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ABSTRACT

We discuss the implementaticn of the Real Space Rencrmelizetion Group
Decimation Technique for 1-d tight-binding models with long renge interactions
with or without disorder and for the 2-4 regular square lattice. The procedure
follows the lideas developed by Scouthern g_{z___g_.}_.: Some new explicit formulae
are included. The purpose of this study is toc calculate spectra and densities of

states following the procedure developed in our previous work,
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I. IRTRCDUCTION

Real space Renormalization Group (R-G) decimation technique 1s a useful
method to calculate excitations and densitlies of states in tight-binding type
of models l). The Interest of the approach to this technique which we discuss
here is in the fect that physical quantities are obtained from convergence
properties of certain parameters upon renormalization (the on-site coefficients
and the hoppings} without the need of specifying any particular boundary conditions.
Of course for non-disordered problems the answers are well known and they are
easily calculated by Fourier transformations. However it is inter~sting to see
that in the BR-G method the disordered case can be treated with exactly the
same procedure as the ordered case and Just the rescaling of the coefficients

gives the correct answers in both cases.

Several physical systems of recent interest can be described by tight-
binding models: crystals containing a modulating periodic potential of a period
different from that of the underlying lattice, either commensurate or incommensurate
with it 2); electrons in 2-d square ilsttice ip a perpendicular magnetic fieldj,),
the Schrédinger equation with an arbitrary potential of atomic type (through the
copstruction of the Poincard map of the problem ))-, superconductive networks

(De-Gennes=-Alexander theory 5)) ete.

The philosophy of the R-G is to change & problem with many degrees of
freedom into another one with leas degrees of freedom without l9sing any physical
feature. We will 1imit ourselves here only to cases where this can be fulfilled
without sny approximation. Elimination of mlternate sites (decimation) for 1-d
models with nearest neighbours interactions with or without translationsl invariance
6)’7)'8)’9). Southern_et al. 10

that this also happens in 1-4 with sny range of interactions.

ia the simplest case that rylfilisthis showed
We will discuss
this case in more detail here. Decimstion can also be performed exactly on
fractals by eliminating sites belonging to alternate steps of formation of the
fractal 11) 12)’13). Very recently Southern et al, 1b)

the prescription hov to achieve the real space decimation in 2-~d end 3-d4 lattices.

have succeeded in obtaining

However in these cases, upon renormalization, newv ionger rang® interactions are
generated. They cut the process by working with a finite size portion of the
lattice and show reascnably good results for pure cases, As we ghall see in what
follows, we have found, following their prescription, a general formula for the
coefficients upon iteration up to any order for the pure 2-4 lattice. 'This in
principle could be extended to the disordered case but it iz much more work

consuming and at present we do not have any clear-cut results.
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Summarizing, what we want to show here is the explicit formulaticn of
the exact real space R-G decimation for 1-d longer than nearest neighbours
interactions models with or without translational invariance and for the

translationally invariant 2-d square lattice following the procedure recently

10),14)

studied by Southern et al. and adding some of our results.

We want to comment that once the Real space decimation iz performed there

ere different ways of obtaining the physical quantities.. Both Gongalves da Silva ond
10) ; 8),9},15)

Koiller )and Southern et al. and our previous work are based on the

converpgence properties of the coefficients upon renormalization. They decimate
the equation of motion for the Green function in real space and c¢alculate
densities of states by the usual relation with the imaginary part of the local

Their procedure neede the use of small imaginary parts which
15}

Green function.
sometimes give non-physical densities of states Besides their averaging
procedure for disordered problems, although simple, means introducing an
approximation which can also lead to only qualitative pesults. Our work is

based on the equation of motion for the megnitude itself (wave-function, order
parameter, spin, etc.) and we only deal with real numbers. The density of states
is oktained from the pcles of the real-part of the Green function (the on-site
coefficient) 9),15) and no approximations due to early averaging over configurations
are introduced.

a
For ordered systems and for fractalB‘different approach was also developed

1)’16)’13,. This is a one-parameter approach and is based on the scaling

and used
equation of the eigenvalue itself. Because of that it is called dynamical Scaling.

1
This has also been used for diluted magnetic systems by Stinchcombe through

the introduction of scaling laws for the probability distribution of bonds,

TI. DECIMATION IN REAL SPACE
6)

Within ocur procedure we start with the equation of motlion:

——

“’) Z[tg“*sf,‘ﬂm,;?’"“}‘]o )

where *n has the meaning of the wave-function, the order parameter, spin amplitude

ete. and is the unknown magnitude to be calculated, € 18 the on-site parameter
(in fact it has to be understood as WoE, W being the eigenvalue which has also

to be determined) and t 1is the off-diagonal parameter connecting sites at distance
8y » The subscript zero means initial values of the parameters. Rext the intermediate
degrees of freedom are eliminated {each second site on the chain, each site n,m

on the square lattice which has n+m = odd number} obtaining the equation of motion
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for the bigger lattice and the correspondiﬁg relations. Upon repeating this

r
procedure the lattice of even bigger spacing is reached (lattice constant = 2
for 1-d , 2 to power rf2 for 2-d , T being the order of iteration) with

the corresponding, form-conserving equatlon:
{f‘) (f) J_
g Y =0
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with 61 belng the distance on the new lattice.

Let us explicitely show how to obtain the recursion relations through

this elimination procedure.

v and 2nd neighbours interactions and an

(a) Pure 1-d chain with 1°
explicit extension to any range of interaction. The original equation of motion
reads:
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In this notation n#i denotes the wave-function at a given site, € = w-¢ and
tl is the hopping on the nearest neighbour gnd t2 on the next nearest neighbour,
Next we write down the analogous equations for all the sites connected with the

chosen one n (here, for the 1St and 2nd nelghbours of n):

m+d + t‘m+z+ t.mf'ﬁz-n+3 etim-4 =0
et w-zetimils £ m-320
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Next, as we want to eliminate odd gites (n*l , n#*3), we multiply the equations
for them (the first two) by minus their coupling constant that appears in the
equation fo%&fﬁ divided by the on-site energy (namely by —tlfc) and we

multiply the rest by t2/e . Then we sum up the previous 4 equations with the
first one for the chosen site n , we automatically cancel gll the cdd-sites and
we are left with the eguation for the doubled lattice (agnin with interactions only

with lBt and End neighbours on a new lettice). So we get:

en 2l 2 [oe & s
€ t

T

* 142 22 o .
[2{‘- (f;‘ljm-z ¥ [U_’E_)_Jm..q + [U%)-]M-q 0

P .

5c the recursionrelations in this case are:
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where the exponent amsscciated with the brackets means that the parameters should
be taken at that lteration.

We have repeated this procedure for longer range interactions and we
have noticed that there 1s a generanl lew for the recursion relations of the

different parameters as the range of the interaction is increased. Our result is:
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Notlce that the supralndex refers to the range of interaction at the lattice
corresponding to the taken iteration.

(B} Disordered 1-d chain with ISt and Ebd neighbours interactions and

formal extension to longer range interactioms.

We start with the equation for a chosen site n :



2 The seme procedure has to be done if the range of interaction is larger with
4 ] + -

£ + t me+t + tm m-4 + -mez m+i + t’h nrt =0 the only difference that the system of equations tc be sclved in order to

“ Mt

determine the constants will be larger,

with the convention that the supraindex accompanying the t's means the range {c) Regular 2-d square lattice with n.n. interactions.

of the interaction and the subindex means the biggest slte it connects {e.g.
1

The procedure isanalogous to thatioutlined for the previous example.
tn+l means the link between nearest neighbours n and n+l). In this way we

Ve start with the equation of metion for a given site n,m
tmke account of the fact that the link to the right between n and n+l is the

where n labels
rows and m labels columns.

same 858 the link to the left between n+l and n . Next we write down the
equations for all the sites connected with n @

4
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As we want to

eliminate these sites (which are "odd" sites) we multiply each of the equations

T
1 A z “r m =0
£ mr2z+t M3+t M ++'n-+t. Y+ ta, by -tl/e and sum them all. We get:
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h tipl h of these 4 equations by arbitrary constants which T
In this case we wul ply each of * o i i « - W) J(m+z~n+m-z,~nr~|,’“‘fz +m m-2) =0 .
we call respectively L (n+l) , L (n) , 15(n+2) , L'(n) . Next we sum up all the - '
5 equations. We determine the constants by asking that the odd sites (nt1 , n:3}
get eliminated, therefore imposing that the coefficients coresponding to them be

We see that we are left with a new square lattice with a' = #2 a shifted by
zero., These conditions are:

45® with respect to the original one. As {s well known, in 2-d , we have
4 4 2 4 4 . s s
t " - L U“N) q’h" - t“‘r‘ L (“h"f) + tM‘-z Lt("‘lfl) 20 generated & new coupling upon decimation. Of course, the procedure
4 4 2 4 4 t - continues to be exact. We can re-label the parameters:
t, * L) Cqeqgrdl, L'(uetd)+ 45, L(m) =0
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By solving thlis system of equations we determine the I constants. Replacing them
e
in the coefficients accompanying the even sites we get the explicit recurrence where the subscript indicates the order of iteration but the sites still correapond
formulae. The recursion relstions in this caese are: . )
to the originel lattice.
v+ 4 4 4 A 2 2 T 2 -1
[‘é,n] = [Eq + *‘nu— & Linr &') + tm L m)+ t,u,,&KL (mzr)+ im L (")J We again write down the equations {at stage 1) for the sites connected
4 ¥ : p 4 " r-4 by interactions to n,m in the above equation (8 equations). We then observe
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where k = 2,
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with i # J) are cancelled out and all the terms which are squares of the same [‘E_T ['E . 2—_ H 4) ]
interaction remain. We are left with: N
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We next re-lsbel the sites reducing the spacing tc a for commodity only:
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We again write down the equations for all the sites connected by interactions For 1>1i>r and i odd:
with n,m and multiply by the adeguate constants in order to eliminate the A 1 : . -1
e ) | I C Al ()" g per
odd sites”, As we have mentioned earlier, it is sufficient to write down the sguared [L"] - ’_ —_— 2 — *
terms only. We are left with: £ €
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We again are left with a lattice shifted 1y 45° and of spacing al = 23/23_ Hotice So the decimation on the regular square lattice in 2-d can be carried out
automatically up to any stage with ease, The above described procedure is that

that the new coupling that has appeared here is not between third nearest neighbours 14)
but they study a finite size lattice (8 x 8 in 2-4}.

N : tlined by Southern et al.
but between fourthnejghbours on that lattice. outan ;oneu IR

The procedure i inci be applied in the same way to the disordered 2-4
We can perform the same procedure again and again. (It is sufficient to P can,in principle, be &pPP i

. lattice but the algebra is much more cumbersome.

write down the squared terms because the others jot completely eliminated).

However, we observe a regularity within the renormalizations of the parameters
N s , IIT. FINAL COMMENTS

80 we can generalize the obtained relations up to any order'of iteration procedure:

Once the decimation procedure has been performed it is necessary to know

how to extract physicsl information from the remormalized problem. We have

-8 -



93,15} for 1-d problems.

discussed one possible procedure We want to apply
the same criterion for the square lattice but the numerical evaluation of this
part haé not been completed yet. However, we have confidence of gettine good
results because Southern et al. 1 get quite good numbers already for a finite
size system. Namely the idea 15 to see the convergence of the different
hopping coefficients with iteration st different values of energy and then to
extract the density of states from the diagonal renomalized parameter as
explained in Refs.9) and 15). Another point is to establish how quick convergence
actually is and decide how many interactions are relevant for a good answer.

This is necessary information if one wants to process a dir~rderal 2«d
problem in a reasonably approximated way because there, "due to the number
of equations involved at more advanced iterations, it is very difficult to get

a general formula as in the pure case.

1 d
We also think that the 1-d problem with disordered 1° and 27 neighbours

interactions is also worth studying in the same way.
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