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ABSTRACT

A general reaction theory of the heavy-ion fusion

cros' <rtion that exhibits clearly the possible effects of

dir< .) coupled channels is developed. Our expression for the

fus ;t .1 cross section shows how the presence of coupled channels

enha rzs its value in general. The result may be used to

st* i^rdize the discussion of, e.g., sub-barrier heavy-ion

fu . on in general.

Work supported in part by the CNPq.
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Heavy-ion fusion reactions have been customarily

treated within simple one-degree-of-freedom dynamical models.

In recent years several experiments and their subsequent

analysis have clearly shown that in r.any instances these simple

models do not suffice for a satisfactory description. In

particular, systems such as 0 + ASm , AlNi + A;:Ni , exhibit

sub-barrier fusion cross sections several orders of magnitude

larger than predicted by simple one-dimensional barrier penetration

models ~ . These experimental findings clearly called for a more

appropriate description involving explicit reference to several

nuclear structure aspects of nuclei such as deformation, single-

particle motion, etc..

A natural framework for incorporating these structure

features is the coupled-channels theory as was done recently

in Pefs. 4-6 . The general conclusion reached by these authors,

is that the heavy-ion fusion cross section considered as an

inclusive quantity, is given by

É = Z

with 5* P v = 1

and o IX) refers to the fusion cross sections attached to the

appropriate eigenchannels labeled by X , which are defined

through the diagonalization of the channel-coupling matrix

performed with a matrix (J , with £ = I U$X I *

It would be of value, though, to exhibit the effects

of these coupled channels on the fusion cross section explicitly,

as exemplifying a genuine multistep process. This can be

accc-iitplished formally within Feshbach's reaction theory.
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The purpose of tne present Letter is to develop a

general theory of the fusion cross section that shows clearly

the effect arising from directly coupled channels. This is

done by first calculating the total reaction cross section, aR ,

and then perform its natural decomposition into the different

contributing physical processes. Within a model involving

several coupled inelastic channels, the fusion cross section,

op , (or total compound nucleus cross section) is defined to be

a = ao - o , where a_ refers to the total inelastic cross

section (a sum over all inelastic channels)-

It is worth mentioning that such a decomposition of

oD has been used rather extensively in other branches of
Xv

nuclear physics such as pion-nucleus reactions, where the analog

to o_ is referred to as the absorption cross section

Following Feshbach , we introduce two projection

operators, P and Q , defined to project put of the total

wave function of the nuclear system, T , the direct component,

P¥ and the compound nucleus component (fusion component) QY .

He allow several orthogonal channels to be present in P , and

insist that P+Q= 1.

The effective equation of P¥ is given, as usual,

by

- O (2)

with the conventional notation of H denoting the diagonal

piece of the total Hamiltonian (PH Q = U), and lT the part of

H that couples P to Q . It is to be understood at this

point that Eq. (2) describes the optical model piece of Pf

in the sense of Ref. 9) . The compound nucleus propagator QGQ



is assumed to represent the energy-averaged propagation .?£ the

fused system. We ignore altogether the fluctuating piece of

the PT-wave function.

Since our starting point for a one-channel fusion

(no coupled channels effects) is one-dimensional barrier

penetration (namely we consider the effect arising from the

coupling between a one-channel P*F and QH* , through to be

representable by total absorption for the contributing partial

waves), we suppress any explicit reference ot the Q-space and

write P(HQ+ QGQ )P = P(H' +V')P. The effect of V ,

assumed to represent direct couplings among channels contained

in P , is raainly centered in the surface region, and therefore

we take it to be real. Of course H' is not Hermitian due to

the implicit Q-space (fusion) coupling.

Denoting the entrance channel projection operator

by yL and 8 ^ ^ - ^ . we have (with jpj^ = £ ̂  =O ),

(3)

(4)

With boundary conditions of only outgoing waves in J£.< Vfc , the

above two coupled equations can be reduced to an effective

equations for f* ^

where ef-t» ' s C ^ "~ Jt. " •"•* ) denotes the matrixif x i x •

propagator of the J^ channels.
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The total reaction cross section extracted from

is given by

, (6)

*L
•T -.IZE , v being the reduced mass of the system.

In Eq. (6), *» 4*""* is the exact solution of Eq. (5) with the

appropriate outgoing wave boundary condition. With our

assumption that V is Hermitian, the imaginary part of the

second part inside the round brackets in Eq. (6) becomes

proportional to XtH aLS^^ ' w n^ c n i s given by

4.

where -^jp is the Mõller operator defined in the 3P sub-

^ is the "free" IF -propagator (free except for long-range

Coulomb repulsion effects, ̂ p i€) = (E - (J? H Jp - *Uff ) )

iX i l ^and u l p i s t h e o p t i c a l p o t e n t i a l c o n t a i n e d i n g H I P

Eq. (7) is the usual unitarity identity, generalized to non-

Hermitian interactions '.

Inserting Eq. (7) into (6), and using

we find
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We call the first term in Bq. (8), the total summed inelastic

cross section, o , as that what it precisely is, since

t
which when used, gives for 01 —

. Therefore we identify the total fusion

cross section to be o_ = a_ - an ,

Equation (9) above clearly exhibits the multi-step nature of

9_ when strongly coupled direct channels are involved, as

exemplified by the second term. This can be made more clear by
tf>

first writing forIV. Vj/ y , which of course, by definition,

contains the effect of channel-coupling to all orders.

V is the entrance channel wavefunction in the limit

V 'Yx ~ ° ' and UBing

-*»

Ct»

In Eq. (11) ZV LÇ) is the full (exact) JT. -matrix propagator

which contains the affect of the coupling IP V V ' t o

1 'L
orders.
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Thus

Let us introduce now the fusion cross section in the absence of

channel coupling. Ops-"~<P14f 11* tl ̂ | ̂  *

Then the first term in Eq. (12), would in general be smaller

than o p , due to the fact that H^jfc' > | ̂ ,j|f'1
(iit>/ > owing

to loss of flux form *f, toJlâ ^ue t o channel coupling in
(+1

lit ̂  "y * However, if there are several strongly coupled

channels present in jP , the second term in Eg. (12) could

more than compensate for this reduction in the value of the

first term, giving an over-all enhancement in o .

To show this explicitly, we assume that X^lXa

is diagonal, <^?f>|I*Uf |*!/f> ~%JU%-*'><*%>
4

and consider only the on-energy-shell parts of \ff(£) and ^f (£) •

<rF = - ^

(13)

where we have implicitly diagonal ized

we may recast Eq. (13) into the following more a t trac t ive form
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f

The factor g appearing in the integrand comes about as a

result of our definition of o and ap , Eqs. (6) and (9).

The ^ . are not the usual inelastic probabilities since they

are constructed from the matrix element \SX* \$L ^T^lkfe /*

and not 4jtf^~ 15* V f± | ft & 2> • The difference between

th- two matrix elements resides in the fact that J/J* if^lj* <£. >|

is different from unity because of absorption in the d>+t

eigenchannel. Actually S J^ Ĵ . | j Ĵ . S is just the inverse

of the elastic S-matrix element of the folk eigenchannel, (S~ )J.,

and thus it could be quite larger than 1 under conditions of
10)

strong absorption

Though obtained using the on-energy-shell approximation

for ^-channels Green function, Eg. (14) could very well be

more general. In fact numerical studies done by the U. of Texas

group on related approximations in incomplete neavy ion fusion

reactions11', have shown that the off-shell part of the channel

Green function, in cases where Coulomb repulsion is strong, is

practical:y identical to the on-shell part. Thus, to take into

account the off-shell propagation effects, it suffices to

multiply the second term of Eq. (13) by a factor of 4. There-

fore, with P1. given approximately by

Eq. (14) supplies a reasonable expression for the heavy-ion
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fusion cross section which contains explicitly the effects of

coupled channels. The enhancement o.n o over the one-channel

barrier penetration value, op , is quite apparent in Eq. (14).

For all practical purposes, Eq. (14) is identical

to Eq. (1), discussed in Ref- s) • We consider our theory,

however, more advantageous, as it supplies a rather well-defined

and simple expression for the P... , which can be calculated

from, e.g. a DWBA code, after paying due attention to the

differences in the matrix elements by multiplying the final

result by sT. .

We emphasize that features such as the presence of

different "eigen-barriers" discussed in Refs. (5) and (6), are

certainly present in our op(j) • This is the case, since by

definition, these fusion cross sections are calculated from the

exact eigenchannel wave-function jjp %, \ which contains the

effect of the -direct channel coupling to all orders and thus

must be dominated by the physics of the penetration of an

effective eigen-barr ier.

It is worth mentioning at this point that our theory

is not restricted to sub-batrier fusion. We endevour to suggest

that the directly coupled channels are always present in op .

They seem to have noticeable effect at sub-barrier energies,

where small changes in the eigen-barriers seem to lead to large

effects (enhancement) in o_ , and at higher energies, where

many inelastic channels (and particle transfer) start carpeting

with fusion. This is the region in energy, usually referred to

as region II when one finds — becoming smaller than unity as
R

the energy is increased. At these relatively higher energies

quantum barrier penetration effects become unimportant and

purely geometrical features dominate^ <j_ .
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Using such a geometrical picture of CTI_.C j

the sense

(16)

where R. , Q. and V. are the radius, Q-value and effective

barrier of the jth. eigenchannel, we envisage a simple expression

for o_ , from our Eq. (14) , after treating the P. . statistically,

in the sense of, e.g., Ref. 13),

01 £ jr %x fl - —¥. ] (17)

where, the average quantities R7 , V and ÃÊ are in general

functions of the center of mass energy, E .

It is our opinion that a consistent parametrization

of op must involve a minimum of three parameters; an average

radius parameter, (W) z , an average fusion barrier, V and

an average energy loss, 21 .

In conclusion, we have formally analysed the reactive

content of the heavy-ion fusion cross section and derived a

simple expression that shows clearly the effect of directly

coupled channels. Our unified reaction theory of heavy-ion

fusion, may help devise approximation procedures to be used in

the analysis of e.g. sub-barrier data that exhibit marked

deviation from the prediction of one-dimensional barrier

penetration model calculation. It is hoped that the discussion

presented in this Letter would help unify the different

theoretical approaches to the above, as well as to other, fusion

problems.
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