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ABSTRACT

We discuss the implementation of the Real Space Renormalization Group

Decimation Technique for 1-d tight-binding models with long range interactions

with or without disorder and for the 2-d regular square lattice. The procedure

follows the ideas developed by Southern et al. Some new explicit formulae

are included. The purpose of this study is to calculate spectra and densities of

states following the procedure developed in our previous work.
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I. INTRODUCTION

Seal space Renorroalization Group (H-G) decimation technique is a useful

method to calculate excitations and densities of states in tight-binding type

of models . The interest of the approach to this technique Which we discuss

here is in the fact that physical quantities are obtained from convergence

properties of certain parameters upon renormalization (the on-site coefficients

and the hoppings) without the need of specifying any particular boundary conditions.

Of course for non-disordered problems the answers are well Known and they are

easily calculated by Fourier transformations. However it is inter^t.in/> tn see

that in the R-G method the disordered case can be treated with exactly the

same procedure as the ordered case and Just the resettling of the coefficients

gives the correct answers in both cases.

Several physical systems of recent interest can be described by tight-

binding models: crystals containing a modulating periodic potential of a period

different from that of the underlying lattice, either commensurate or incommensurate

with it ; electrons in 2-d Square lattice I n a perpendicular magnetic field ;

the Schrodinger equation with an arbitrary potential of atomic type (through the

construction of the Polncare1 map of the problem ); superconductive networks

(De-Gennes-Alexander theory ) etc.

The philosophy of the R-G is to change a problem with many degrees of

freedom into another one with less degrees of freedom without losing any physical

feature. We will limit ourselves here only to cases where this can be fulfilled

without any approximation. Elimination of alternate sites (decimation) for 1-d

models with nearest neighbours interactions with or without translational invariance

Is the simplest case that fulfillsthls 6'>T'«B'»9) southern et al. 1 Q ) showed

that this also happens in 1-d with any range of Interactions. He will d'scuss

this caBe in more detail here. Decimation can also be performed exactly on

fractals by eliminating sites belonging to alternate steps of formation of the

fractal * • . Very recently Southern et al. 1 have succeeded in obtaining

the prescription how to achieve the real space decimation in 2-d and 3-d lattices.

However in these cases, upon renormalization, new longer range interactions are

generated. They cut the process by working with a finite size portion of the

lattice and show reasonably good results for pure cases. As we shall see in what

follows, we have found, following their prescription, a general formula for the

coefficients upon iteration up to any order for the pure 2-d lattice. This In

principle could be extended to the disordered ease but it is much more work

consuming and at present we do not have any clear-cut results.

Summarizing, what we want to show here Is the explicit formulation of

the exact real space H-G decimation for 1-d longer than nearest neighbours

interactions models with or without translational invariance and for the

translatlonally Invariant 2-d square lattice following the procedure recently

studied by Southern et al. ' and adding some of our results.

We want to comment that once the Real space decimation is performed there

are different ways of obtaining the physical quantities. . Both Gonqalves da Silva <->nd

Koillor and Southern et al. and our previous work '*"'* ' a r e based on the

convergence properties of the coefficients upon renormalization. They decimate

the equation of motion for the Green function in real space and calculate

densities of states by the usual relation with the imaginary part of the local

Green function. Their procedure needs the use of small imaginary parts which

sometimes ^ive non-physical densities of states . Besides their averaging

procedure for disordered problems, although simple, means introducing an

approximation which can also lead to only qualitative results. Our work is

based on the equation of motion for the magnitude itself (wave-function, order

parameter, spin, etc. ) and we only deal with real numbers. The density of states

is obtained from the poles of the real-part of the Green function (the on-site

coefficient) ' and no approximations due to early averaging over configurations

are introduced.

a
For ordered systems and for fractals/different approach was also developed

and used ' * . This is a one-parameter approach and is based on the scaling

equation of the eigenvalue itself. Because of that it is called dynamical scaling.

This has also been user! for diluted magnetic systems by Etineheombe through

the introduction of scaling laws for the probability distribution of bonds.

II. DECIMATION IN REAL SPACE

Within our procedure we start with the equation of motion:

where ^ has the meaning of the wave-function, the order parameter, spin amplitude

etc. and is the unknown magnitude to be calculated, E is the on-site parameter

(In fact it has to be understood as ui-e ,ui being the eigenvalue which has also
n

to be determined) and t is the off-diagonal parameter connecting sites at distance

{, . The subscript aero means initial values of the parameters. Kext the Intermediate

degrees of freedom are eliminated (each second site on the chain, each site n,m

on the square lattice which has n+m = odd number) obtaining the equation of motion
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for the bigger lattice and the corresponding relations. Upon repeating this

procedure the lattice of even bigger spacing is reached (lattice constant = 2T

for 1-d , 2 to power r/2 for 2-d , r tie ing the order of iteration) vith

the corresponding, form-conserving equation:

. « • u . + * • J • °

vith fi. being the distance on the new l a t t i c e .

Let us explicitely show how to obtain the recursion relations through
this elimination procedure.

(a) Pure 1-d chain with l B t and 2n neighbours interactions and an

explicit extension to any range of interaction. The original equation of motion

reads:

In this notation n±i denotes the wave-function at a given s i t e , E = iii-e and
1 2

t i s the hopping on the nearest neighbour and t on the next nearest neighbour.

Next we write down the analogous equations for a l l the s i tes connected with the

chosen one n (here, for the 1S and 2n neighbours of n) :
t * - i

Next, as we want to eliminate odd s i t e s (n±l , n±3), we multiply the equations

for them (the f i r s t two) by minus their coupling constant that appears in the

equation for i n divided by the on-site energy (namely by - t /e) and we
2multiply the rest by t /E . Then we sum up the previous k equations with the

f i r s t one for the chosen s i te n , we automatically cancel a l l the odd-sites and
we are left with the equation for the doubled l a t t i ce (again with interactions only

neighbours on a new l a t t i c e ) . So we get:

«.2 , , 1

with l 3 t and 2 n d

- I t -

So the recursion relations in this case are:

where the exponent associated with the brackets means that the parameters should
be taken at that i terat ion.

We have repeated this procedure for longer range interactions and we

have noticed that there i s a general law for the recursion relations of the

different parameters as the range of the interaction is increased. Our result i s :

f - f

t*J% f- ( £ j \ ?£tfc. 2 ^ . „ r^-1

Notice that the supralndex refers to the range of interaction at the l a t t i ce
corresponding to the taken i terat ion.

(*>) Disordered 1-d chain with 1 S and 2 d neighbours i n t e r a c t i o n s and

formal extension to longer range interactions.

We s tar t with the equation for a chosen s i t e n :
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with the convention that the supraindex accompanying the t'a means the range

of the interaction and the gubindex means the biggest site it connects (e.g.

t , means the link between nearest neighbours n and n+l). In this way we
n+1

take account of the fact that the link to the right between n and n+l is the

same as the link to the left between n+l and n . Next we write down the

equations for all the sites connected vith n '.

In this case we multiply each of these U equations by arbitrary constants which

we call respectively I,1 (n+l) , l^tn) , L2(n+2) , L (n) . Next we sum up all the

5 equations. We determine the constants by asking that the odd sites (n±l , n±3)

get eliminated, therefore imposing that the coefficients coresponding to them be

zero. These conditions are:

The same procedure has to be done if the range of interaction is larger with

the only difference that the system of equations to be solved in order to

determine the constants will be larger.

(c) Regular g-d square lattice with n.n. interactions.

The procedure isanalogous to that outlined for the previous example.

Ue start with the equation of motion for a given site n,m where n labels

rows and m labels columns.

- * J - O

Next we write down the equations for the It nearest neighbours. As we want to

eliminate these sites (which are "odd" sites) we multiply each of the equations

by -t It. and sum them all. We get:

ft- H^pX\

L t J

We see that we are left with a new square lattice with a' = •/? a shifted by

I450 with respect to the original one. As is well known, in 2-d , we have

generated a new coupling upon decimation. Of course, the procedure

continues to be exact. We can re-label the parameters:

i\.z
By solving this system of equations we determine the k constants. Replacing them

in the coefficients accompanying the even sites we get the explicit recurrence

formulae. The recursion relations In this cose are:

r-T-f

•T-*

T-1

where k = 2.

where the subscript indicates the order of iteration but the sites still correspond

to the original lattice.

We again write down the equations (at stage l) for the sites connected

by interactions to n,m in the above equation (8 equations). We then observe

that the "odd sites" to be eliminated are the nearest-neighbours to n,m on the

lattice corresponding to a' = •/? a so we multiply their equations by -t,/e,
22

and the rest by t./c. . We sum up all the 9 equations. We observe that all the

"odd sites" are cancelled out and we are left with the square lattice of a' = 2a

and in the same position as the original lattice (shifted back U51*). The useful

observation is that all the terms where we have crossed terms (products of t t
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with i 4 J) a r e cancelled out and all the terms which are squares of the same

interaction remain. We are left with:

L.I. f-<

f (O J
We next re-label the sites reducing the spacing to a for commodity only:

For 1 > i > r and i even:

We again write dovn the equations for all the sites connected by Interactions

with n,m and multiply by the adequate constants in order to eliminate the

"odd sites". As we have mentioned earlier, it is sufficient to write down the squared

terms only. We are left with;

- Jf, I M - T J

£

For 1 > i > r and i odd:

For i

For i = r+1

We again are left with a lattice shifted by 1*5° and of spacing a1 = 2ift&. Hotiee

that the new coupling that has appeared here is not between third nearest neighbours

but between fourth neighbours on'that lattice.

We can perform the same procedure again and again. (It is sufficient to

write down the squared terms because the others R e t completely eliminated).

However, we observe a regularity within the renormalizations of the parameters

so we can generalize the obtained relations up to any order'of iteration procedure:

So the decimation on the regular square lattice in 2-d can be carried out

automatically up to any stage with ease. The above described procedure is that

outlined b;r Southern et al. ' but they study a finite size lattice (8 x 8 in 2-d).

The procedure can,in principle, be applied in the same way to the disordered 2-d

lattice but the algebra is much more cumbersome.

III. FINAL COMMENTS

Once the decimation procedure has been performed it is necessary to know

how to extract physical information from the renormalized problem. We have
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discussed one possible procedure for 1-d problems. We want to apply

the sai»e criterion for the square lattice but the numerical evaluation of this

part has not been completed yet. However, ve have confidence of getting Rood
Ik)

results because Southern et al. pet quite pood numbers already for a finite

size system. Namely the idea is to see the convergence of the different

hopping coefficients with iteration at different values of energy and then to

extract the density of states from the diagonal renomalized parameter as

explained in Refs.9) and 15). Another point is to establish how quick convergence

actually is and decide how many interactions are relevant for a good answer.

This is necessary information if one wants to process a din̂ Hr-t-̂ ii 2~d

problem in a reasonably approximated way because there, " due to the number

of equations involved at more advanced iterations, it is very difficult to get

a general formula as in the pure case.

We also think that the 1-d problem vlth disordered 1 and 2 neighbours

interactions is also worth studying in the same way.
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