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ABSTRACT 

Non-ljcal order parameters are constructed to test confinement, decon-
finement nd broken charge symmetry phases of lattice gauge theories with 
matter tields. The relation of these classical fields to the structure of 
the quantum theory is analyzed. In the case of the 2(2) Higgs model tie ex-
plicitely construct a charged sector in the free-charge phase. The confine-
ment-sceening phase turns out to be split into two phases from the stand­
point of non-local fields. This phase transition can be interpreted as the 
breaking of the global gauge symmetry. 

АННОТАЦИЯ 

Введены нелокальные поля для различия между эамыкачцей, неэамыкагацей фа­
зами и фазой нарушенной зарядовой симметрии в калибровочных теориях с матери­
альными полями на решетке. Проанализирована связь этих классических полей со 
структурой квантовой теории. В случае хиггсовской Z(2) модели дано явное по­
строение заряженного сектора в фазе незамкнутого заряда. Фаза с экранирован­
ным замыканием оказывается разделенной на две фазы с точки зрения нелокальных 
полей. Соответствугадай фазовый переход может Выть интерпретирован как наруше­
ние глобальной калибровочной симметрии* 

KIVONAT 

Nemlokális rendparamétereket konstruáltunk a bezáró, szabad és a töltés 
szimmetria sértS fázisok megkülönböztetésére rács mértékelméletekben. Meg­
vizsgáltuk ezen klasszikus térmennyiségek kapcsolatát a kvantumelmélettel. 
A Z(2) Higgs modell esetén explicit konstrukciót adtunk a szabad fázis töl­
tött szektorára. A bezáró-Higgs fázist egy csak a nemlokálls rendparaméter­
rel érzékelhető fázisátalakulás osztja ketté, amelyet a globális gauge szim­
metria sérüléseként interpretáltunk. 
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I. INTRODUCTION 

The problem of confinement in lattice gauge theories with natter fields 
can be studied on two levels: 

1/ Searching for a classical quantity which serves as an order para­
meter in the classical statistical system. 

2/ Pinding out a representation of the algebra of gauge invariant quan­
tum fields am operators acting on a Hllbert space X such that the vectors 
in X have a non-trivial charge (compared to that of the vacuum). Naturally, 
the suitability of an order parameter can be decided only on the 2 n level. 
Order parameters to distinguish between confining« deconflning and Higgs 
phases were proposed by Mack and Meyer [1] and by Bricmont and Fröhlich [2]. 
An approach on the 2n level was presented by Fredenhagen and Marcu in the 
case of the Z(2) Higgs model [3]. They analyzed the possibility of charged 
representations in the C*-algebraic framework and constructed a translation 
covariant charged sector of the model. 

In this paper we report on an other approach which makes the connection 
between the two levels to be more transparent. This is a generalization of 
the construction in which one builds the Hilbert space directly from classi­
cal fields. This method was applied to lattice gauge theories at first by 
Osterwalder and Seiler [4]. Its generalization lies in the use of non-local 
fields besides the local ones. That the -local fields may have importance 
was argued in Ref. [5]. Here I wish to g. - a brief account of the exact re­
sults obtained in the Z(2) Higgs model. The more detailed discussion includ­
ing the proofs will be published elsewhere. 

II. NON-LOCAL FIELDS 

if one wants to write a field down which is invariant under the local 
but not under the global gauge transformations one necessarily meets with 
non-locality. A prototype of such a field is Dirac's gauge invariant elec­
tron field in continuum QCD [6]» 

W i n v(x°,x) - V(x°,x)exp{ifd3xA"1(x-x)<JivA(x°/x)} . (1) 
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An other example is the semi-infinite string in lattice gauge theories: 

° x n V = °x Uxx U x x *•• U x x '•• , X n ~ V ] ! = 1 ' " « l * n l - - - <2> x x xxj x x x 2
 x

n
x n + l n n J n — n 

o(U) denotes the matter (gauge) field residing on sites (links). The non-lo­
cality of (1) and (2) amounts to much more than that these fields merely 
have infinite support in spacetime. Their basic properties can be summarized 
rather in the following two observations: 

I. The fields (1) and (2) considered as functions of the gauge configu­
rations A and U respectively are nowhere continuous. I.e. even if A and U 
are allowed to vary only in arbitrary far away regions of spacetime the 
values of (1) and (2) can suffer drastic changes. 

II. If somebody wanted to put expressions (1) or (2) Into the (infinite 
volume) functional integral he would find a serious difficulty: These func-
tic.ials are defined only on a zero-measure set of configurations. Actually 
the exponent of (1) exists only if A vanishes faster then 1/r at spacelike 
infinity. Or transforming it to be an 0(4) invariant condition: (1) exists 
for those A's which have finite Euclidean action. 

№ 2 xP < 
uv 

Similarly (2) exists only for U's which are equal to unity or. all but a 
finite set of links. 

Property I is a consequence of Gauss' law. It is the sensitivity of the 
field for the values of U of far-away regions what makes it possible to mea­
sure the charge by an observer being outside any large sphere. So, despite 
being a mathematical flaw, property I is physically acceptable. On the con­
trary property II at first glance seems to be disastrous for the non-local 
fields. Fortunately, the resolution of this problem Is possible and we will 
describe it for purely bosonic theories. 

Let (P denote a configuration which is a pair (o,U) made of the matter 
and gauge configuations on an infinite lattice. We have to give up the usual 
expectation that the infinite volume statistical average p of a classical 
quantity f (q>) should be written in the form 

p(f) = fdu(cp)f(<p) (3) 

with some Lebesgue measure du on the configurations space С Such a measure 
naturally exists if f is local. However if f is non-local only the finite 
volume averages are integrals: 

P.(f) = I c. d<p=—= f(<p) , (4) 
Л i-1 i J i Zh 'Л 
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where 

С д « (• e C l « » * 1 outside of the finite VOIUM* A) 

and dm is the a priori Measure on С The * 's (i - 1,...,N) are translation 
invariant Minima of the action. (In certain Models there is a continuous 
family of Minima and the SUM on i in (4) Must be replaced by an Integral.) 
The choice of the numbers c. fixes the boundary condition. The thermodynami-
cal limit of (4) 

p(f) - limp.(f) (5) 
A~> A 

may well exist even if i, cannot be written as a functional integral (3). 
For local f, of course, (5) reduces to (3). Therefore the (in reality evi­
dent) definition (4), (5) gives an extension of the functional integral for­
mula to non-local fields. Let us observe that for the calculation of (5) by 
means of (4) we have to know f(«) only for those »'s which equal to one of 
the Ф 's on all sites and links except a finite set of them. So property II 
doesn't arise as a problem in this way. 

The real question now is whether the definition (5) is a non-trivial 
extension of (3) to include non-local charged fields. The answer depends 
very much on the dynamics, i.e. on the special form of the action. The field 
of type (2) of course has no relevance in the thermodynamical limit because 
it is associated with an infinitely long string of electric flux which has 
infinite energy even in a deconfining phase. In a charged field favoured by 
the dynamics the string must be smeared over in an appropriate way. We can 
prove that such a field really exist in the free-charge phase (in the termi­
nology of Fradkin and Shenker [7]) of the Z(2) Higgs model. 

III. RESULTS IN THE 3-DIMENSIONAL ZÍ2) HIGGS MODEL 

In this case both о and U take their values in the set {1, -1). The ac­
tion is 

8. ' -a I U,o(Jt) - 0 I UOp) . (6) 
л гел * рел 

He have now two translation invariant minima (N » 2 in (4))t <p • (0 ,U ) • 
-2 2 2 

= (1/1) and Ф « (o ,U ) - (-1,1). Л in (6) is chosen to be an open box in 
the 3-dimensional cubic lattice, i.e. it doesn't contain its boundary ЭЛ. Al­
though ЭЛПЛ = 0, for the calculation of S. we need the values of (0,U) on ЭЛ -1 -2 too, what is frozen to be Ф or Ф . in order to have a statistical average 
p. invariant under the charge (• global gauge) transformation 
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f » Cf Cf(o.U) - f(-o.U) (7) 

we set c. = c_ = •= in (4). 
The algebra В of gauge invariant non-local fields can be obtained from 

the algebra spanned by the qauqe invariant functionals (Q is a finite set of 
sites, F is bounded) 

fn(o.U) = П о F(U) (8) 
u x6Q x 

by taking series of the form 

which are norm-convergent with respect to the norm 

|| f И = sup if(o,U)| (9) 
(o,u)e a 

& * is the restricted configuration space on which the bounded functions of 
£> are defined, 

С = [{a,U)(z Clo is arbitrary but \—~ < "-*} 
9, l 

(We have no motivation to introduce non-localities in a.) With the norm (9) 
and the usual complex conjugation Ä turns out to be a commutative C*-algebra. 
For a fixed pair (a,ß) of coupling constants let us denote by Л the largest 
sub-C*-algebra of 3b for which the thermodynamical limit (5) exists and is 
translation invariant. An other subalgebra Л, o c of £> consisting of conti­
nuous functionals on С can be shown to be isomorphic to the usual C #-al-
gebra of local fields, the latter being the norm closure of the algebra of 
finitely supported fields on С The existence of the thermodynamical limit 
for local quantities, what can be proven e.g. by using HKS inequalities, 
shows that Л is always contained in Л. For f € A p(f) has the form 
(3) but for general f 6 Jt p is 'only' a continuous linear functional which 
i.i positive (p(f#f) ä О), has norm 1 (p(l) - 1) and if S A is given by (G) it 
satisfies reflection positivity: If f f Л + then p(e(f)f) 2 0. Here в is the 
reflection to the x° = 0 plane combined with complex conjugation and 

Л+ = (f e Л!Suppf is in the x° > О half space} 

After this preparation we can summarize our results in the following 
three theorems. 
Theorem It In region 1 of Fig. 1, i.e. for sufficiently small a and 0, if a 
field f к Ъ has charge -1, Cf = -f then p(9(f)f) = o. 
Theorem 2: In region II, i.e. for sufficiently large a, there exists an 
f 3 Л + such that 
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tanhß 
Fig. 

The phase diagram of the Z(2) Higgs model and the regions I, II and 
III of Cluster expansions. Solid lines: thermodynamic: transitions. 
Dashed line: the simplest possible place of the "non-thermodynami-

eal" transition. 

(i) Cf s = -f s 

(ii) p(e(f8)ax(fs)) is an analytic function of e ~ 2 a and e~ 2 0 

(iii) lim[p(e(fs)anx(fs)) - o(6(fs))p(f8)] - В 2 > О 

where x is any lattice vector with x ä 0 and a^ is the translation by x. 
This theorem states that P is not a clustering state on Л, therefore it can 
not be a pure state. Indeed, p = j(p + p"), where o" are defined as the 
thermodynamical limit of {A) with c, = 1, c, » 0 and c. « 0, c, = 1, respec-

+ - + s — s + — 
tively. p j p because p (f ) = -p (f ) = В f1 0. Since p and p are not 
symmetric under C, instead p (Cf) = p"(f), we see that in region II a pure 
state P_„_„ on A,, which occurs in the decomposition of p into pure states, 
can not be symmetric under С (charge symmetry breaking in p). 
Theorem 3t In region III the field f 8 appearing in Theorem 2 satisfies the 
following boundst there exist positive numbers K., K,» m., m, such that 

Kje -n^lxl < p(e(f8)ax(f8)) < к 2е i 
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Furthermore the correlation function p|9(f8)a lfs)) is analytic in a and 
-2P x 

e 
These theorems were proven by using cluster expansion technique (see e.g. 
[81). 

The non-local charged field f s taking part in Theorem 2 and 3 has the 
form 

ffj H a x(f s) = oxQ*(U) , (10) 

where Q^(U) is the value of the gauge transformation Q 8(U) at x which trans­
forms the configuration U into a specific gauge. This gauge is characterized 
by a mapping S from the set of connected closed curves С of the dual lattice 
to the set of connected surfaces made from dual plaquettes. The mapping S is 
such that the boundary 3S(C) of S(C) is just C. The gauge configuration V 
satisfying the gauge condition and being gauge equivalent to U is this: 

n 6l* e S(C ) 
V f = П (-1) x . СП) 

i=l 
I* denotes the plaguette dual to i and the set {C.,,...,C } of connected 
closed curves (C. is disconnected from C, if i i j) consists exactly of 
those links which are dual to the flipped plaquettes, where U(3p) = -1. The 
latter set of plaquettes is finite because (o,U) € C*. With the aid of (11) 
we can write that 

f* = o f П U.)( П V.) , (12) 
x x *ej K leö K 

where J is a semi-infinite string starting from the point x. In reality (12) 
is independent of the special choice of J. 

In the course of proving the above theorems we made a restriction on 
the mapping S, namely that the surface |S(C)| of S(C) must be controlled by 
the perimeter |c| of С More precisely there exists a number A. such that 

|S(C)| i \\C\2 for all C. (13) 

Now we turn to the problem of what the above theorems imply for the 
quantized system. To quantize the theory we follow the strategy of Ref. [4]. 
The Hilbert space % is the norm closure of the factor space A+/}C with re­
spect to the norm 

• f - f +>Г е А + Л К —*• ||*f|| = ( Ф £ , » £ ) 1 / 2 - [o(e(f)f)]1/2 , 

where К = ff б & +lp{e{f)f) = 0). The positive definite transfer matrix T on 
Ж is defined by f» f • Ф т £ where T « a,2 Q 0.. This f satisfies t S 1 too. 
Hence «j is always a ground state« ТФ. « Ф,. 
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In view of this Hubert space construction the content of Theorem 1 is 
that in region I it is Impossible to have a vector of 3t what possesses a 
non-zero norm and charge -1 at the same time. In other words« the charge 
operator defined by 6*f = Ф , acts trivially on the whole X : б = H . In 
this sense region I is in the confinement phase. On the other hand in region 
II and III 74 is split into two eigenspaces Ж and X~ corresponding re­
spectively to the eigenvalues +1 and -1 of 6. While in region II the vector 

•• = iimTn» e ac~ 
1 n+» f s 

is degenerate with the vacuum Ф. € 3t , in region III Ф s e X~ has posi­
tive but finite energy. So the interpretation of Theorem 3 is that region 
III is a phase where free charges exist. It can be shown as well that under 
the condition (13) the sector determined by f s, i.e. the closure of the set 

{•fsAIA 6 A } o c } 

does not depend on S. Unfortunately the interpretation of Theorem 2 as a 
charge symmetry breaking on the quantum level is not established yet. This 
is because we were unable to construct non-local operators analogous to the 
classical field f s what would favourize certain linear combinations of Ф, 
and Ф!. As a matter of fact, local operators feel the states Ф,, Ф! and any 
linear combinations of them as entirely equivalent ones. So, the interpreta­
tion of Theorem 2 at this moment extends so far as to say that in region II 
the symmetry С is broken in the classical statistical system. (See the re­
mark after Theorem 2.) The existence of a phase transition between regions I 
and II (dashed line on Fig. .1) is not in contradiction with the results of 
Ref. Г 4] and [7 1 because it is a "non-thermodynamical" transition! it can be 
revealed only by means of non-local fields. 

Until now we have used a notion of charge (C and its quantum counter­
part S) which can be traced back to a global algebraic property of our clas­
sical fields ((7)). it is interesting to see whether this charge colnsides 
with the charge what an observer could find if he makes local measurements 
only. Let Q be the operator of the charge of the finite space volume A. 
What the observer could define as the charge of a state Ф compared to that 
of the vacuum is f3] 

(Ф,<?дФ) 
o m " Í2 тф№ ' l 1 4 ' 

Cluster expansion yields the following results: In regions I and III the two 
notions ct charge б and Q coincide, Q[9] • (Ф,6Ф). While in region II 0(Ф] 
is always +1. More precisely we can prove that 
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Ol* 1 = 
f s 

+1 in regions I and II 

in region III 

Q[«fl = +1 for all f с * J loc 
The physical picture behind the discrepancy between С and Q in region II can 
be that the observable charge Q escapes to infinity during the process in 
which we prepare the state Ф s starting from the vacuum Ф, in the remote 
past and acting with a time ordered operator corresponding to f . 

IV. MORE GENERAL 6AUGE MODELS 

We conclude with an outlook towards the application of the non-local 
fields in gauge theories with more complicated gauge groups than Z(2). The 
direct generalization of (12) to continuous gauge groups does not seem to 
be realizable. The following ansatz, however, yields a gauge invariant 
charged field for arbitrary gauge groups. Let we have a d-dimensional gauge 
theory with gauge group C* and 

E M =М а в(и ( х°>,О 0 

xa x ' x (o,0) e *£' 

be the charged field. M° P(U ( x 0 )) denotes the magnetization in the (d-l)-di-
mensional Q-spin model with boundary condition g = 1 in the presence of 
frustrations U (x°) y(x°) is the restriction of the gauge configuration U 
onto the links of the x -hyperplane. 

M a P(U) x lim V ^ M 
dg exp {- l x(g _ 

<г,у>ГЛ -

LU g ) 5ГУ. D°4> 
q^l if уеЗЛ 

(16) 

«А(П) п dg^exp {' J x(g ' 
<55»У>СЛ -

и g ) zr Y. . 
g -l if у.бАЛ 

D is the representation of the group (̂  under which the matter field о trans­
forms. If the inverse temperature Y of the spin model is sufficiently large 
and the dimension (d-1) is greater than a critical dimension of the fy-spin 
model this system is in the ordered phase and M ? 0. (The frustrations cause 
only local disturbances according to our definition of C ) 

In case of Cf = Z(2) and d * 3 M (U) is the magnetization of the frus­
trated Ising model discussed in [91. If we consider non-comoact electrotly-
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namics Cf = JR (additive qroup of real numbers) 

and we chose 

D(g x> = e * 

x l 9 * " h ' А ы } = ' ?(9i " \ ~ V 2 

M then f reduces to Dirac's ansatz (1). 
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