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ABSTRACT

Non-10ca! order parameters are constructed to test confinement, decon-
finement -nd broken charge symmetry phases of lattice gauge theories with
matter tields. The relation of these classical fields to the structure of
the quantum theory is analyzed. In the case of the 2(2) Higgs model we ex-
plicitely construct a charged sector in the free-charge phase. The confine-
ment-sceening phase turns out to be split into two phases from the stand-
point of non-local fields. This phase transition can be interpreted as the
breaking of the global gauge symmetry.

AHHOTAUNWA

BPeneHn HeslOKanbHHE NONAA MR Pa’NHYHA MeXay Yamixavmiefl, He3amixammefl ¢a-
3aMB B da’30A HapyuweHHOR 3apanopoft CHMMETPHH B XamHOPOBOYHHX TEOPHAX C MaTepH—
ANBbHHMH MOJNIAMHM Ha peweTKe, NpoiHANKH3IHPOBAHA CBA3b 3ITHX KJIACCHYECKHX nonefl co
CTPYXTYPOR KBAHTOBGA Teospuu. B cnyuae xurrcoscxof Z(2) momesnu naxso ABHOe no—
CTPOEHHEe 3apAXEeHHOrn cexTopa B da’e He’3aMKHYTOro ’3apana. ®a’a c 3xpaHHpoOBaH-
HHM 3aMbIKAHHEeM OKAZNBAGTCA pa3nesieHHOR Ha nre das’n C TOYXH 3PEeHHA HEJNOKANbBHHX
noneft. CooTreTcTPymmHA da3’0BHA nepexon MOXeT OHTh HHTepPnpPeTHPOBPaH Kax Hapyme-
HHe rnofarnbHOR XKaAnNHGPOBROYHOR CHMMETPHH.

KIVONAT

Nemlok§1is rendparamétereket konstrulltunk a bez&r6, szabad és a t8ltés

szimmetria sértd fA&zisok megkiil¥énblztetésére rhcs mértékelméletekben., Meg-
vizsgaltuk ezen klasszikus térmennyiségek kapcsolatit a kvantumelmélettel.
A Z(2) Higgs modell esetén explicit konstrukciét adtunk a szabad f&zis tbl-
tbtt szektorAra. A bez8rb-Higgs fazist egy csak a nemlok&lis rendparaméter=-
rel érzékelhetd fazisAtalakul&s osztja ketté, amelyet a glob&lis gauge szim-
metria sérliléseként interpret&ltunk.



1. INTRODUCTION

The problem of confinemrnt in lattice gauge theories with matter fields
can be studied on two levels:

1/ Searching for a classical quantity which serves as an order para-
meter in the classical statistical system.

2/ Pinding out a representation of the algebra of gauge invariant quan-
tum fields as operators acting on a Hilbert space % such that the vectors
in X have a non-trivial charge (compared to that of the vacuum). Naturally,
the suitability of an order parameter can be decided only on the 2nd level.
Order parameters to distinguish between confining, deconfining and Higgs
phases were proposed by Mack and Meyer [1] and by Bricmont and Fr8hlich [2].
An approach on the an level was presented by Fredenhagen and Marcu in the
case of the Z(2) Higgs model [3]. They analyzed the possibility of charged
representations in the C"-algebraic framework and constructed a translation
covariant charged sector of the model.

In this paper we report on an other approach which makes the connection
between the two levels to be more transparent. This is a generalization of
the construction in which one builds the Hilbert space directly from classi-
cal fields. This method was applied to lattice gauge theories at first by
Osterwalder and Seiler [4]. Its generalization lies in the use of non-local
fields besides the local ones. That the ~local fields may have importance
was argued in Ref. [5]. Here I wish to 9. - a brief account of the exact re-
sults obtained in the 2(2) Higgs model. The more detailed discussion includ-
ing the proofs will be published elgewhcre.

11, NON-LOCAL FIELDS

If one wants to write a field down which is invariant under the local
but not under the global gauge transformations one necessarily meets with
non-locality. A prototype of such a field is Dirac's gauge invariant elec~
tron field in continuum QED [6]:

vinv(x°,§) = W(x°,5)oxp{ijd’xp'l(g-x)div&(x°,x)} . (1)
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An other example is the semi-infinite string in lattice gauge theories:

inv
o =o U _U .o U - |x
x XXX X)X X X o+l

f=1, 1-|xn|= -, (2)

n ntl :’_
o(U) denotes the matter (gauge) field residing on sites (links). The non-lo-
cality of (1) and (2) amounts to much more than that these fields merely
have infinite support in spacetime. Their basic properties can be summarized
rather in the following two observations:

I. The fields (1) and (2) considered as functions of the gauvge configu-
rations A and U respectively are nowhere continuocus. I.e. even if A and U
are allowed to vary only in arbitrary far away regions of spacetime the
values of (1) and (2) can suffer drastic changes.

I1. 1f somebody wanted to put expressions (1) or (2) into the (infinite
volume) functional integral he would find a serious difficulty: These func-
ticaals are defined only on a zero-measure set of configurations. Actually
the exponent of-(l) exists only if A vanishes faster then 1/r at spacelike
infinity. Or transforming it to be ar 0(4) invariant condition: (1) exists
for those A's which have finite Euclidean action,

Yater2 <o .
Similarly (2) exists only for U's which are equal to unity or all but a
finite set of links,

Property I is a consequence of Gauss' law. It is the sensitivity of the
field for the valnes of U of far-away regions what makes it possible to mea-
sure the charge by an observer being outside any large sphere. So, despite
being a mathematical flaw, property I is physically acceptable. On the con-
trary property II at first glance seems to be disastrous for the non-local
fields, Fortunately, the resolution of this problem is possible and we will
describe it for purely bosonic theories.

Let ® denote a configuration which is a pair (o,U) made of the matter
and gauge configuations on an infinite lattice. We have to give up the usual
sxpectation that the infinite volume statistical average p of a classical
quantity f{p) should be written in the form

o(f) = fduuo)f(«o) (3)

with some Lebesgue measure.du on the confiqurations space C. Such a measure
naturally exists if f is local, However if f is non-local only the finite
volume averages are integrals:

N -sA(w)
o, (f) = c, | dot—s—f(0) (4)
A 121 1)y Zy '
A



vhere

(:: = (g€ Clo = ;i outside of the finite volume A)
and do 1is the a priori measure on . The o1's (1 = 1,...,M) are translation
irvariant minima of the action. (In certain models there is a continuocus
family of minima and the sum on i in (4) must be replaced by an integral.)
The choice of the numbers <y fixes the boundary condition. The thermodynami-
cal limit of (4)

o(f) = linoA(f) (5)
Areo

may well exist even if i. carnot be written as a functional integral (3).
For local f, of course, (5) reduces to (3). Therefore the (in reality evi-
dent) definition (4), (5) gives an extension of the functional integral for-
mula to non-local fields. Let us observe that for the calculation of (5) by
means of (4) we have to know f(¢) only for those ¢'s which equal to one of
the 51'3 on all sites and links except a finite set of them. So property 11
doesn't arise as a problem in this way.

The real question now is whether the definition (5) is a non-trivial
extension of (3) to include non-local charged fields. The answer dep.nds
very much on the dynamics, i.e. on the special form of the action. The field
of type (2) of course has no relevance in the thermodynamical limit because
it is associated with an infinitely long string of electric flux which has
infinite energy even in a deconfining phase. In a charged field favoured by
the dynamics the string must be smeared over in an appropriate way. We can
prove that such a field really exist in the free-charge phase (in the termi-
nology of Pradkin and Shenker [7]) of the Z(2) Higgs model.

111, RESULTS IN THE 3-DIMENSIONAL Z(2) H1G6GS MODEL

In this case both 0 and U take their values in the set {1, -1). The ac-
tion is

8, = -alz ugo(dg) -8 fulep) . (6)
€A PEA

We have now two translation invariant minima (N = 2 in (4)): 51 = (01,01) 3

= (1,1) and @2 = (02,0%) = (-1,1). A in (6) is chosen to be an open box in
the 3-dimensional cubic lattice, i.e. it doesn't contain its boundary 3A. Al-
though 3ANA = @, for the calculation of sA we need the values of (o,U) on .3A
too, what is frozen to be 51 or 52. In order to have a statistical average
P, invariant under the charge (= global gauge) transformation
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f »cCf Ct(o,U) = f(~-0,U) o

we set c; = c, = % in (4).

The algebra P of gauge invariant non-local fields can be obtained from
the algebra spanned by the gauqge invariant functionals (Q is a finite set of
sites, F is bounded)

f (o,U) = N o F(U) (8)
Q xeqQ X

by taking series of the form
£ = }f
Q Q
which are norm-convergent with respect to the norm

I| £} = sup {E(o,0) ] €))
(o,0)e T'

€ * is the restricted configuration space on which the bounded functions of

D are defined,

1-uU
2

&' = ((o,0)e Clo is arbitrary but ; L ¢ o}

(We have no motivation to introduce non—-localities in o0.) With the norm (9)
and the usual complex conjugation D turns out to be a commutative C®-algebra.
For a fixed pair (a,B) of coupling constants let us denote by A the largest
sub-C*-algebra of D for which the thermodynamical limit (5) exists and is
translation invariant. An other subalgebra J%loc of consisting of conti-
nuous functionals on ' can be shown to be isomorphic to the usual C*-al-
gebra of local fields, the latter being the norm closure of the algebra of
finitely supported fields on . The existence of the thermodynamical limit
for local gquantities, what can be proven e.g. by using GKS inequalities,
shows that A1°C is always contained in R. For f € ALC 5(f) has the form
{3) but for general f € £ p is 'only' a continuous linear functional which
13 positive (o(f"f) =z 0), has norm 1 (p(1) = 1) and if sA is given by (6) it
satisfies reflection positivity: If f € J¥+ then p(0(£f)f) 2 O, Here © is the
reflection to the x° = o plane combined with complex conjugation and

J%+ = (f € AIsuppf is in the x® > 0 half space)
After this preparation we can summarize our results in the following

three theorems.

Theorem 1: In region 1 of Fig. 7, i.e, for sufficiently small a and B, if a

field £ ¢« D has charge -1, Cf = ~f then p(0(f)f) = O.

Theorem 2: In region II, i.e. for sufficiently large a, there exists an

£% ¢ A, such that



I1

I IIl

tanh f3

Fig. 1
The phase diagram of the 72(2) Higgs model and the regions I, II and
IIl of cluster expangions. Solid lines: thermodynamie transitions.
Daghed 1ine: the simpleet possible place of the "non-thermodynami-
cal” trongition.

(1) c£% = -£5

2p

20 .nd e 3

(11) o(e(fs)ax(fs)) is an analytic function of e~

(111) umfo(e(£Pra_ (£%)) - p(6(£%))0(£H] = B2 >0
neo

where x 1s any lattice vector with x% > 0 and a, is the translation by x.
This theorem states that p is not a clustering state on Jb, therefore it can
not be a pure statg. Indeed, p = %(p+ + p ), where oz are defined as the
thermodynamical limit of (4 with ¢ = 1, cy = 0 and c, = o, cy = l, respec-
tively. o+ # o~ because p+(fs) = -p'(fs) = B # 0. Since o+ and o~ are not
symmetric under C, instead p+(cf) = p (f), we see that in region II a pure
state ppure on R, which occurs in the decomposition of p into pure states,
can not be symmetric under C (charge symmetry breaking in p).
Theorem 3: In region III the field £8 appearing in Theorem 2 satisfies the
following bounds: there exist positive numbers Kl, Kz, my, m, such that

-m, | x| -m, | x|
K,e 1 p(8(£%)a, (£5)) < K,e 2 .
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Furthermore the correlation function D(Olfs)nx(fs)) is analytic in a and
9-28.
These theorems were proven by using cluster expansion technique (see e.g.
[81).

The non-local charged field £9 taking part in Theorem 2 and 3 has the
form

£2 % a (£9) = o 0S(U) (10)
where ai(u) is the value of the gauge transformation 0%(U) at x which trans-
forms the configuration U into a specific gauge. This gauge is characterized
by a mapping S from the set of connected closed curves C of the dual lattice
to the set of connected surfaces made from dual plaquettes. The mapping S is
such that the boundary 3S(C) of S(C) is just C. The gauge configuration V
satisfying the gauge condition and being gauge equivalent to U is this:

n 84 € s(c))

Vo= I (-1) . {11)

i=1
1* denotes the plaquette dual to ¢ and the set (Cl,...,Cn} of connected
closed curves (Ci is disconnected from C, 1if 1 # j) consists exactly of
those links which are dual to the flipped plaquettes, where U(3p) = -1. The
latter set of plaquettes is finite because (o,U) € ©'. With the aid of (11)
we can write that

£, = c“(zgauz)(zgav‘) , (12)
where J is a semi~infinite string starting from the point x. In reality (12)
is independent of the special choice of J.

In the course of proving the above theorems we made a restriction on
the mapping S, namely that the surface |S(C)| of S(C) must be controlled by
the perimeter |C| of C. More precisely there exists a number A such that

Istc)) < Alc|? for all C. (13)

Now we turn to the problem of what the above theorems imply for the
quantized system. To quantize the theory we follow the strategy of Ref., [4].
The Hilbert space A is the norm closure of the factor space A, /N with re-
spect to the norm

0, = £+ N € B /N — [logl] = ‘°f'°f’1/2 = [oen)n]?
where N' = (f ¢ .Aalp(e(f)f) = 0}, The positive definite transfer matrix T on

X s defined by fo, = 0., where T = (3,0,0) - This ? satisfies ? s 1 too.
Hence #. is always a ground state: Qol =9,.
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In view of this Hilbert space construction the content of Theorem 1 is
that in region I it is impossible to have a vector of ¥ what possesses a
non-zero norm and charge -1 at the same time. In other words, the charge
CE acts trivially on.the whole X : & = ‘ﬁ. In
this sense reqion I is in the confinement phase. On the other hand in region

operator defined by éof =9

11 and 11T X is split into two eigenspaces A ¥ and X~ corresponding re-
spectively to the eigenvalues +1 and -1 of é. while in region II the vector

o = limfe _ € X~
1 N £3

is degenerate with the vacuum o, € R*, in region III o g € % has posi-
tive but finite enerqgy. So the interpretation of Theorem 3 is that region
I11 is a phase where free charges exist. It can be shown as well that under
the condition (13) the sector determined by fs, i.e. the closure of the set

loc
(08, 1A € £.°9)
does not depend on S. Unfortunately the interpretation of Theorem 2 as a

charge symmetry breaking on the guantum level is not established yet. This
is because we were unable to construct non-local operators analogous to the

classical field f° what would favourize certain linear combinations of 01
and oi. As a matter of fact, local operators feel the states 01, oi and any
linear combinations of them as entirely equivalent ones. So, the interpreta-
tion of Theorem 2 at this moment extends so far as to say that in region I1I1
the symmetry C is broken in the classical statistical system. (See the re-
mark after Theorem 2.) The existence of a phase transition between regions I
and 11 (dashed line on Fig. .I) is not in contradictic.. with the results of
Ref. [4]) and [7] because it is a "non-thermodynamical® transition: it can be
revealed only Ly mmeans of non~-local fields.

Until now we have used a notion of charge (C and its quantum counter-
part &) which can be traced back to a global algebraic property of our clas-
sical fields ((7)). It is interesting to see whether this charge coinsides
with the charje what an observer could find if he makes local measurements
only. Let QA be the operator of the charge of the finite space volume A,
what the observer could define as the charge of a state ® compared to that
of the vacuum is [3]

ole] = 14 T—ﬂﬁ(o'QA” (14)
Q] = m - .
Ao ol'oé 1

Cluster expansion yields the following results: In regions I and III the two
notions cf charge ¢ and Q coincide, Q(0] = (0,80) . While in region II Q[®]
is always +1., More precisely we can prove that




+1 in regions I and 11
ole ) =

-1 in region I1I
olo ) = 41 for all f € f1o€

The physical picture behind the discrepancy between ¢ and Q in region II can
be that the observable charge Q escapes to infinity during the process in
which we prepare the state ofs starting from the vacuum 01 in the remote
past and acting with a time ordered operator corresponding to £3.

1V. MORE GENERAL GAUGE MODELS

We conclude with an outlook towards the application of the non-local
fields in gauge theories with more complicated gauge groups than zZ(2). The
direct generalization of (12) to continuous gauge groups does not seem to
be realizable. The following ansatz, however, yields a gauge invariart
charged field for arbitrary gauge groups. Let we have a d-dimensional gauge
theory with gauge group C} and

o
- MaB(U(x ))oB

xa X X {o,U0) € €

o
be the charged field. MGB(U(X )) denotes the magnetization in the (d-1)-di-
mensional (~ -spin model with boundary condition g = 1 in the presence of

(x%)  (x®

frustrations U is the restriction of the gauge configuration U

onto the links of the x -hyperDlane.

af aB
MU () = 1lim n [dg exp{ x(g_ U g )} (g.) P
* A i sz(} <£,£)Fé z 'y X

=1 1f yr3A
q! -
(16)

z, (M = n Idg exp{v ) x(q U g )}
A yeal L <z Y'Y

=1 if yE€3A
Iy b AL

D is the representation of the group (* under which the matter field o trans-
forms. If the inverse temperature y of the spin model is sufficiently large
and the dimension (d-1) is greater “han a critical dimension of the £}~spin
model this system is in the ordered phase and Mx # 0, (The frustrations cause
only local disturbances according to our definition of Z&'.)

In case of G4 = 72(2) and d = 3 M (U) is the magnetization of the frus-
trated Ising model discussed in [9]). If we consider non-commact electrody-
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namics C' = R (additive group of real numbers),
iqg
= X
D(ql) = e
and we chose
x(g, - g, ~A ) =-2g, -g, -A)
x Y xY 277x Yy xy

then f: reduces to Dirac's ansatz (1).
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