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ABSTRACT

The Green's Function Monte Carlo method is applied to the calculation of
the binding energies of electron-hole complexes i n semiconductors. The quantum
simulation method allows the unambiguous determination of the ground state
energy and the ef fects of band anisotropy on the binding energy.

INTRODUCTION
The interaction of electrons and holes in a semiconductor is apparently

well described, but not exactly described, by the effective mass Hamiltonian.
This simple Hamiltonian, which has a sound theoretic basis [1], says that
electrons and holes interact via a coulomb potential which is screened by the
dielectric constant. The fact that electrons in the conduction band and holes
in the valence band interact with a sea of other electrons and a periodic
lattice of atomic cores is contained in an effective mass m or m. for the
electrons and holes. e

With th i s Hamiltonian the study of small complexes becomes a few-body problem
instead of a many-body problem. The simplest complex, the exciton, is equi-
valent then to a hydrogen atom and is an ana ly t ica l ly soluble two-body problem.
The existence of excitons i s well known [ 2 ] from the luminesenee spectra of
semiconductors [ 3 ] and provide valuable information about the materials
propert ies of semiconductors.

*Work supported by the U. S. Department of Energy.



Small electron-hole complexes with two holes And one electron, the trion,
with two holes and two electrons, the biexciton, and larger conglomerations
have been the subject of theoretical consideration [4] with supporting experi-
mental [5} evidence for some time. These few-body problems cannot be solved
analytically, and the absence of an accurate ground state energy inhibits the
unambiguous identification of their contribution to the spectra from these
semiconductors.

It is the primary value of quantum simulation methods that they yield
accurate, indeed exact, information about quantum many-body systems. This work
describes the-.application of the Green's Function Monte Carlo (GFMC) method to
the calculation of the ground state energy of these few-body electron-hole com-
plexes. As will be explained in the next section, the method yields the exact
(or as accurate a value as desired) ground state energy, but does not give an
analytic expression for the wave function. All the information one obtains
about the wave function comes in the form of a set of points in configuration
space sampled from a probability distribution which is proportional to the wave
function.

THE GFMC METHOD
It has been appreciated for some time [ 6 ] that the mathematical structure

of the Schroedinger equation i s d i r e c t l y analogous t o a dif fusion equation in
the presence of absorption processes . Kalos and co-workers [ 7 ] have taken t h i s
analogy and shown t h a t t t may be made in to a computationally f eas ib le method
f o r obtaining exact information about the ground s ta te energy and structure o f
quantum many-particle systems. To date , these methods and s imi lar quantum
simulat ion methods have been succes s fu l l y applied t o many-boson systems such as
l i q u i d and s o l i d 4He [ 8 3 , one dimensional fermion models [ 9 3 , few nucleon
models [103 and l a t t i c e gauge t h e o r i e s [ 2 2 3 . Although no exact method e x i s t s
[103 for s imulating three dimensional many-fermion systems, considerable
progress in t h i s d i r e c t i o n has been made for the e lectron gas [ 1 1 3 , l i q u i d

He [ 1 2 3 , and atomic and molecular e l e c t r o n i c structure ca lculat ions [133 .

In t h i s paper we w i l l descr ibe the Green's Function Monte Carlo method and
apply i t to the study of the four-particle (biexciton) system. Because this
system has two electrons of opposite spin, and two holes of opposite spin, the
antisymmetry requirement of fermion statistics does explicitly enter the calcu-
lation, and normal boson methods apply.

The Diffusion Analogy
The Schrodinger equation for an H-particle system is

It will be convenient to use a 3-N dimensional vector, R = (f,, r̂ ,. . . . . rK),
to specify the particle positions. To avoid confusion we will restrict the
term particle to refer to the three- dimensional entities in real space. In 3H
dimensions the position vector R will specify a configuration. With this nota-
tion, and understanding that ?* is the 3-N dimensional Uplacian, the Schroe-
dinger equation becomes

• V(R) *(R.t) ." HS *f <,{R.t>. (3)



In the same notation, we wish to describe the diffusion process in 3-N dimen-
sions. A density, p(R,t), (to he thought of as the density of configurations
having the coordinate R) gives rise to a diffusion current

t) (4)

where D is the diffusion constant. If current ts not conserved, then a source
term modifies the conservation equation,

$-3{R.t) +~-p{R.t) «S(R,t). (5)

S(R,t) is the number of configurations per unit volume and time which are pro-
duced at point R. If S(R»t) is negative then its magnitude is the rate of
absorption of particles. If there is a probability per unit time, A(R), for
a particle at R to be absorbed, then the source term is of the form,

S(R»t) - -A(R) p(R,t). (6)

Combining these three relations yields the diffusion equation fn the presence
of absorption.

-0 V2
p(R.t) + A(R) p(R,t) - - |j p(R,t). ; (7)

It is the similarity of this equation to the Schroedinger equation which
forms the basis of the GFMC method. In the appropriate units, (tfe'l) the iden-
tifications of D with l/2m_and A(R) with V(R) make the two equations identical
except for the factor i •= /-I associated with the time variable. Tin's near .
equivalence can be seen clearly if at t«0 the starting point for the time
evolution of both equations is the same, i.e. p(1,0) * *(R,0), then the formal
solution to the equations in terms of the stationary state solutions {* } Is

P(R,t) * E a • <R)e "
n

n _iE t

• (R.t) = E V n ( R ) e "
n

The eigenvalues are identical Xn = E Q and the eigenfunctions are identical.
The difference is that * oscillates in titr.e and p decays in time. Actually,
the decay process occurs only if the eigenvalue spectrum is positive definite,
but this can always be achieved by subtracting a constant Ey from the Hamil-
tonian. This amounts to guessing a trial value for the ground state energy.
At large times, the dominate component in the density is the one with the
smallest eigenvalue. If one has chosen Fy to be near P Q, then asymnptotically

P ( R . O - ao*o(R)e*
(E°'fT)t {9)



the density is nearly time independent and converges to the ground state wave
function.

The crux of the GFMC method is that it doesn't attempt to simulate the
Schroedinger equation directly, but actually implements a diffusion process
that evolves in time until the density approaches the ground state wave function,
Equivalently, one may say that the GFHC method simulates the quantum system in *
imaginary time. Following the second point of view, we define the variable
x=it, then Schroedinger's equation

(-V2 4- V(R) - ET) •(R.x) = - |^ •(R.T) 00)

"(E - E T ) T

c V ( R ) e

has the formal solution

Vn

The Green's Function

The operator which moves the system forward in imaginary time is the
Green's function,

- ( H - E T ) T
G - e ' . (12)

In terms of position space variables, the propagation of << is achieved by the
integral

•(R,*) - / 6 ( R , T , R \ T I ) •(R'.t'JdR1. (13)

It is this Integral which Is to be done using Monte Carlo techniques.

The properties of this Green's function are contained in elementary
quantum mechanics and mathematical physics texts [14]. It is only necessary
to make the substitution fit for the purpose at hand. G satisfies a diffusion
equation

C-V2 + V(R)] G ( R . T , R V ) = - ~ G ( R , T , R V ) (14)
K

with the boundary condition

limit G(R,t,R\T#) = 63H(R-R'). (15)

It has the forma! solution



G = E •n(R)e"
E°1*n(R

#)e*fnl (16}

and can itself be propagated forward in time

G ( R , T » R \ T " ) « /dR' GfR.t.R'.t1) G(R' ,T' ,R M , T " ) . (17)

In the language of a diffusion process, G(R,T,R ' ,T § ) is the density resulting
from a unit source, or equivalently, the expected density at position R at
time T given that init ial ly one configuration was at position R1 at time x*.

One does not need an analytic expression for the Green's function in order
to propagate the wave function forward in time. It is useful, however, to begin
with an analytic form which is valid for short times AT *= T-T1 « 1. The con-
figuration in i t ia l ly at R* remains localized there for short times. For
sufficiently short times the local potential may be considered to be a constant,
u » V(R'). The Green's function for a constant potential satisfies,

(-V2 + u) G U ( R , T . R ' , T ' ) - - f -G^R. t .R ' .T 1 )

and is given by a gaussian,

G U (R»AT,R\0 ) •

In terms of V(R'), including now the constant ET added to H, G is approximately
given by '

exp{-(R-Rf)2/2AT - (V(R')-ET)AT}
G C R . T ' + A T . R V ) 2 : *iT75 i . (19)

IZTATJ

and neglects terms of order At compared to unity.

At this point one can implement the GFMC method within the short time
approximation. We will come back to considerations of efficiency and accuracy
after outlining the short-time algorithm.

The GFMC method will not give an analytic form for t(R,T), but rather
supplies a set of configuration points {R} sampled from <I{R,T)« That is to say
the probability of a particular R occurring in a population of many configura-
tions is proportional to the value of the wave function at that point. For
the systems of interest here, the ground state wave function is positive
definite, hence one can define the probability density

P ( R . T ) = *(R.T)/J>{R.t)dR (20)

and say that one obtains a set of configurations sampled from P (R ,T) . Note
that the probability density is in terms of the wave function and not its
square.



^ algorithm proceeds as follows. Initially one selects a large number
(M •». 10 ) of configurations (R<(T=O))|J| from some initial guess for the ground
state wave function. This init ial guess is usually an analytic trial wave
f i (R) g y y
function fj(R), and the initial sample can be generated using standard Metrop-
olis techniques [15]. Given this sample for *(R,0) one wishes to obtain con-
figurations sampled from 4»(R,AT). The expected value of the wave function
•(R,AT) at each point R is given by substituting the configurations (Rf(Q)}f;!i
into equation 13. Then

. M
«KR,At}>=i. E G(R,AT,R (O),0). (21)

n i=l

If one samples a new set of L points (Rj (AT }},•!: | from the probability distribution

T)>. (22)

then this new set will be sampled from P ( R , A T ) , i.e. the wave function at time
T « A T . Once complete, the process is repeated from the set (R{AT)} to obtain
( R ( 2 A T ) } and integrated to arbitrarily large ?.

The simulation proceeds by allowing each of the initial configurations to
diffuse for a time A T . In the short time approximation G is known, and one
simply sample a new set of configurations from the gaussians centered at the
original configuration points. The short time Green's function Is a normalized
gaussian multiplied by a factor

H(R') -exp(-(V(R')-ET)AT). (23)

This weighting factor is the probability that the configuration will survive
a time AT in the presence of an absorption probability V(R')-ET. If M<1,
then with probability 1-W, that configuration is eliminated from the simula-
tion. Since V(R') can be less than Ej, W may be greater than one. This is a
branching ratio, or more precisely, the expected number of new configurations
generated in a time A T . Thus for 1<W<2, a second configuration is sampled
with probability W-l. For H greater than two, the generalization is obvious.
After one has sampled 0, 1, or more configurations from each initial configura-
tion, a new population of points has been obtained, and these points have been
sampled from <>(R,AT) (actually P ( R , A T ) ) . This process has achieved one itera-
tion of equation 13. The process is then repeated to obtain <KR,2AT) and may
be iterated to arbitrarily large times.

Importance Sampling
Obtaining a population of points sampled from the ground state wave

function is not enough to allow the calculation of expectation values. To
state it simply, one cannot calculate the square of the wave function from the
known set of configurations. Although the energy may be crudely obtained by
adjusting the value of ET so that the number of points in the population is
stable, this estimate of E Q has large statistical uncertainty. The random
fluctuations in the size or the population due to the continual creation and
annihilation of configurations can be largely eliminated through importance
sampling. The philosophy at work here is the more information about the wave



function which you put into the calculation, the more effective the GFHC method
is in obtaining the results. The information is a reasonably good approximate
analytic form for the ground state wave function <»j-(R). This is typically a
Jastrow type wave function which incorporates some short range pair correla-
tions, a feature particularly important in coulomb systems, or systems inter-
acting with unbounded potentials.

Using the trfal wave function ^ ( R ) , one forms the new density,

f(R.t) - •(R.t) ^(R) (24)

and the new propagator

which then satisfies the modified propagator equation,

(25)

This equation says that If a set of configurations is propagated forward in.
time according to the modified stochatic dynamics of the keroal. K, then this
new population eventually evolves to

limit f(R,x) a tQ(R) «T(R). . - (26)

Before discussing the modified propagation procedure and its effect on
population stability, It is pointed out the secondary advantage of using f(R,?)
in the calculation of the energy. If we calculate the expected value of
(H*T(R))/fT{R) = E(R) over M configurations the expression is

K
<(H*T)/V - (1/M) I HURj/MR.) . (27)

This is an estimator for the expectation value over the probability density

P(R,T) = f(R,-c)//dRf(R,T). (28)

The average equals the ground state energy when f(R) a $ (R) ^ ( R ) . The
expectation value

(30)



by the hermftian property of H. It can be shewn [12} that the expectation
value of E(R) is an upperbound to E at any T. The energy calculated in this
fashion has a much lower statistical variance if dn accurate fr is known.
Indeed, the statistical uncertainty would be zero if fj • (. .

The difference in the propagators K and G can be made clear if one expands
the ratio *(R2)/*(R1) using

Jtn *(R2) 8 M t(RT) + (Rz-R})' ^ in (.(R, J • £ (R^Rj) 2 - ^ *n t(Rj). (31)
1 dR»

Then, K i s approximately given by

K - 6 ( R , T , R \ T « ) expCtntT(R) - in*T(Rl)3 (32)

- (E(R*KT)AT*>

where F - W r i ^ R 1 ) and A T * - ar/(l-tf2wtf(Rf }•• '

This expression ts correct to order &x as before, and we have neglected some
cross terms of the order (R-R1)^ in the Taylor series expansion. This 1s
consistent since (R-R1)^ <* A T . In this fora, we see that if the trial function
tj 1s exactly equal to io> then E(R) « E o and provided £y « E 6, the propagator
is a normalired gausstan. Hence the size of the population never changes and
all configurations survive each step with probability W«l. When <|>T 1s close to
• 0, the population fluctuates, but the fluctuations are much smaller. The
dynamics of the diffusion have been changed by translating the center of the
gaussian by an amount F A T * towards regions of larger fT, i.e. higher probability.
The width of the gaussian has also changed. The population stability has been
gained but at the expense of calculating E(R) at each step rather than Y(R).
The overall result Is still a much more efficient, lower variance calculation.

THE BIEXCITON
The biexciton In its ground state consists of two electrons of opposite

spin and two holes of opposite spin. The existence of the entity is without
question, but Its binding energy has been debated [16] and even accurate
variational calculations [16] have given only 505 of the experimental binding
energy in silicon and germanium. From the variational calculations of
Brinkman, Rice, and Bell [16] we know that wave functions which incorporate
some particle correlations yield improved binding energies. One might expect
then that a GFMC calculation, which incorporates all correlation effects, would
obtain significantly greater binding energies and resolve the discrepancies
with experimental results.-

To eliminate uncertainties in materials parameters it is best to establish
a system of units where energy is measured sn units of the exciton energy,
E x, given by

*2K? (33)



where \t is the reduced mass and K the dielectric constant. In these units, the
four-particle Hamiltonian becomes

H

2/r a b - 2/r,a - 2/r ,b - 2/r2a - Zfrzh (34)

where, a « tn^/nv, and the electron coordinates are labeled 1,2 and the hole
coordinates a,b.

The t r ia l wave function, ^(R) was the product of three functions + e ,
1tLfa and • L, chosen to incorporate as much information about pair correlations
as posstbTe.

•ee(r) - exp[c1r/(l+c2r)3

* ) " exp[c3r/(l+c4r)]

" exp[-(ar u
 + Pr l b + pr2a + a r 2 b ) ]

• exp[-($r la + o r ] b + «r2a * &r2b)3 ' (35)

The GFMC calculations were perforated for several values of the mass.
ratfo, a « 0.01, 0 .1 , 0.3, 0.6 and 1.0. The varfattonal parameters Cj,
C2» C3* C4 a n^ a ^ p w e r e V5""ied until a reasonable initial energy was"
obtained at each a. Populations of "500 configurations were run for typically.
40 units of time with time* steps of A* - .005 or less. Tests were done on
time steps of AT - .01 and .001 to establish that the error due to the short
time approximation was less than the s tat is t ical uncertainty (<0.1%) of the
total energy.

-Figure 1 shows the results from the GFMC calculations and the results of
the variational calculations of ref. 16. In these units, the energy of two
isolated excitons is -2.0. One sees that as the electron and hole masses
become comparable the system becomes weakly bound. When c «• 1, the binding
energy is about Z% of the total energy. It is in this equal mass limit that
the variational calculations suffer most from inadequate treatment of correla-
tions in the wave function, and yield a binding energy of only half the correct
value. The 1-2% error in the total variational energy becomes less important
as the hole mass increases.

Comparison of the GFMC results to experimental measurements can be made
for several values of a. For small o an exact form for the energy is known [17],

E(o) = (-2.346 + 0.764/5)Ex (36)

and agrees with the GFMC results at o = .01 to better than three significant
figures. In this mass range CuBr and CuCl [2,18] have values of o = 0.01 and
0.0? and experimental binding energies of -29 mev and 34-44 mev respectively.



The exciton energies of 110 and 190 mev in these systems give GFHC energies
of 29 and 45 mev respectively. This is very good agreement, but ft must be
treated cautiously since a small uncertainty in the mass makes & big change in
the energy in this region of small o. A.more reasonable comparison taay be to
take the measured binding energy and predict the mass ratio,since it is the
less accurate quantity.

-2.0 -

-2.3 -

-2.4 -

Figure 1. Ground-state energy of biexcitons as a function of the electron-hole
ra t io , c. The dotted curve represents the variational results of Brinkman,
Rice and Bell (BRB) (ref.16) while the solid curve shows the Green's Function
Monte Carlo (GFHC) results . Here the energies are expressed in excitonic
rydbergs, E .

Germanium and silicon are well studied systems and have electron-hole
masses which are more nearly equal. There i s , however, the complication of
band warping since the top of the two valence bands in these semiconductors
are degenerate and coupled. Recently biexcitons have been observed stressed
Ce<l,l,16> [19] and Si<1.0,0> [3] where the electrons occupy a single conduction
band and the holes occupy, a single hole band. These bands are anisotropic,
but we will come back to ' that point later. In the germanium experiments the
binding energy is estimated to be .15 • .01 mev and using o - .7 , the GFHC



energy corresponds to a .16 mev binding energy. The variational calculation
obtains only 60X of this binding. In the experiments on stressed Si<*OQ>
Gourley and Wolfe [3} report the binding energy to be 0.10 E which is to*be
compared with a value of 0.08 Ex in unstressed Si [20] and a GFMC value of
.06 E x when a mass ratio of c - 1 is taken.

It is only in silicon that there appears to be a discrepancy between
calculated and experimental results. The vartational result accounts for about
1/3 of the binding and the GFHC accounts for about 2/3 of the observed binding
energy. This is one of the advantages of an exact numerical result. A dis-
crepancy with-experiment tells you something, because it cannot be attributed
to approximations invoked 1n arriving at the solution of the problem. In the
present case we have essentially an exact result for the.ground state energy
of the effective mass Kamiltonian. Apparently, this Karoiltonian does not
exactly correspond to the experimental system. One difference is that the
calculation has not included band anisotropy. Because the curvature of both the
electron and hole bands Is different along different crystal axes, the effec-
tive masses along these axes must be distinguished as to the longitudinal ir̂
and transverse CTJ- components. Returning for a moment to the analogy, between
the Schroedfnger equation and a diffusion equation, this is equivalent mathe-
matically to saying that the system has an anisotropic diffusion constant.
This feature makes even the twobody exctton Haroiitonian insolvable analytically
but causes only a minor change in the GFMC calculation. We have accordingly
taken literature values DM3'of the anisotropic masses in silicon, and repeated
the silicon calculations to determine the effect of this anisotropy. Prelimin-
ary results Indicate that at most the binding energy Is lowered. another tOJ
removing perhaps a third of the remaining discrepancy. Compared to the total
energy this is a small difference "-U5JJ.- One may even take-this result as
support for the surprising accuracy of the effective mass Karoiltonian. .
Alternatively one may use 1t to motivate an attempt to find the physical*origins
of the additional binding energy.
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