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ABSTRACT

The Green's Function Monte Carlo method is applied to the calculation of
the binding energies of electron-hole complexes in semiconductors. The quantum
simulation method allows the unambiquous determination of the ground state
energy and the effects of band anisotropy on the binding energy.

INTRODUCTION

The interaction of electrons and holes in a2 semiconductor is apparently
well described, but not exactly described, by the effective mass Hamiltonian.
This simple Hamiltonian, which has a sound theoretic basis {1}, says that
electrons and holes interact viz a coulomb potential which is screened by the
dielectric constant. The fact that electrons in the conduction band and holes
in the valence band interact with a sea of other electrons and a periodic
lattice of atomic cores is contained in an effective mass m_or m for the
electrons and holes. . ¢

2 2
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With this Hamiltonian the study of small complexes becomes a few-body problem
instead of a many-body problem. The simplest complex, the exciton, is equi-
valent then to a hydrogen atom and is an analytically soluble two-body problen.
The existence of excitons is well known [2] from the luminesence spectra of
semiconductors [3] and provide valuable information ahout the materials
properties of Semiconductors.

*Hork supported by the U. S. Department of Energy.



Small electron-hole complexes with two holes and one electron, the trion
with two holes and two electrons, the biexciton, and larger conglomerations N
have been the subject of theoretical consideration [4] with supporting experi-
mental [S) evidence for some time. These few-body problems cannot be solved
analytically, and the absence of an accurate ground state energy inhibits the
unambiguous identification of their contribution to the spectra from these

semiconductors.

It is the primary value of quantum simulation methods that they yleld
accurate, indeed exact, fnformation about quantum many-body systems. This work
describes the-application of the Green's Function Monte Carlo (GFHC) method to
the calculation of the ground state energy of these few-body electron-hole com-
plexes. As will be explained in the next section, the method yields the exact
(or as accurate a value as desired) ground state energy, but does not give an
~ analytic expression for the wave function. All the information one obtains

about the wave functfon comes in the form of a2 set of points in configuration
space sampled from 2 probability distributfon which is proportional to the wave

function. .

THE GFMC METHOD
It has been apprecfated for some time [6] that the mathematical structure

of the Schroedinger equation is directly analogous to a diffusion equation in
the presence of absorptfon processes. Kalos and co-workers [7] have taken this
analogy and shown that {t may be made into a computationally feasible method -
for obtaining exact fnformation about the ground state energy and structure of
quantum many-particle systems. To date, these methods and similar quantum
simulation method§ have been successfully applied to many-boson systems such as
1iquid and solid “He [8], one dimensional fermfon models [9], few nucleon
models [10] and lattice gauge theorfes [22]. Although no exact method ex{sts
[10] for simulating three dimensional many-fermion systems, considerable
progress fn this direction has been made for the electron gas [1]]. 1iquid

He [12], and atomic and molecular electronic structure calculations [13].

‘ In this paper we will describe the Green's Function Monte Carlo method and
apply it to the study of the four-particle {biexciton) system. Because this
system has two electrons of opposite spin, and two holes of opposite spin, the
antisymmetry requirement of fermion statistics does explicitly enter the calcu-

Yation, and normal boson methods apply.

The Diffusion Analogy
The Schrodinger equation for an N-particle system is

2 N 5, . . )
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It will be convenient to use a 3-N dimensional vector, R = (ry, Tpu ooy ),
to specify the particle positions. To avoid confusion we wil] restrict the
term particle to refer to the threc dimensional entities in real space. In 2R
dimensions the position vector R will specify a configuration. With this nota-
tion, and understanding that ¢ is the 3-N dimensional Laplacian, the Schroe-

dinger equation becomes

62
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In the same notation, we wish to describe the Jiffusion process in 3-N dimen-
sions. A density, n(R,t), (to he thought of as the density of configurations
having the coordinate R) gives rise to a diffusion curreat

J(r,t) = -D¥,(R,t) (4)

where D is.the diffusion constant. If current {s not conserved, then a source
term modifies the conservation equation,

$:3(r,8) + I- o(R,t) = S(R.t). (5)

S(R,t) is the number of configurations per unit volume and time which are pro-.
~ duced at point R. If S{R,t) is negative then {ts magnitude {s the rate of

absorption of particles. If there is a probability per unit time, A{R), for
a particle at R to be absorbed, then the source term {s of the form,

S(R,t) = -A(R) o(R,t). - (6)

Combinfng these three relations yields the diffusfon equation {n the presence
of absorption.

0 v2p(R,t) + A(R) o(R,t) = - GOR o

It is the similarity of this equation to the Schroedinger equation which
forms the basis of the GFMC method. In the appropriate units, (4i=1) the {den-
tifications of D with 1/2m and A(R) with V(R) make the twe equations identical
except for the factor 1 = /-1 associated with the time varfable. This near .
equivalence can be seen clearly if at t=0 the starting point for the time
evolution of both equatfons is the same, f.e. p(7,0) = ¥(R,0), then the formal
solution to the equations fn terms of the statfonary state solutions (bnl is

-lnt
O(Rpt) = : aﬂ¢n(R)e (8)
-iEnt
v(R,t) = £ 3¢ (Rle
n
The eigenvalues are identical A = €, and tha eigenfunctions are identical.
The difference is that ¥ oscillates in tima and p decays in time. Actually,

the decay process occurs only if the eigenvalue spectrum is positive definite,
but this can always be achieved by subtracting a constant Ey from the Hamil-
tonian. This amounts to guessing a trial value for the ground state energy.
At large times, the dominate component in the density is the one with the
smallest eigenvalue. [If one has chosen Fy to be near Eo. then asymmptotically

’ -(€, -E1)t
o(R,t) + a8 (R)e (£o7Er) _ {9)



the density is nearly time independent and converyges to the ground state wave
function.

The crux of the GFMC method is that it doesn't attempt to simulate the

Schroedinger equation directly, but actually implements a diffusion process
that evolves in time until the density approaches the ground state wave function.

Equivalently, one may say that the GFMC method simulates the quantum system in
imaginary time. Following the second point of view, we deffne the variable

t=it, then Schroedinger's equation

(-¥° + VR) - £1) ¥(R,7) = - 3= ¥(R,0) (i0)
has the formal solution
-(E _-E.)x
YRx) =Ezg (Rle " T (1)
®
The Green's Function
The operator which moves the system forward in imaginary time is the
Green's function,
-(H-E. )t
T (12)

G=e .

In terms of position space variables, the propagation of y {s achieved by the
integral

v(R,t) = [G(R,t,R',x') ¥(R',x')dR". (13)

It is this integral which {s to be done using Monte Carlo techniques.

The properties of this Green's function are contained in elementary
Tt is only necessary

quantum mechanics and mathematical physics texts [14]. .
to make the substitution t=it for the purpose at hand. G satisfies a diffusion

equation

[-vzR + V(R)] G(R,7,R",v") = - §? G(R,T,R",7’") (14)

with the boundary condition:

limit 6(R,1,R*.7) = 6V (RR"). (15)

=yt

It has the formal solution
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and can itsalf be propagated forward in time
G(R,t,R",v") = fdR* G(R,T,R',c') G(R',x' ,R",t"). (17)

In the language of a diffusion process, G(R,t,R',x*) {s the density resulting
from a unit source, or equivalently, the expected density at position R at
time v given that initially one configuratfon was at position R' at time t*.

One does not need an analytic expression for the Green's function in order
to propagate the wave function forward in time. It is useful, however, to begin
with an analytic form which is valid for short times at = x-t' << 1. The con-
fiquration initfally at R* remains localized there for short times. For
sufficiently short times the local potentfal may be considered to be a constant,
u = Y(R'). The Green's function for a constant potential satisfies,

2 T ‘e
(-9% + o) Gu(R,r.R R T Gu(R.t,R ')

and is given by a gaussian,

(R-R*)2/2Av-uat)

. (18
(ZIAT)BNIZ )

G, (R,47,R",0) = exp{-

In terms of V(R'), fncluding now the constant ET added to H, G is approkimate]y
given by .
expl-(R-R*)%/287 - (V(R')-E )Ac)

G(R,x'+ar,R',v') = .

(19
(2xar)>N/2 ‘

" and neglects terms of order At compared to unfity.

At this point one can {mplement the GFMC method within the short time
approximation. He will come back to considerations of efficiency and accuracy

after outlining the short-time algorithm.

The GFMC method will nat give an analytic form for y(R,t), but rather
supplies a set of configuration points {R} sampled from y(R,c). That is to say
the probability of a particular R occurring in a population of many configura-
tions is proportional to the value of the wave function at that point. For
the systems of interest here, the ground state wave function is positive
definite, hence one can define the probability density

P{R,t} = ¢(R,v)/fu(R,x)dR (20)

and say that one obtains a set of configurations sampled. from P{R,1}. Hote
that the probability density is in terms of the wave function and not its

square.



The algorithm proceeds as fonows,1 Initially one selects a large number
(M + 107) of configurations fR;(f=0)}iL] from some initial guess for the ground
state wave function. This initial guess is usually an enalytic trial wave
function ¥y(R), and the initial sample can be generated using standard Metrop-
olis techniques [15]. Given this sample for ¥(R,0) one wishes to obtain con-
figurations sampled from y(R,at). The expected value of the wave function
v(R,at) at each point R is given by substituting the configurations (Ri(o)}i=1

into equation 13. Then

G(R,M.Ri((}) 0). (21)

nem=
-—

w(R,at)> '"'i'T
i
If one samples a new set of L points {Ri(Ar)}ikr from the probability distribution
<v(R,at)>/[drR<p(R,aT)>, . (22)

then this new set will be sampled from P(R,At), i.e. the wave function at time
1t = 4t._  Once complete, the process is repeated from the set {R(at)} to obtain

{R(2at)} and integrated to arbitrarily Yarge t.

The simulation proceeds by allowing each of the initial configurations to
diffuse for a time At. In the short time approximation G is known, and one
simply sample a new set of configurations from the gaussians centered at the
original configuration points. The short time Green's function is a normalized

gaussian multiplied by a factor

H(R') = exp(-(V(R*)-Ep)ac). (23)

This weighting factor is the probability that the configuration will survive

a time At in the presence of an absorption probability V(R')-Ey. If W<I,

then with probability 1-W, that configuration is eliminated from the simula-
tfon. Since V(R') can be less than Er, W may be greater than one. This is a
branching ratis, or more precisely, tge expected number of new configurations
generated in a time Atr. Thus for 1<H<2, a second configuration is sampled
with probability W-1. For ¥ greater than two, the generalization is obvious.
After one has sampled 0, 1, or more configurations from each initial configura-
tion, a new population of points has been obtained, and these points have been
sampled from v(R,at) (actually P(R,at)). This process has achieved one itera-
tion of equation 13. The process is then repeated to obtain ¢(R,2at) and may

be iterated to arbitrarily large times.

Importance Sampling ) A
Obtaining a population of points sampled from the ground state wave
function is not enough to allow the calculation of expectation values. To
state it simply, one cannot calculate the square of the wave function from the
known set of configurations. Although the energy may be crudely obtained by
~adjusting the value of E; so that the number of points in the population is
stable, this estimate of E_ has large statistical uncertainty. The random
fluctuations in the size of the population due to the continual creation and
annihilation of configurations can be largely eliminated through importance
sampling. The philosophy at work here is the more information about the wave




function which you put into the calculation, the more effective the GFHMC method
is in obtaining the results. The information is 2 reasonably good approximate
aralytic form for the ground state wave function yp(R). This is typically a
Jastrow type wave function which incorporates some short range pair correla-
tions, a feature particularly important in coulomb systems, or systems {nter-
acting with unbounded potentials.

Using the trial wave function yr(R), one forms the new deasity,
f(R,7} = ¥(R,7) ¥ (R) (24)

and the new propagator
K(R,%,R',T') = ?T(R) G(R,T.R;.T')IPT(R')
which then #attsfies the modified propagator equation,
F(R,T) = JK(R,T.R', ) FR%T IR (25)

This equatfon says that {f a set of configurations {s propagated forward in.
time according to the modified stochatic dynamics of the kernal K, then this

new population eventually evolves to .

1imit f(R,T) « ¢°(R) ?T(R). : _ ~ (26)
t—-) -
Before discussing the modified propagatfon procedure and {ts effect on
population stability, it {s pointed out the secondary advantage of usfng f(R,¥)

in the calculatfon of the energy. If we calculate the expected value of’
(v (R))7¥(R) = E(R) over M configurations the expression is

M
<("*T)/¢%> - (1/M) 151 HPT(Ri)IFT(Ri?. | (27)

This is an estimator for the expectation value over the probability.density
P(R.t) = f(R,t)/[dRF(R,T). (28)

The average equals the ground state energy when f(R) o ¢0(R) WT(R). The
expectation value ‘
Mo Jare (R)¥(R) [He(R)/9;(R))

K—T> =
v, JaR% TRYV (R]

(29)

!dR¢o(R)u¢T(n)
E =
o rdRe (R)¥(R) (30)




by the hermitian property of H. It can be shown [12] that the expectation
value of E(R) is an upperbound to E_ at any 1. The energy calculated in this
fashion has a much lower statistical varience if an accurate ¥1 s known.
Indeed, the statistical uncertainty would be zero {f V1 = b

The difference in the propagators K and G can be made clear if one expands
the ratio #(RZ)IV(RI) using d

: 2
zn ¥(R,) = tn v(R;) + (Ry-R;)- .d—f{’-]- tn ¥(R) ¢ -;- (R.‘,-R])z ;ﬁ‘z zn ¢(R)). {31)
. _ .

Then, K is approximately given by
K = G(R,*,R",t") explenyr(R) - 2nvp(R*)] (32) .
= (l/ZwAt*)zn/zexp[ -(R-(R'-Fdr*))zféar* - (E(Rﬁ—ET)At*i

where F = V'znﬁ(R‘) and AT* = Af/(lJizzn*(R').~'

This expression is correct to oEder At as before, and we have neglected some

cross terms of the ordep (R-R')< {n the Taylor serfes expansion. This is

consistent since (R-R') « ax. In this form, we see that 1f the trial function
then E(R) = £, and provided Ey = E,, the propagator

¥1 is exactly equal to ¢,

is a normal{zed gaussfan. Hence the size of the population never changes and
all conf{guratfons survive each step with probabfifty W=1. When ¢ {s close to
¢.s the population fluctuates, but the fluctuations are much smaller. The

d?namfcs of the diffusfon have been changad by translating the center of the
gaussian by an amount Fac* towards regfons of larger ¢r, f.e. higher probability.
The width of the gaussian has also changed. The populatfon stability has been
gafned but at the expense of calculating E(R) at each step rather than Y{R).

The overall result i{s stil1l a much more efficient, lower variance calculation.

THE BIEXCITON

The bifexciton fn fts ground state consists of two electrons of opposite
spin and two holes of opposite spin. The existence of the entity {s without
questfon, but its binding energy has been debated [16] and even accurate
variational calculatfons [16] have given only 50% of the experimental-binding
energy in silicon and germanfum. From tha variational calculations of
Brinkman, Rice, and Bell [16] we know that wave functions which incorporate
some particle correlations yield improved binding energies. One might expect
then that a GFMC calculation, which incorporates all correlation effects, would
obtain sfgnificantly greater binding enercies and resolve the discrepancies

with experimental results:

_ To eliminate uncertainties in material; parameters it is best to establish
a2 system of units where energy is measured in units of the exciton energy,

E,s given by

£, = weds2nx? {33)



where p is the reduced mass and K the dielectric constant. In these units, the
four-particle Hamiltonian becomes ' _

Ho= ~(/7(1+)(72 + 92) - (o/(1+0))(7,7 - % 2)
t 2yt 2rgy - 2y, - Uryy - Uy, - Uy, (34)

vhere, o = m-lmh. and the electron coordinates are labeled 1,2 and the hole
coordinates g,b.

The trial wave function, vT(R) was the product of three functions ¥_,,
¥uh and ¥,p, chosen to fncorporate as much fnformation about pair correlitions

as possib?e.

Yeolr) = expleir/(1+c,r)]
Yoh(r) = explear/(l+e,r)]
Ve = expl-{arp, + Bryp + Bry, + arpp)]
+ expl-(Bry, + aryp + ary, + Brop)l T (35)

The GFMC caleulatfons were performed for several values of the mass.
ratfo, ¢ = 0.01, 0.1, 0.3, 0.6 and 1.0. The var{ational parameters C1»,
€o, C3, €4 2nd a and 8 were varfed until a reasonable {nitial energy was
ogtained at each o, Populatifons of =500 configurations were run for typfcally
40 units of time with time steps of AT = .005 or less. Tests were done on .
time steps of At = .01 and .001 to establish that the error due to the short
‘time approximation was less than the statistfeal uncertainty (<0.1%) of the

total energy. :

-Figure 1 shows the results from the GFMC calculat{ons and the results of
the varfatfonal calculations of ref. 16. In these units, the energy of two .
isolated excitons fs -2.0. One sees that as the electron and hole masses .
‘become comparable the system becomes weakly bound. When o = 1, the binding
energy {s about 3% of the total energy. It {s i{n this equal mass limit that
the varfational calculations suffer most from inadequate treatment of correla-
tions in the wave function, and yield a binding energy of only half the correct
value. The 1-2% error in the total variational energy becomes less important

as the hole mass increases.
Comparison of the GFM{ results to experimental measurements can be made
for several values of 0. For small o an exact form for the energy is known {17],

(o) = (-2.346 + 0.764/3)Ex {36)

and agrees with the GFMC results at o = .01 to better than three significant
figures. In this mass riange CuBr and CuCl [2,18] have values of o = (.01 and
0.02 and experimental binding energies of ~29 mev and 34-44 mev respectively.



The exciton energies of 110 and 190 mev in these systems give GFMC energfes
of 29 and 45 mev respectively. This is very good agreement, but {t must be
treated cautiously since a small uncertainty in the mass makes & big change in
the energy fn this regfon of small o. A.more reasonable comparfson may be to
take the measured binding energy and predict the mass ratfo,since it {s the

less accurate quantity.

1 { { 1
—2.0 BRB*\\ e j
\GFMC ]
2.4l _ -
{ i | | 1

0 0.2 04 06 0.8 1.0
O = melmp

Fiqure 1." Ground-state energy of biexcitons as a function of the electron-hole
ratio, o. The dotted curve represents the variational results of Brinkman,
Rice and Bell (BRB) (ref.]€) while the solid curve shows the Green's Funcliion
Monte Carlo (GFMC) results. Here the energies are expressed in excitonic
rydbergs, E,.

Germanium and silicon are well studied systems and have electron-hole
masses which are more nearly equal. There is, however, the complication of
band warping since the top of the two valence bands in these semiconductors
are degenerate and coupled. Recently biexcitons have been observed stressed
Ge<1,1,16> [19] and Si<1,0,0> [3] where the electrons occupy a zingle conduction
band and the holes occupy a single hole band. These bands are anisotropic,
but we will come back to that point later. In the germanium experiments the
binding energy is estimated to be .15 ¢ .01 mev and using o = .7, the GFMC



energy corresponds to 2 .16 mev binding energy. The variational calculation
obtains only 60% of this binding. In the experiments on stressed S§<100>,
Gourley and Holfe [3] report the binding energy to be 0.10 E, which {s to be
compared with a value of 0.08 E_, {n unstressed Si [20] and a"GFHC value of

.06 Ex when a mass ratfo of g »1 {s taken.

It s only fa sflicon that there appears to be a2 discrepancy between
calculated and experimental results. The variational result accounts for about
1/3 of the binding and the GFHC accounts for about 2/3 of the observed binding
energy. This {s one of the advantages of an exact numerical result. A dis-
crepancy with -experiment tells you something, because ft cannot be attributed
to approximatfons fnvoked in arrfving at the solutfon of the problem. In the -
present case we have essentially an exact result for the ground state energy
of the effective mass Hamfltonfan. Apparently, this Hamiltonfan does not.
exactly correspond to the experfmental system. One difference fs that the
calculatfon has not included band anfsotropy. Because the curvature of both the
electron and hole band; s dffferent along different crystal axes, the effec-
tive masses along these axes must be distinguished as to the longitudinal m
and transverse mr components. Returning for a moment to-the analogy. between
the Schroedinger equatfon and a diffusion equation, this {s equivalent mathe-
matically to saying that the system has an anisotropic diffusion constant. ,
This feature makes even the twe-body exciton Hamfltonian fnsolvable analytically
but causes only a minor change fn the GFMC calculation. He have accordingly
taken literature values [21] of the anisotropic masses {n sflicon, and repeated
the silicon ¢alculations to determine the effect of this anfsotropy. Prelimin-
ary results fndicate that at most the binding energy 1s loweived. another 10%
remaving perhaps a third -of the remafning discrepancy. Compared to the total
enerqy this 1s a small difference =1,5%4.. One may even take .this result as
support for the surprising accuracy of the effective mass Ham{ltonian. . :
Alternatively one may use ft to motivate an attempt to find the physicai-origins

of the addftional binding energy. )
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