor in Bq. (4.1%) yields

- S L - ~ ~rikf, sy N7
“TV,Y 8[7%_, K (Ve W,)] = 4,\"[3::%:- + 7]4’;"._[4?5{,5" J= T-L-‘-_- d

>e

It follows thet in the limit of emell ¥ , T\,(f-) becomes

“\:r(’_) _ (4.16)

i AL N LT N (TS SRR

where Jorden's boson representstion hss been used to recover the
field operators W), ») in Bq. (4.13) . As [g _+g,,. H,]= o
we may take B+, =0 .4in Bq. (4.16). The full backscet~

tering hamiltonien becomes



- 37 -

o< M K

S T

(4.17)

U ¢ ‘\‘\M"rr_)“\ Ny b 3
. - 201 A1t } * L“Vur(’“) Woel2) o \-(Lo_()k) L}'tu—!"’)] .

where ’L{*S‘ and K}:},Q‘ are given by Eqs. (4.,6b) end (4.11) ,ree-
pectively. The hamiltonien hq. differs from thet disgonalized

by Luther and B-ery3 by the tera W(ZVF—UO.) 2 85" which co-
mes from the complete form (2.62) (nro-lodeacontribution included)
of the bosonized kimstic hemiltonian. The effect of this term is
not triviel and will be investigated elsewhere ., In order to get
the Luther-Emery solution we impose here the additionel condition
AV = U, which leade to

( \ : (4.18)
k%’w”‘?uj/zp/p = SL‘, (34'/‘521,*“311_);/16:/,; = = %

Under thie additlonsl condition +, is disgonelized by *ue cenoni-

cal tremsformation ¢xi(R.y LR, - i— L (”;,,.L ";,;- Ty A fﬁ,) ’
'{: T o - T e g - .
MLQP— G_g,l_/”‘fu,.[\ = ?LL/\F;_""\VFF , (‘4 19)

~o

o= Op oo Cay = 2o Ay (Wya,, - et e)

Xod p) = ”?“(jd) ["Vrz/.‘ 1 /S:-]I/Z', b, =T, 8u}/

T

One can see that the gap [ which sppesrs in the spectrum of
this model st f=e (thet is at poti in the FGM) ir no lon-
ger proportional to ' ae it ie in Ref. 3, but it is proportionsl
to ' , which hes @ finite value . The peremster . of the band-
width cut-off 1ntrod\;e.od in the present spproach does not esppesr

in the disgopslisetion of H, et sll ., Thie peremster helpe us
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only tp make the products of two field operatore finite ; ae indi-
cates the prescription (2.60) . Therefore, by using ‘the present cut-
off procedure which allows .two cut-off paremeters X and

may sefely take the limit « -, , @8 it is required by the exeacot
boson representation, while v is kept finite in the diagonslisa-
tion of the backscattering hsmiltonien,

The ssme is true for the umklapp 8cattering hlllilt.o:m!lu4
which is given by

: ‘46 } 6
Hu - HE + 293 S‘*I\ [iqg(y{) e )k-f- l«; {7y el KJ ) (4.20)

\ 4 .
Lg()‘,\ = L‘r 4,(,*! %j (™) L{’;_/{%) Lh{{r) ,

where (- 44, is & reciprocal lsttice vector of the FOM. By using

the (¢.o) -representstion and the cenonicsl tx;ln'forutica CHp (53).

23p (T) , with S, given by Eq. (3.58) and't, . > defined
by )
o "ﬁ 7 7 r~ . Te ‘Tf //ﬁ
By =e" By p S GBy, 967 50 - Sas o L7, §4(% o)) =0 , (4.21)
we get similarly I,ﬁ) -~ ey q«f,(» Lylf'l)g) provided that
bl Qe =1y 3 .
148 'Zs‘f g = - [ —— = - -s—_

Tyt Jup Ui

The heamiltonian H, becomes

ﬁ":: Hg*l[q.

}

A
r‘ = i “ ’ * "6" . . -y 1
‘e ”*3 MRS ?ASJ* LY‘,‘*) Wag®) o 4 (fz‘“\)q/tg(f.) 0'6 "J )
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g - “’*"F“’s),{—eas + G ;‘Z;lc‘:,; "/g*”gﬁ%-;}‘ (2 0y ~1) ~ (4.22)

..Uz_‘ * _ <
$ jco q'frql;ig l?ﬁ%o I'.(q‘;y Ty - 1)

- Y -t
b= s ]
"

In order to get the solution given by Emery , Luther and Pbacbol‘
we put 2ve= v, , that is

. (4.23)
(%"'/ +3“L)/1‘;Vp = (D“‘f 51,L hg‘lll)/lln/p - 5‘

<.

The hamiltonisn H, can then be disgonaligzed by the canonical trene-
forsation .y (£ L. = 53 (a # - + \
. ~ ) pLeg) v By %— ﬁ( 4;.-%3":./‘;%; Yoy, o 4 G~ S )
Mléﬁ: (:‘BS/T[VFV_fL H

."’ r .
He = enelkg) Hg oy ) = %—-— JMsth) @iy o T A2y Y, "%J] :

R L I S e LS

L\g = z’qlﬂ,, /m«

and egain the gap &, ie proportionel-to v' . The gap appears at
P56, = T2k which corresponds to A= F n in the FaM .
We note that the simultaneous disgonelization of }, end |

requires, from Bqse. (4.18) and (4.23) , Iy =9, =o '}'m"'Jz,,-g/,,' A

V. CHARGE-TENSITY RESPONSE FUNCTION OF THE TFM WITH BACSCAT-
TERING.

It is well known that (‘n-ut.25 calculeted perturbetionally ‘the



sereth and first order contributions to the charge-density reaponee
function of the TF¥ with backecattering by using the boson repre-
sentetion end cut-off procedure introduced by Luther and Poachc122
and found that the cut-off parsmeter * does not apply in the

same way to the 5, &nd <7,, terms. Obviously this result can net
be accepted ad the two terms differ only by their epin indices,and
consequently, these two contributions should be the came . We per-
_form here Grest‘'s cslculation by using the Jordan bosonizetion tec-
hnique snd find thet the aforementioned inconsistency does not lon-
ger gubsist. The charge-density response function of the TFK with
bacecattering is given by

H(t‘{) - H;(‘H{) + N'L(‘lw'l) (5’1)

N ipd) e — o O T VAN RTINS w hio 0y Y., (o 0) [33

A . .,.' .
Mafrd) = — <o T q/“ l"{-) W,,‘T‘/{) L}"‘:, {o,9) Wz_,(a,o) !‘b\.> J

where 1:3 is the exéict ground-state of the TFM with bacscattering
defined by the hamiltonian given by Bgs. (4.1s,b). The calculstion
is carried out up to the first order snd the hamiltonian ie written
in the (¢,v) -pepresentation. The seroth order contribution to

Nyt is-straightforwardly obtained by using the boeon re-
presentation (2.59) snd the cut-off procedurs (2.60) . The result
ie

th, (5.2)

NSOt = - (wyt %[»-44 FO] [ x vyt —iait)] }-
)

where ol(tyx o agALt) sand 7,,. have been taken equal to

gzero (these terms are included in the free hemiltonian). One cen

see thet Bq. (5.2) cen be obtained from Mix %) given by Eqs. (9.16)
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by setting all the coupling conetante zero. The first order contri-

butions to N i,,.' 8re given by those terms of the hamiltonian that

contain only . ; -operators., For calculating these contributions
we use the commutators of the ., -operatore with the field opera-
tors and then we replace the ‘. ‘... operators by their bYoson re-

LS

presentations. Loing so we get

. " (5.3)

P L

where 7, -2,, ~,, and the L -dependence of the .« end .,
. R g

has efplicitly been introduced through the factor ¢ -y, "

The first non-vanieshing contribution to . i, {; t» sQ@es from the

firetrorder th@®rdticel perturbation c¢elculation &and irf given solely

by the *',, -term of the hamiltonian (Eq. (4.1b)). By ueing the
bosen representetion this contribution if eBeily obtained :

| S S ‘(j.L"u.r/\'* </.J ;.‘OU, {i’_\f vk _(,(47)1[*‘%{' *“A‘”‘«ﬂ- (5.4)
j\v»».v%ﬂbiu —ﬁsH-*J]{x,\Y,u(+<,)+r&Nytnlﬁ‘x

She Fourier. transform of the functien ~N(x, i) has the expression

)
IJ'W.)‘) - ‘. ‘DA‘\{\‘)"‘;’)‘. [\ _ ?,V‘ 9{!13(-{'- QM‘d"‘f ' (5-5)
e F - 2i v, “\ "‘F*)‘\, g
in the limit ~.j, . . One can see that the cut-off paramete.
o« mspplies in }ha—ea-e way to bogh 3, and i in contrast

6 the result reported by Grest2’® 28

. We should vemark here that
the same result could be obtainegd nucubeasier by :&: ing the Fourier
representation of the fermion field operators amd the Jdrden'e

cut-eft procedure (2,60).
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Finally we should like to comment on the reeponee function

24(b)

N, on b calculated by Gutfreund snd Klemm for the exsctly

goluble TFM with beckecattering by uering the Luther and Peschel bo-
eonization technique. We calculste here the ssme responre function
by meking use of the Jorden cut-off procedure., .After somewhst leng-

thy slgebra we get M vt o 4 & Tiaty NS It

/

| - . 11
N.g:/‘»'t) o , \(::x 'u'r:@ (3] r({)J i). w4 r*.’{):}fj IL (5.6)

w o . - , N
ﬁ\)-._.;,+ i ﬁ“)l‘:;m»up‘-.odlﬂ ‘i_\’"g‘ *“‘f“'ﬁ{*“@{#r({)} ‘2

S-S

e .
‘&(\V”jy_) Lo ;gt,-nv*tf)/l_l[f-fugL\n r({)/zlj )

where ?F QLIIITVF + 3//9 4, :'ng,, n~ .3‘,7.,’__ ’ CJHL'E@ ’ \o&[@ A
(Bee Eqsn (4.18)) and '\/SL —_— ‘;\/’T *Ila‘)"/f"ﬂl‘#?lﬂ)‘l la{-“?l (231.__?“,)11. Thi. czp"-
ssion ir identicel to that reported by Gutfreund end Klenu(b) pro-

vided .that ¥ 1is replaced by < . The spin degrees of freedom are

included in ] 4 ¢i whose lesding term is

> e oy TR B (%.7)

o4 !,/ )y ~z INg s r)

b > X et

N . ené .Acr[}l\ being given by Eqs. (4.19). The Fourier trsnsfora
of MN,i»t) for emell velues of «w ie N (w) °L~':'/7'eu{zh) (rwﬁ)d-a'

which egrees with the result reported by Gutfreund and Klo-z“b)

except for the factors in the front of (r J;""? and provided thet
v ig replaced by « . Similsr resulte cen be obtained for the
other response functions of the exactly soluble TFM with backsoate

tering by useing Jordan's cut-off procedure.



VI. SUMMARY.

The boson representation and cut-off procedure introduced by
Jordan’® * gor deccribing @ single fremion field in one dimencion
have been genereslized to the feur fermion operatore of the one-
dimensionsl TFM. It has been shown that the hermitean-conjugete
fermicn fields at the same space-point sstisfy a certain relstieme
ehip (Jordsn's commutator) that has béen.overlooked so far by the
theory of the TFM. In order to satisfy the Jordsn commutater the
cut-off parameter < should be used in s well-defined way (Jorden's
cut-off procedure) that differs from that introduced by Luther and

Pbacholzz ond.ﬂoldanZI(')’ 26

Ity has been shown that the exsct
solutione of the TFM with backscsttering as well as with umklepp
scettering are velid only if the zero-mode terms ere ebeent in the
kinetic hamiltonien. Thie requires @ further condition on the coup-
iing conetents ( FuF :ggnﬂroepectivoly). It has been ehown
that sl} the inconsietenciee reportes for the previous cut-off pro-
cedure are removed when one worke with the Jordsn techniqie « The
one-perticle Green’'s function snd reeponse functions of the TIM
heve been calculated end found to coincide with those obteined by
direet disgram symmation .,The gep parsmeters appesting in the ex-
sctly ®seluble TFM with beckscettering and umklapp scattering are
proportional to V' , y pfiqg the psrameter of the momentum cut-
off. It follows thet one may take «--o (Jorddn's boson represen-
tetion being exact only in thie limit ) end keep y finite in dia-
gonalizing these hemiltoniane. Uncer exactly the same conditione

the enticommutetion relations and Jordan's commutator are preser-.

ved by the canonicel trensformstion on the boson ooerstore that
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disgenaliszea the TLN. The cherge-density respense function of the
T with backecattsring has perturbetionslly been cslculeted up
to the first order. It has been found that the cut-off parameter
ol applies in the ssms way to both 9 end g, terme of this
function. The same response funetion has been calculated for the
exactly soluble TFM with backscattering at low frequenciee. There
ie no major difference in the in‘froro‘ behaviour of thie function,
except for Y replacing <« . The parameter o« corresponde to the

bandwidth cut-off while Y is & momentum tranefer cut-off.

APPENDIX.

let us consider four typee of fermions labeled by(gb),}’ = L3y
80 that (1,+1) - + y (~1)-2 » (2n-3 8nd .-y , each with the
energy levels B integer. The ground-state (55 of thie syetem is
filled with particles from f',--oo to f=- (or any other
constent , not neceesarily the same for all particles ; in this ‘
case the definition of , below should be ck{n,fed correspondingly).

Let ue define the "charge” operstors

Lo 2.0 mr o4 2 (ru"—f)

‘ pse K pes A

J

A

where 4 ie the ocecupstion number of the ﬁ -level with . -type
perticles , m; -0y . All the b, yield zero when acting upon the
ground-state , ..!> -0 , We coneider the stutes [}, |, by S
charactericed by epecified eigenvalues . - (integers) of the

"charge” operstors and define the operstors -, by
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where + - 1,5,  and¢ b_-o. It is essily to check that the

commutetion relatione (2.61) ere satirf;ed by the operators C‘.‘—fas
cefined on the epace cpenned by the etatee i5,50,4, > .+ In Sec.IV

we introduced the operators -, and Cpe DY Cf:= c:_, v Gop =Cyy 8

w' <, 8nd Do e TaEmg the superpccition
‘ Cogrgpdy Ll Pew) Fhyinmn] o
. Fopmy nry
where o, @are real peremeters one can easily verify the relstions
o P
t. . 14 19 (A‘f
. N S PSS . ; LI
(e 12 TN T R >F/\°,/_ ) ‘?’ﬁ\"11 e o ‘?’?,y' cld‘rjza-'f)fx‘ir’—& L‘f)f
‘T

'€
IBTR!

+
!, st g .
(ﬂ‘(l ’C"O(Ir‘f/\t‘( Cw('ur!f.r'p?-: L ‘F)T’f ,
1 ' T e

which sre the eddatl nel condition¢ imposed on C’as in order to die-

gonulize the hemiltcnian with beckscattering and umklepp acat.t.eringS5

expreseion is used for the energy- of these states .5.,_:/0.4-[’,:(17‘{4}(’:;
where .« ie the Fermi level &nd vF,” is the Permi velocity , thus
obteining two linesr brenches of the fermion spectrum as b lies
neer i« or £, . The dyngmice of the low excited states is

governed by two intersction processes. The firet one ie the forwerd
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[
= L
'“ ) BTN

- )
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thet S defined in thie way has the same effect as that of S'

given by Eqs. (2.18) provided that the sum 2. 18
- ]qu' 0‘}15 Wl ‘
replaced by the integral LG Sf.-‘# < @’ . It is noteworthy
4
that this definition of 5 sllowe ue to introduce resl powere
of this operstor, oM u -real, by simply changing ~. and@ -

in Y. Ond u"l .

The conditions (2.61) are-satisfied oy the Dirsc matvices ae
well »8 by operstorial representations of the coefficiente C‘Js
in terms of the “charge" operators S (mee Ref, %0 and Ref.1l1,
p.240). However in order to disgorslize the Luther-Emery -hepil-
tonisn es well as the umklapp scattering hamiltonisn the coef-
ficients .c,  ere further-eubjected to adai*icnel condition

(see Sec. IV) which are satiafied neither by the Lire~ matrices

v

now by these operstorisl representations,

Aes regards the real powers of the operatore , see Ref.34.
-

One cean esosily verify that tiie enticommutstion relatione and

the Jorden commutstor sre @leo preserved by this extended trans-
formation wh%ch affects the "charge” operators By, o and the ope-
ratore Sas,o‘ as well. The proof of this st.u-enntﬂ is idanticel
with thet given st the end of Sec, II and requirze the limit «-o.

to .bo taken firstly while ™ ie kept finite,



