SURVIVAL OF GRAND UNIFIED MONOPOLES

/ * P.A. Horvathy J.H. Ravmsley Hath. Inst., Warwick University.

Abstract

If a Grand Unified Theory with a compact unifying group G is spontaneously broken to H , magnetic monopoles are created. The fate of such an H-monopole under a subsequent breaking to $K \subset H$ is shown to depend on the behaviour of its non-Abelian charge O introduced by Goddard, Nuyts, Olive: if Q belongs to the Lie algebra k of K, the monopole survives: if Q can be Hrotated to k, it can be converted. A necessary condition for an ' H-monopole to survive is that its Higgs charge satisfy a topological constraint.

C-tJftS- CPT-84/PE. 1661

SEPTEMBER 1984

* Centre de Physique Théorique, C.N.R.S., Marseille, France **Laboratoire Propre du Centre National de la Recherche Scientifique**

Address from October 1st, 1984 : Dublin Institute for Advanced Studies 10 Burlington Road, DUBLIN 4 (Eire)

In Grand Unified Gauge Theories (GUT's) magnetic monopoles arise naturally as everywhere-regular, fin1te»energy, static, purely- - magnetic solutions to the coupled Yang-Mills-Hlggs (YNH) equations. CI]. What happens to these monopoles if the symmetry is broken subsequently to smaller and smaller subgroups? This question has been asked and partially answered before [2-4]. Our approach is hoped to be more direct and it allows us to derive the previous knowledge as a consequence.

Let us consider a GUT with a compact, connected and simply connected unifying group G . At some energy scale the G-symmetry is broken to a closed subgroup H of G by the v.e.v. of a Higgs field ϕ (transforming according to some representation $\phi \rightarrow q_0 \phi$, **g c G of G) . The field equations admit magnetic monopole solutions** [1]. These solutions satisfy boundary conditions: on S², the "2sphere at infinity", (i) ϕ takes its values in an orbit $G \cdot \phi_0 = G/H$; (ii) ϕ is parallel, $D_i \phi = 0$ j = 1,2,3. It follows from (ii) that on S² the YMH equations decouple and the YM potential A_t **satisfies the pure YH equation**

(1) $D_4 F^{i,j} = 0$ Vj.

The point is that any solution of (1) is characterized by a vector **Q in** *h* **, the Lie algebra of H , called the "non-Abelian magnetic**

- 1

charge" [5,63 : there exist gauges over U_{\perp} = $S^2 \setminus \{$ south pole} and **2 U_ « S \{north pole) respectively such that (1) is solved by**

(2)
$$
A_p^{\pm} = 0
$$
, $A_\theta^{\pm} = 0$, $A_p^{\pm} = \pm 0(1 \pm \cos \theta)$

for some fixed Q e ft , For a given solution Q is unique up to a constant global gauge transformation. In particular, it can always be rotated to any given Cartan algebra of h . Q must be *quantized*

$$
(3) \qquad \exp 4nQ = 1
$$

(i) implies that ϕ defines a class [ϕ] in π ₂(G/H) which we call **its Higgs charge. The Higgs fields are gauge-related if and only i f** they have the same Higgs charge. $\delta_H : \pi_2(G/H) \to \pi_1(H)$ is an isomorphism since G is simply connected. δ_H [ϕ] is represented by the loop

 (4) $\gamma(t) = \exp 4\pi \mathfrak{q}t \quad 0 \leq t \leq 1$

To have topological non-triviality, we require $[\phi] \neq 0$.

Conversely, for any quantized 0 e h , (2) provides us with a solution of (1) which can be extended to a YMH solution on S² simply

$$
-2 -
$$

by putting $\phi = \phi_0$ in U_+ . Observe that this is a well-defined **Higgs field since Q « k means that <J • * ⁰ = 0 , and so** ϕ_{Ω} = exp 2Qp+ ϕ_{Ω} in U₊ n U₊. The solution $(A_{\Omega} \phi)$ constructed **in this way is interpreted as an H-monopole (i.e . a monopole created in the "phase" when the symmetry group is H) assuming** $E\phi$ **]** ϵ π ₂(G/H) is non zero.

Let us no» assume that the symmetry is broken spontaneously to a closed subgroup K of H . In the K "phase" monopoles are pairs (A..X) , where X is a new Higgs field engineering the symmetry breaking. In particular, X:S² + G/K where K is the stability subgroup of a XQ in a suitable representation; X must be parallel, and $\pi_{p}(G/H) \ni \{ \chi \} \neq 0$. The theory above tells us that any K-monopole **Is .characterized by a K-magnetic charge Q¹ « fe (the Lie algebra of K).**

Let us now consider an H-monopole associated to a Q c h . This same Q defines a K-monopole as well as soon as

(5) $Q \in k$ and $\pi_1(k) \ni \text{[exp 4} \pi \mathbb{Q} t]_k \neq 0$.

Saying that an H-monopole survives means hence that its Kand H magnetic charges are in fact the same vector Q .

Observe that for surviving monopoles $\delta_{H}[\phi]$ and $\delta_{V}[\chi]$ are represented by the same loop (4), so, if i^{*i*} \ltimes \ltimes H is the inclusion,

 $-3 -$

$$
(6a) \qquad \delta_{\mathbf{H}}[\phi] = \mathbf{i}_{\mathbf{A}} \ \delta_{\mathbf{K}}[\mathbf{X}]
$$

ł

where $i_n : \pi_1(K) \to \pi_1(H)$ is the homomorphism induced by i. Alternatively, the natural projection $\sigma : G/K + G/H$ induces σ_{\star} : π_{2} (G/K) + π_{2} (G/H) and (6a) means

$$
(6b) \qquad [4] = \sigma_*[x] .
$$

Consequently, an H-monopole can survive only if

(7)
$$
[0] \in \text{Im } \sigma_{\star}
$$
 i.e. $\delta_{\mu}[\phi] \in \text{Im } \mathbf{i}_{\star}$.

Let us now assume that (7) holds. Then $\left[\exp 4\pi \mathbb{Q}t\right]_K \neq 0$ automatically. If there exists an $h \in H$ such that $h \varphi h^{-1} \epsilon k$ and this may or may not be the case depending on how the Cartan algebra of k is related to that of h (see examples below) - then the monopole can save Itself by reorienting somehow its field's direction and so survive converted [4]. But if (7) is violated it must disappear. The proposed scenario for this is confinement in a flux tube $[3,4]$. Observe that (7) depends only on how the generators of $\pi_1(K)$ sit in H . In particular, if they are contractible in H, $\mathbf{Im}\ \mathbf{i}_{+} = 0$ and no H-monopole can survive. Those K-monopoles whose K-charges are in Ker i,

- 4 -

can'not be surviving H-monopoles. They are hence newly created, light monopoles.

An important special case is when $\pi_1(K) = \mathbb{Z}$. $\pi_1(K)$ has **then a generator of the form** $\gamma_0(t)$ *** exp** 2π **ct**, $0 \le t \le 1$. (7) **requires [\$] » r-ly01 for some integer r . If furthermore, Q and r.ç/2 are conjugate then the monopole can be converted by reorienting its field. If Q » rç/2 , then the monopole survives unchanged.**

In some cases, these relations can be translated into numbers. For example, if ϕ is in the adjoint representation of G, then $\pi_1(H) \simeq \mathbb{Z}^P$ where p is the dimension of Z(h), the centre of the **Lie algebra k . [\$'] is then simply a p-tu pie of integers,** ϕ = (m_1, \ldots, m_p) [7]. On the other hand, γ_0 above has (k_1, \ldots, k_p) as homotopy class in $\pi_1(H)$, so (7) means

(8) $m_i = r \cdot k_i$, $j = 1, ..., p$ for some integer r.

Þ,

For example, if K is a $U(1)$ subgroup, γ_0 is K itself; if K is a $U(3)$ subgroup - locally $SU(3)_{\text{c}} \times U(1)_{\text{em}}$ - then

- 5 -

 $\zeta = i$ (diag(0,0, $\sqrt{-1}$)) is a generator for $\pi_1(K)$. (i is the inclusion $i \cdot k = su(3) \times u(1) \rightarrow h$ of Lie algebras).

If *k* **c** *1(h)* **and Q is not in Z(h) , then no conjugate , of Q belongs to Z(h) , and so no such H-monopole can survive,** not even converted. For example, if $h * su(2)_{w} + u(1)_{v}$, *k* = $z(k)$ = $u(1)_{em}$, then only pure electromagnetic monopoles can survive the transition $H + K [2]$.

We just mention that the formulae above have a nice geometric interpretation. YM fields are connection forms on principal bundles. Spontaneous symmetry breaking means bundle reduction. Higgs charges classify the principal bundles over S^2 , so (7) means that **H-bundie reduces to a K-bundle. (ii) is the condition for the connection to reduce. (2) - the content of the theorem of Goddard, Nuyts and Olive [5,63 - is expressed by saying that monopoles have 1-dimensional holonomy generated by Q . If an H-bundle reduces to a K-bundle, the H-connection reduces to a «-connection if and only if t contains the holonomy, i.e. (5). Full details are given in [9].**

- 6 -

/

I

As a first illustration, let us consider G = SU(3) broken to $H = U(2)$ by a Higgs $\underline{8} \phi$. The base point is $\phi_0 = (\lambda \sqrt{-1})$ diag $(1,1,-2)$. **X e R. The non-Abel 1an charge Q reads, after diagonallzatlon,**

(9)
$$
Q = \frac{\pi}{2} \text{ diag } (n_1, n_2 - n_1, -n_2) = 1
$$

where n, n¹ \$ n² are Integers and n., n, have no comnon divisor. The ' form (9) 1s unique If we require 2n] a n² a n } / ... The U(2)-H1ggs charge Is then $m = n.n_2$.

Let K be a U(1) subgroup K = exp 2πζt, ζ ε U(2). ζ can be diagonalized by a suitable U(2)-conjugation:

(10)
$$
hgh^{-1} = \sqrt{-1} diag (k_1, k_2-k_1, -k_2)
$$

The integers k_1 , k_2 here have no common divisor; they are unique if $2k_1 \ge k_2$ **2kg s k^r . Conjugate vectors generate nomotopic loops, so CK]U<2) *** *^ ,*

(7) requtres hence m « rk² f° ^r sw» •*• In particular [8], if kg • 0 all H-monopoles mist disappear when .the sjmmetry breaks down to K jlf k² « 2, m must be even, etc.

It 1s easy to see that Q and some half-Integer multiple of (10) are U(2)-conjugate if and only if n_p **= k₂ and** n_i **= k₁ provided** $\mathbf{2k}_q$ **> k₂.**

*** If 2kj « k² , c Is In the centre and so c and Q cannot be conjugate unless they** *are* **equal, which 1s the third case. Otherwise, the monopole Is again confined In a flux tube [2] .**

- 7

In this case the monopole can be converted by reorienting Its field's direction.

Finally, the H-monopole survives unchanged if Q and r^C/2 are not only conjugate but actually equal: $r = n$, $n_1 = k$, and $n_2 = k_2$ where **now K itself is diagonal, and has the form (10).**

If we choose instead **φ_ο = √-1 diag (λ,,λ,, -λ, -λ,) with λ, > λ, as base point, the residual symmetry group is** $U(1) \times U(1)$ **, so** $\pi_1(H) = \mathbb{Z}^2$ **.** If we choose n_1 ^{*} $\sqrt{-1}(1, -1, 0)$ and n_2 ^{*} $\sqrt{-1}(0, 1, -1)$ as generators **for &, the Higgs charge of the monopole defined by Q in (9) is** $[\phi] = (nn_1, nn_2)$.

 $H = U(1) \times U(1)$ is Abelian, so any subgroup K is already of the **form (10).** (7) requires $n_1 = k_1$ and $n_2 = k_2$, so Q ϵ k. Hence all **monopoles satisfying the topological constraint survive unchanged, while all others are destroyed.**

As a second example let us consider $G = SU(3)$ and ϕ transforming **according to the representation £ [*f >3| The representation space consists** of 3×3 symmetric matrices with SU(3) acting as $\phi \rightarrow g \cdot \phi = g \phi g^T$. If we choose $\phi_n = \mathbf{1}_3$ = diag (1,1,1) as base point, we get $\underline{H} = \text{SO}(3)$ as unbroken**symmetry group. H is generated in fact by the Gel!-Mann matrices**

$$
\lambda_7 = \sqrt{-1} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ -1 & 0 & 0 \end{pmatrix}, \quad -\lambda_5 = \sqrt{-1} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix}, \quad \lambda_2 = \sqrt{-1} \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} (11)
$$

Let us choose our Cartan algebra T to contain λ_2 . The non-Abelian **magnetic change, after rotation to T, reads**

$$
(12) \tQ = m\lambda_{2}, \text{m an integer.}
$$

 $\pi_1(SO(3)) = \mathbb{Z}_{2^2}$ the Higgs charge of the SO(3)-monopole defined by (12) **i**s [ϕ]_{en(3)} = m (mod 2). So we get topologically non-trivial solutions **only for m odd.**

Let us consider a U(l) "subgroup K •= exp 2nt£ = H c SU(3). £ can be brought to T by a suitable SO(3)-rotation. $\xi \rightarrow h\xi h^{-1} = \zeta \epsilon T$ for some **h** ϵ H. ζ is a minimal generator since ξ is minimal. Hence $\xi = \pm \lambda_0$. **Consequently [K] S 0 (3) " [exp 2ntt] ^S 0(3) " * ' i w d 2 ' - l t fo11ov, s thi t all topologically non-trivial (m odd) H-monopoles satisfy the topological constraint** (7). i_* : $\mathbb{Z} \ni \mathfrak{m} \rightarrow \mathfrak{m}$ (mod 2) ϵ \mathbb{Z}_2 so the light, newly created $K = U(1)$ monopoles are evenly charged $[4]$.

Let us assume m odd in (12) . Q can be $H = SO(3)$ - rotated to **fe s R.ç, so al l odd-charged S0(3)-monopoles can save themselves by** reorienting their fields and hence be converted. Their new U(1) charge

- 9 -

will be simply m. They survive however unchanged If Q and ç are actually parallel. i.e. $\xi = \pm \lambda_2$.

Let us consider the prototype GUT based on G • SU{5) [10,11]. The SU(5) symmetry is broken first by a Higgs 24 (adjoint) ϕ . If ϕ_0 = $\sqrt{-1}$ diag $(1,1,1, -3/2, -3/2)$, we get $H = S(U(3) \times U(2))$ = $[SU(3)_{\mathbb{C}} \times SU(2)_{\mathbb{W}} \times U(1)_{\mathbb{Y}}] / \mathbb{Z}_6$ of those matrices $\left[\frac{A}{B}\right]$ A ϵ U(3). B ϵ U(2) **det A. det 8 = 1.**

(13)
$$
Q = \frac{n}{2} \sqrt{-1} \text{ diag } (n_1, n_2, -n_1, n_3 - n_2, n_1 - n_3, -n_4)
$$

where n₂ n_1 , n_2 , n_3 , n_4 are integers, the last four has no common **divisor, and** $2n_1 \ge n_2 \ge n_3/2 \ge n_4/4$ **»** $\pi_1(H) \approx \mathbb{Z}$ **. The Higgs charge of the monopole which corresponds to Q is calculated as [7, 12],**

(14)
$$
m = [\phi] = \frac{\text{tr}_3}{\sqrt{1}}
$$
 (20) = n.n₃

(trace on the first 3 entries).

At a lower energy scale H Is further broken to $K = U(3) = SU(3) \cdot \bigotimes U(1) \cdot \bigotimes_{\text{em}}^*$ by $X = (\phi, \psi)$, where ψ is in 5, having **base point v(0,0,0,1).**

$$
K = \left[\begin{array}{c|c}\nA & \cdots & A & \text{if } 0 \\
\hline\n\end{array}\right], A \in U(3).
$$

8 means local product, $U(3) = SU(3)_{\text{c}} \times U(1)_{\text{cm}} / \mathbb{Z}_3$.

10

A generator of $\pi_1(K)$ is found as

$$
(15) \qquad \zeta = \sqrt{-1} \text{ diag } (0, 0, 1, -1, 0)
$$

 \mathbf{S} **0** $[K]_{\mathbf{u}}$ = $\mathbf{tr}_{\mathbf{a}}(c)/\sqrt{-1}$ = 1.

Im i_{*} = Z, the topology constraint is always satisfied. **Q** as given in (13) can belong to **k** if and only if $n_A = 0$. **If so, the H-monopole survives unchanged and has K-charge [X] » Tr (2Q)/«Q « nn² = m.**

11 -

Q e H can be H-rotated into k = **u(3)** if and only if n_1 = n_A . **If so, the H monopole reorients Its field and survives thus converted. No new monopoles are now produced when the symmetry breaks to K since** i_{\star} is <u>injective</u>. Ker $i_{\star} = 0$.

In some versions of the SU(5) theory ^r10] the base point in the first breaking is rather $\phi_0 = v\sqrt{-1}$ diag $(1, 1, 1 - 3/2 + \epsilon, -3/2 - \epsilon)$ leading to $H' = S(U(3) \times U(1) \times U(1)) = U(3) \times U(1)$ as residual symmetry **group.** $\pi_1(H) = \mathbb{Z}^2$ now. One can choose $c_1 = \sqrt{-1}$ diag (0, 0, 1, -1, 0) **and ç ^z "*Cl diag (0,0,0,1,-1) as generators for Wj(K'). We have two** Higgs charges, m₁ and m₂. Q as given by (13) belongs to h^1 . The charges **of the corresponding monopole are found as**

(16)
$$
m_1 = \frac{tr_3}{\sqrt{-1}} (20) = nn_3
$$

$$
m_2 = \frac{tr_4}{\sqrt{-1}} (20) = nn_4
$$

 $K = U(3)$ as above is a subgroup of H'; its two Higgs charges in $\pi_1(H^*)$ **are**

(17)
$$
k_1 = \frac{\text{tr}_3}{\sqrt{1}}(z) = 1
$$
 and $k_2 = \frac{\text{tr}}{\sqrt{1}}(z) = 0$.

Consequently Im i_{\bullet} is generated by $(1,0) \in \mathbb{Z}^2$, and so only such **H'-monopoles satisfy the tapological constraint (7) which have no n**₂-charge, i.e. $n_a = 0$. Those with $n_a \neq 0$ are <u>destroyed</u> under the transition H^* \div K. If n_4 = 0, Q belongs to k , so it survives unchanged. Its K-charge is m_1 * nn_3 . <u>No new K-monopoles</u> are produced since i_{*} is still injective.

REFERENCES

- **[1] Z. Horvath, L. Palla. Phys. Lett. 69B, (1977),197.**
- **[2] G. Lazarldes. q. Shaft,Phys. Lett. 94B (1980).149j G. Lazarldes. M. Magg. Q. Shafl.Phys. Lett. 97B_ (1980). 87**
- **[3] F.A. Bals. Phys. Lett. 98B (1981). 437.**
- **[4] E. Weinberg, D. London. J.L. Rosner. Nucl. Phys. (1984) B236. 90**
- **[S] P. Goddard, J. Nuyts, 0. Olive, Nucl. Phys. 8125 (1977), 1.**
- **[6] S. Coleman. "The magnetic monopole fift y years later". In The Unity o f Fundamental Interactions Ed. A. Zlchlchl, Plenum, New York (1983).**
- **[7] P.A. Horvathy, J.H. Rawnsiey, "Topological charges In monopole theories," to appear in the Comm. Math. Phys.**
- **[8] J. Hadore, Conn. Math. Phys. 56 (1977), 115.**
- **[9] p.A. Horvathy, J.H. Rawnsiey "The color problem In non-AbelIan** gauge theories" (in preparation).
- **[10] C.P. Dokos, T.N. Tomaras, Phys. Rev. 021.(1980), 2940.**
- **[11] M. Daniel, G. Lazarldes, Q. Shafl.Nucl. Phys. B170 [FSl] (1980), 156.**
- **[12] P.A. Horvathy, J.H. Rawnsiey, "Monopole charges for arbitrary** compact gauge groups and Higgs' fields in any representation", **Marseille Preprint CPT-84/P. 1601 (1984).**
- **la] P.Goddard,D.Olive,Rep.Prog.Phys._4l_ (1978),1357.**

V

 $\overline{1}$