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ABSTRACT 

A model vhich predicts the asymptotic time behavior of the neutron 

distribution in mult-dimensional systems is presented. The model is 

based on the kernel factorization method used for stationary neutron 

transport in a rectangular parallelepiped. The accuracy of diffusion 

theory in predicting the asymptotic time dependence is assessed. The 

use of neutron pulse experiments for predicting the diffusion 

parameters is also investigated. 



INTRODUCTION 

The field of multi-dimensional transport theory is still largely 

unexplored £"l_J, Exact analytical solutions are available only for one 

speed neutron transport in one-dimensional systems ^"*2»3_7. The Fourier 

transform method was applied to the integrul form of Boltzmann equation 

in multi-dimensional systems ^~4>5_7. Fourier transform inversion is 

required to obtain the flux, Equivalence between tho integral trans­

form method and the spatial Legendre expansion of the flux v:&a shown 

£~6_j> A method based on factorized kernel Legendre expansion is usod 

to solve the stationary one speed integral transport equation in a 

rectangular parallelepiped £~7f8_J. The method has the advantage of 

converting the integral equation into a set of linear algebraic 

equations with the matrix elements being calculated precisely by virtue 

of analytical evaluation of integrals £lj* 

Exact solutions to time dependent neutron transport problems in 

multidimensional systems are extremely difficult /,~9,l0_7. The 

nflymptotie time behavior of the flux in a reactor or in a pulsed (non 

multiplying or subcritiCs.il) assembly has been extensively investiga­

ted using diffusion theory and asymptotic reactor theory /"lO^/o Exp­

eriments are suggested to measure thermal diffusion properties based 

on the diffusion theory predictions £llj» Transport theory models 

are used to investigate the asymptotic time behavior of the flux only 

'In one-dimensional systems £lO.J, 

In this work, the kernel factorization is extended to give the 

asymptotic jtiroe behavior of the flux in a rectangular parallelepiped. 

The method is compared with available exact methods in the limiting 

case of stationary neutron transport in an infinite slab. The 

accuracy of diffusion theory in predicting the asymptotic time dep­

endence of the neutron distribution is assessed. The validity of using 

diffusion theory for predicting the diffusion parameters in connection 

with neutron pulse experiments is also assessed. 

http://subcritiCs.il
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II. THECKY 

tfe present here briefly the model used in tbeis -work bused on the 

kernel factorisation method used for solving steady fltate one spood 

neutron, transport in a rectangular parallelepiped £*8 J\ The fcimo 

dependent one speed intagrotiifforential transport equation is fiven by 

£ I JL- ^ , v+ ^t ^/ (r,..^. ,t) « ^JUJCL^ (r ,t)+Jj£iil U> 

where ^(r,./?-.,t) and ̂  (r,-t) are tho angular and moalur fluxes, 

respectively. In Bq.(l)} ve assume scattering, fission and source to 

be isotropic and the system to be urtifora, Since, wo are interested in 

-Che asymptotic time befavior whoro no external souroo is present, 

Sl(r,t> is set equal to zero in Eq.(l). 

Assuming the asymptotic solution to be seperabie in spaoo and time, 

ve seek a solution to Eq.(l) of the form 

oifiL I / U I * ) - ^ ! -•"•*-) «»P (- .\ t) (ft) 

where* % is the asywptotio deoay'oonstant, if pulsed systems arc 

considered, and tho invorso of tho asymptotic stable period, if the 

oritioility of ttultiplying tfystoni* is investigated, flq.U) then 

reduces to 

T*-r»-. v.* <rt - 4 - iW<e. A) - —t-zr** <*> L -- * i» (8) 

The corresponding integral equation [~l J ii given by 



« 3 » 

V - -' 

* *t Y 

Notice that assusoiug cepurability us given by I3q.(c)» we are able to 

convert the tine ilepondont problem into a pseudo stationary problem 

which contains the dynamic property of the eystep in t% which replaces 

21 in the stationary problem. Notice) also, ̂ / V acts as a fiotitioua 

l/v absorption. It is convenient to rewrite £4.(4) vith all distances 

being aeasurod in units of £^~ , in this case Eo,, (4) reduces to 

l£>- \ f • ?? V.llfrV1 } • f {r> ) dr' , ( 0 ) 

where 

O* m •" iwf.w^, 

^ (7) 

The integral kernel in Kq,.(8) can be written in the form £*$ J 

exp^-jr^-r*! ) 1 J* -,9 a s 
A(r>£ ' ) • """••••"••• " " " ' ^ -•- « (8W) J <Ta erfo(u)exp(-|£.r | y***)**, 
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there the complementary error function i» defined as 

erfc(a) - ,^Jp- exp (- t8)dt, (g) 

ire express the Jemi-infinite integral in £4.(8) in term* of an N-pointe 

nonclaaaical Qauaeian quadrature rule *̂*8 J aeeociated with weight 

function erfc (u). Tbe ireighte w_ ' and ttbeieana u'N' are deter-
1* n 

mined aueh that th* Qauaeitw quadrature rule in exact for «11 poly­
nomial of degree (2N-I) or leal. Thin Qauieian quadrature rule vaa 
•hoim /"§, / to give very good rtauit* and to be aupwior to the uaual 
Oauaa - Laguerre quadrature rule. U«ing the Quuaaian quadrature rule, 
Eq.(8) become* 

A(r,r) - (SIT)'1 ^ # > .»p(-/r - *_l «/< &»»>/). & i " b "• , ' „ , 

We expand ft (r^ and A(rj,r') in a oonplet* aet of orthogonal 

functions of po»itionjh. (ir)]> as 

oa 

A(r,iO - ? AA(r) h4 (r) , ( l 2 ) 

where / l " / M r ) h *M dir (la) 

and A4 («•) « / A(JT,IP) h.(r) dr' (H) 
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Substituting from Eqs . ( l o ) , ( l l ) , and (I2) into Eq.(6)> ire get 

I 

! k " C> L A i *V fc-0,l|8, ,1 (15) 

•where 

and expansions in the set |h.(r)| are truncated to (i+l) terms. 

The system of linear algebraic equations (11) can be arranged 

in a matrix form as 

! - c* A ! W 

where the A matrix elements are defined by Eq. (le). Note that £q,(l7) 

describes on eigenvalue problem from which c^ can be determined. 

However, the matrix elements depend on ^ through their dependence on 

the dimensions of the system measured in units of 2£̂ " and % 

cannot be determined in a straightforward manner. Before explaining 

the method of calculating % , we give tnc expressions of the matrix 

elements. 

For a three dimensional parallelepiped of dimensions 2a,2b, and 

2c, the set of orthogonal functions fh.(r)? is taken to be 

T 2i, +1 2i„ +1 2i .+l 1 ,. 

I 2*a ZP\ 2h 1 
1 1 . 

where ^ a » 2 j , ^ b £ j , -^ = c £» , and P.(u) i s the i— 
Legendre polynomial. 
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The matrix •laments are, therefore, given by 

/iVs . .w8 _i_jtj£* - «» 
w* " Bw9 nr^-^i/ '^.vv- >. 
X ( ^ , l a , V » ). K l ^ L . L , 4N>)> (»> 

where 

k l k f l k 8 2 i , + 1 « i > l 8ki + i akx + 1 8k +1 fik +1 

M a s a < * % afy a j f j a * : ^ a ^ a ^ 

»»d € U 6 ( a o ) 

The integral* given by 1%, (a*) fti>e performed analytically end given 

by 

-j^fi«»4(»/ae)V-*«(a /x,y),(i+k)™u 

l(G ,iik,x) - ,(i+k)edd 
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where ^ 

B k , i - > -1 , i> -1 (23) 

i; aC-l?* "• "1 ( i+k+1+ <* -2j )( !fc-i! + i' -2j ), * / ; 

( * + l)(*-l)/ 
*S 

and 

iUy.n) - i 'c'i-— , y2 ), (24) 

with •/ ( ~ — , y") being the incomplete gamma function of integer and 

half integer orders. 

Tt is clear from ^q.(2l) that interchanging any of the pairs i and 

k yields the sawe result implying that the raatrix \ is symmetric. If 

the summations over the indices i.i and i are truncated to values I, , 
1 2 3 1 ' 

I , and I , respectively, the matrix A is of order (l,+l)(l.+l)(rn+l). 
2 3 ° * 2 3 

Considerable reduction in the order of the matrix can be obtained by 

noting that because of the symmetry of the problem, the flux j£(r) can bo 

expanded only in Legendre polyomiuls of even order. The summations in 

Eqs.(ll) and (I2) have to be taken only over even values of i. Hence, 

the matrix order reduces to (ial1+l)(&l,,+l)(£l_+l). The advantage of 
A 2 3 

using the kernel factorization method is clear by noting that the G-fold 

integral in Iiq.(e) is converted into a finite suo of products of three 

2-fold integrals which are evaluated analytically in terms of appropriate 

special functions. 

i 
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In case 0f infinite tiro dimensional parallelepiped of rectangular 

cross sectional area of dimension! 8a wxd 8b» one can follow the same 

procedure and expressions for the matrix elements can be obtained from 

Eq0(l9) by taking the limits as ̂ -^ooand setting i • k - 0 because 

the flux is uniform in the % direction. The matrix elements for the 

infinite one dimensional slab oX thickness g» can be obtained by taking 

the limit as A . ^ o « and setting i » k - 0 in the expressions for the 

two dimensional case. 

The method adopted in this work to calculate /\is motivated by 

noting that 

^ A S " ( ? * + v V *mo< (IT * "sT* (25) 

wherec<«i a£\, Thereforey for a given geometry, i.e. for given ratios 

of b/a and c/e., one oan obtain «* for different assumed values of 

using Eq.,(l9) and (is). The relation between the produot<K.Cx»nd 

can, thereforep be determined and plotted for a given geometry. Given 

a system of certain dimensions and composition Eq,(as) oan be used to 

calculate < » C \ for the system, The eo pre spending value of«<v con be 

obtained from the computed relation bttweta c< C wad e< • Therefore, 

oan be calculated from e< via 

A 
^ - v {t% « - y ^ ) (26) 

in a dinensionless loins* EQt (86) fcfcft be written as 

^ t d - (1 - -^»») / ( l - - £ - * - ) (87) 

The stable period oan be determined from ^ » via L - - 1 / ^ , 
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It is interesting to consider the case of infinite system in 

which the flux is uniform and the matrix A reduces to a single element 

which can beshown to be equal to unity. From Eq.(ls) it is clear, 

therefore, that the eigenvalue c*, for an infinite system is equal to 

unity implying that 

where t. is the diffusion time and fc^is the infinite multiplication 

factor. This result is identical with the well known result obtained 

by using diffusion theory for an infinite system. 

In the limiting case of steady state, we set % «0 and c*,, in Eq, (Is) 

reduces to c $ and *W , ̂  and %» used in the calculations of the 

matrix elements reduce to o(, £ and-/, respectively. The critical c 

value is, therefore, given by solving the eigenvalue problem, 

III.NUMERICAL RESULTS 

III.l Criticality of Multiplying Systems 

For a critical system, X "0, and the critical c value is the 

lowest eigenvalue of the eigenvalue problem 

" tf c •£. (29/ 

This value of c gives the mean number of secondary neutrons per 

collision for which a stationary neutron distribution can exist in the 

critical system. The eigenvector corresponding to the critical c is the 

coefficient vector from which the critical flux distribution is determined. 
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Table 1 give* the valuta of the critical calculated using the 

model developed here for different sis** of three dimensional rectan­

gular parallelepiped and two dimensional infinite rectangular parallel­

epiped. The result* ere obtained using the Oftussian quadrature rule of 

order N - 20o In the two dimensional case* ve «•• I. • T • H end in 

the three dimensional <s>ase we use X* • Xa » 4 with Ifl • 14. The criti­

cal o value obtained using diffusion theory are given also In the table 

with the percentage error for different values of £T /5f, pig, l in a 

plot of the percentage error inn the estimate of e, resulting from using 

diffusion theory versus the optical half thickness n of an infinite 

one dimensional slab8 it ie clear 'rem the result* that the error in o 

calculated using diffusion theory deceases as *,'..'/£ t increases and 

the eise increases with the sane result ( M I) obtained from this 

model trod diffusion theory in the Uniting ease of an infinite system. 

The results show also that diffusion theory considerably under ontimates 

the critical o for very snail systems while it overestimates o for 

large systems. 



| 1 " i i I I I I L- i—l 
0 1 2 3 A 8 6 7 ft 9 10 

• l ib optical halt thickn*ss,a 

FIGC1) PERCENTAGE ERROR IN C FROM DIFFUSION THEORY 
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Table,1 

Comparison Between Criticul o values obtained 

Using this yodel and Diffusion Theory 

for Two and throe nimonsional Rectangular parallelepiped 

0<£ 

0.5 

1.0 

2.0 

3 ,0 

1.0 

3,0 

io.a 
10.0 

— 

p 

0 ,30 

1,00 

2.00 

5 ,00 

. 0 ,25 

0.26 

0 ,25 

1.00 

V 

I * - * 

• •• 

• , 

i 

(.' 

' 

This iiodo] 

c 
'J.2Q72m)22 

1.54173800 

1 ,2H51978 

1.040174C9 

2.25304885 

2.20113441 

2,24156730 

1.88875220 

Diffusion Theory 

^a/K* °'Z 1 ^a / t"° '8 

c 
1.5507130 

1.4880C03 

1.2P01480 

1.1184353 

1.3402853 

1.3224926 

1.8204087 

1.6219880 

A % 

- 30 .28 

- 0 .73 

+ 0 .41 

+ 6 .00 

- 46 .89 

- 42 ,28 

- 41 .00 

- 19,42 

C 

2.156044 

1.6117524 

1.2501316 

1.0004202 

1,0307500 

1.8820833 

1.8765479 

1.8920334 

A% 

- 3 . 6 1 

+4,54 

+3.08 

- 1 . 0 7 

- 2 3 . 4 

- 1 7 , 8 

- 1 8 . 2 9 

-o.aa 

Tho Fourier transform method £a>J w*s applied to the problem of 

critical one dimensional slab, Table g gives a comparison between the 

critioal 0 values evaluated by this theory and by Fourier transform 

method for a slab •with optical half thickness of U 8 and for different 

truncation orders i, . it is clear that our results agree very -well 

•with those of the Fourier transform method. 
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Table 2 

Critical c Using this Thoory unci Fourier 

Transform Method for a Slab with<x' "0.3 

lx 

2 

4 

6 

8 

c 

Thi» Theory 

2.03603247 

2.03590842 

2.03599127 

2.03598611 

Fourier Transfrom 

2.03602543 

2.03599015 

2.13598538 

2.03598490 

The singular eigenfunctions or Case's mothod C^J w u s <lfiveloped 

to provide exact solutions for one-dimensional problems. Table g 

shows an excellent agreement between values of c calculated by caso's 

method and those calculated by the theory used in this work. The ratio 

of the surface flux to th < flux at the center of a slab of optical half 

thickness «-><? is calculate 1 ming tho model adopted in this work and 

iiffusion theory, Those remits are compared with the results of Caso's 

olhod £$J 'in Table 4. Very good agreement betweon tho results of this 

model and Case's method is demonstrated. Diffusion theory is found to 

give higher estimates for the flux at the surface with the orror being 

significantly high even for large £.. /£\ and large systems, we con­
s' t» 

elude that although diffusion theory might be useful for predicting 

integral properties such as the critical c value for relatively 

large systems with small absorption, it gives a bad estimate for the 

flux distribution. 
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Table 3 

Comparison Between Values of c Calculated by 

The Theory Used in this Work and caBe's 

Method for Slabs 

csS" t-'v» 

0.5 

1.0 

2.0 

s.o 
5.0 

6.0 

8.0 

10.0 

0 

Case's Method 

1.6158785 

1.2771C18 

1.1084678 

1.1582950 

1.0864080 

1.0180783 

1.0107668 
1.0071857 

This Model 

1.6153806 

1.2771018 

1.1084679 

1.0582959 

1.0864021 

1.0487942 

1.0180722 

1.0071358 
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Table 4 

A /& Calculated by Case's Method the Theory 

Used in This Work, and Diffusion Theory 

- . 

c< 

0 .5 

1.0 

2.C 

3.0 

4 .0 

5 .0 

6.0 

P„0 

l f . 0 

, 
Case's | 
uethod 

UK 

0.55555 

0 .43412 

0.30166 

0 .22973 

0 .18483 

0.15430 

0.13229 

0.10277 

0.08394 

This ijodel 

tJh 

0.55394 

0.43529 

0.3C425 

0.23248 

C.18765 

0.15715 

0.13514 

0.10577 

0.08668 

A 

- 0 . 2 9 

0 .27 

0 .86 

1.19 

1.53 

1.84 

2.15 

2 .72 

8.27 

D i f f u s i o n Theory 

^•J^r"-* 

K/K 
0.935C2 

0.83147 

0.65486 

0 .53203 

0.44574 

0.38268 

0.33488 

0 .26753 

C.22252 

'A?« 

68 .30 

9 1 . 5 3 

117.08 

131.59 

141.16 

148.01 

153.13 

16C. 32 

165,12 

2 . / S t = 1 - o 

tjt. 
0.78183 

0.58778 

0.38268 

0 .28173 

0 .22252 

0.18375 

0 .15643 

0.12C54 

C.098C2 

c1 

4 0 . 7 3 

35.40 

26.86 

22 .63 

20.39 

19.09 

18.25 

17.29 

16.76 
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111,2. Asymptotic period in a Multiplying System. 

We have shown that the kernel factorization method gives 

results which agree very veil with the exact case's method for slab 

geometry in the steady state case. In this section ire use the theory 

developed in section 11 to calculate the asymptotic period of mult­

iplying system. Since the time dependent problem is transformed into 

a pseudo Stationary problem in whioh the dynamic properties of the 

system under consideration are oontained, we expect the results to 

be highly accurate. The accuracy of tho non-steady state diffusion 

equation in predicting the asymptotic reactor period is assessed by 

cimparing the results of diffusiontheory with those of the 

exact transport model used in this work. 

As explained in Section II, the starting point in determining the 

asymptotic time behavior, using the kernel faotorization method, is 

to determine the relation between the product «KN C «S andK^for 

a given geometry. The relation between on and e*^is obtained by 

solving the eigenvalue problem given by Eq.(lo). From this relation 

the required r><« C ^ --<*M relation is obtained. Fig.2 gives this 

relation for an infinite slab and a two dimensional parallelepiped 

with square cross seotion. Given a roactor with certain composition 

and dimensions, the products.'' is oalouluted uoing Eq.(25) and<^is 

obtained from Fig.2. the asymptotic A i» then oaloulated using Eq.(25) 

from which the stable period oan be oaloulated via % = - IA The 

period is oaloulated also using diffusion theory and compared with 

that obtained using the transport model adopted in this work to assess 

the validity of using diffusion theory in non-steady state calculations 

We have shown in Seotion II that both methods give the same value 

for and infinite system. 

In Fig.3, the dimensionless stable period L /t. is plotted 

versus slab optical half thickness for ^ /<£ .. Q I ^ y £:. /V ~0 "J 
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10 — 

9 -

8 

o 

b 5 

1. dim oo slab 

2. dim with square cross section 

4 

3 

2 

t U 

0.01 10 

FIGC2) ccA c^-ocx RELATION FOR A ONE DIMENSIONAL SLAB 

AND A TWO DIMENSIONAL INFINITE PARALLELEPIPED 

WITH SQUARE CROSS SECTION 
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VSf s0.5(never critical) 

Y2Lf =1.5(crittcal attxsO.6) 
* t 

V -~s 1.8(critical atccsO.35) 
*»t 

1 
2 3 4 5 

stab optfcal half thickness,oc 

FIG(3) «rj- PROM TRANSPORT THEORY VERSUS a OF SLABS 

WITH f f " " 0 - 1 
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1.5, and 1.8 with the corresponding c values being CO? ".6 and 1.9j 

respectively. It is clear that as JE J^ increases, the critical 

cxL decreases. Tables 5 and 6 give ^"/t, for different values of 

e< -with €-J 21_ = o.4 and p£L/ £. =0.5 and 1,0 . The results 

are given for the cases of diffusion theory and the transport model 

used here with the percentage error of diffusion theory given also, 

in Pig,49 the results of L/t calculated from transport and 

diffusion theories are plotted versus c< for £ / £ »0.7. 

Table 5 

Dimensionless Stable period From Transport and 

Diffusion Theories for Different Slab of 

Optical Half thickness .=< and c = 0.9 

With £ / £ =o .4 and y g /£ =0.5 

cxL 

0.2389 

0.6209 

0.8974 

1.419C 

3.5280 

5.6938 

8.985C 

© ^ 
J 

/ t , ( t r a n s p o r t ) 

- 0.6262098 

- 1.0044672 

- 1.3546429 

- 2.0319741 

- 4.0H3328 

- 4,9241720 

- 5.4751290 

- 6.0 

T / t d ( diffusion) 

- 0.9005593 

- 1.2172208 

- 1.4536579 

- 1.8990129 

- 3.4052615 

- 4.3493027 

- 5.0794631 

- 6.0 ~ -

1> % 

- 43.86 

- 21.19 

- 7.30 

+ 6.59 

+ 15.10 

+ 11,67 

+ 9.99 

0 .0 
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2 3 4 
slab optical half thickness.a 

FIG.(4>-Q VERSUS cc FROM TRANSPORT AND DIFFUSION THEORIES 

FOR J§- =0.7 
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Table 6 

Dimensionlees stabl* period from Transport and 

Diffusion Theories for differents Slabs 

of Optioal Halfthiokness c^ and 

0-I.4 with ̂ g/^-0.4 and 

c< 

0.1506 

0.8001 

0.5789 

0.0192 

2.2680 
0.6600 

5.7760 

7.1940 
0>O 

T/t.* transport) 

- 0.6417840 

- 1.6058R01 

- 4.5000727 

6.2840252 

1.8582673 

1.6802706 

1.5680605 

1.5881429 

, A»o 

^/td(diffusion) 

- 2.7202654 

- 7.8820614 

- 70.778262 

'6.6050228 

2.2458205 

1.8818892 

1.6584866 

1.8050910 

lift ., 

A * 

- 825.0 

- 858.0 

- 1470. 

5.95 

20.84 

11.76 

6.1a 
4.05 
0.0 

It if olear from the results that diffufion theory gives 
oritioality at value* of o< smaller than those predicted by transport t 
theory, we notioe also that diffusion theory gives a period which il 
isiliir than that given by transport theroy for vtry snail syftenf, 
for larger system, diffusion theory il found to overestineti the 
period. It if observed that the largest error in tT ooeurs in the 
range vhere the syftsin if nearly oritioal with the error decreasing a 
us <x inoreafes reaching isro as < 

The stable period say be rewritten as 

r - v* ( c & £*> » <•») 
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whore £«<,•( ̂ N / * ) - £.- *• *ho absorption cross seotlon required for 
eritioality (T-«?°). U»ing diffuaion theory, one oan eaeily show that 
the period i« given by 

6 f y ooD a' ' 
with ... 

where B 2 ie the bucking. The relation between T and £! , for a two 
dimensional .Infinite rectangular parallelepiped with •quart oroea aeo-
tion or a givon aiao, ie obtained using tranaport and diffuaion theories, 

Consider two ayatenia with a»b-20 om and u-b-lc on. The data uaed 
aro&^o.aOO om »)> £f"0i0000 om , and v«a,axl0O om/soo, For fully 
enriohed Uranium fuel, it is important to notioe thut kl oan take only 
values greater than^ $-J% -0,0880 cm" , £ for the two systems are 
oalouhrtedi they art 0.047 and O.OlMS oa , respeotively, it is olear 
therefore| that the seoond system is always suboritioal and oannot be 
made oritioal, Relations between V and £ a from transport and 
diffusion theories are plotted in Fig.5 for the lirst system. The results 
show that diffusion theory underestimates the absorption oross aeotion 
required for oritioality. The error in i is found to bo pronounced in 
the range where the period is large, i.e., when the system is nearly 
oritioal, The error dtoreaaes as the system goes away from oritioality, 
Moreover) for auperoritioal systems, diffuaion theory gives higher 
valuea for f » while for suboritioal systems, diffuaion theory &ivo» 
smaller valuos for Cf J* The values of *!* required to feivu ̂ uvuin 
period ' is oaioulated using transport and diffusion Iheoriun, The 
poroentage error in •' is plotted versus 1/ ' , for thtt two riyiitfeititt 
under consideration, in Fig.0. It is olear that diffusion theory 
underestimates the value of ,' required to givt oertain vaiuu oil T . 
For the samt period, the error in <* deoroaies as the alio increases, 
Moreover, for the sams sise, *• f Ji deoreaaea as the system becomes more 
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subcritical. The reason ia that b*L is independent of 2T and i» 

equal to £<£ Therefore, ̂ £j6 decreases as SI increases, 
ao 

111.3. Decay, of a Neutron pulse In an Assembly! 

When an intense nautron pulse of briaf duration ia injected into 

an assembly (aithar nonmultiplying or suboritieal), tha aubaaquant of 

the nautron diatribution can ba followed by datectora and tha reaulta 

may ba uaed to infer way properties of fche assembly. Assuming apace 

and tine separability and uaing one speed diffusion theory, tha asy­

mptotic daoay oonetant in a pulsed nonmultiplying assembly is found 

to be /~11 J 

X - v £ „ + VDB8 « v * (l + L V ) (31) 

Note that diffusion cooling effect is absent in Eo,, ̂ "al J because 

it is based on one speed theory, Bo., (01) ia the basis for neutron 

pulse experiments in vhieh tha asynptotio. daoay constant ia neasured 

for assemblies of different sia«s and plotted versus the buckling B2. 

The data are then fitted to a straight line from which the diffusion 

tine l/v'St and th* ^'fusion length (or tha diffuaion coefficient) 

are determine, in this section; we calculate A for assemblies of 

different sizes using the kernel factorisation mehtod presented in 

Seotion 11 to assess the validity of diffusion theory in studying the 

neutron pulse deoay, The calculations are performed for nonmuItiplying 

assemblies, Note that the asymptotic daoay constant in a pulsed 

auboritioal assembly is obtained from the stable period; given in 

Seotion 11,2; via A - - l/<*> , 

Consider the deoay of a neutron pulse in a graphite assembly. The 

thermal properties are i £ t - 0.97741 cm" , E& -0.0002409 cm" , 

£g"0.8771891 om" f « d D " 0.84 om. The asymptotio deoay constant is 

oaloulated for an infinite slab and a two dimensional parallelepiped 

of square oross seotion. The results of the transport model presented 
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in this work together with the result* of diffusion theory are given 

for different slab sizes in Table 7, X is plotted versus B 2 for a two 

dimensional parallelepiped with square cross section in Fig.7. The 

results of diffusion are also inoluded for comparison. 

It is clear from the results that if small assemblies are used in 

the pulse neutron experiments) diffusion theory underestimates the 

asymptotic decay constant ^ , If the results of transport theory; 

considered to be*- exact, are fitted to a straight line, a slope which 

is higher than that predicted by diffusion theory is obtained. The­

refore, if experiments are performed on relatively small systems of 

sizes investigted here, they will overestimate the diffusion length 

and the diffusion coefficient and underestimate v £ , For example; 

if the A versus B 8 relation obtained by transport theory in 

Fig.7 is fitted to a straight line, we get D u 1.008 cm as compared 
-1 

with the exact value of 0.84 om. It also gives v?. • -060 sec 
-1 

which is much smaller than the exact value of 58 sec , we conclude 

that for a good estimate of diffusion parameters, very large assem­

blies must be used in neutron pulse experiments, 
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WITH SQUARE CROSS SECTION. 
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Tabic. 7 

% vs. B 2 for on Infinitt Slab of Graphite 

a(cm) 

0.570 

1.015 

1.481 

1.618 

2 . HO 

0.384 

5.874 

8.412 

10.980 

13.580 

16.150 

18.800 

21.420 

24c050 

20.680 
o c 

B2(cm-2) 

0.3760840 

0.2729807 

0.2043352, 

0.1893055 

0.U45590 

0.0853022 

0.0330683 

0.0227976 

0.0146645 

0.0101762 

0.0074972 

0.0057078 

0.0045018 

0.0036384 

0.0030015 

O.C 

Transport ^(»eo" ) 

79115.53 

61358.20 

45881.50 

42249.00 

31630.40 

18010.40 

8123.60 

4573.60 

2916.30 

2028.70 

1476.10 

1123.20 

888.00 

701.70 

585.30 

53.00 

Diffusion ^(aeo"1) 

69524.9 

50480.9 

37854.1 

35098.9 

26756.6 

15827.0 

7420.5 

4264.2 

2761.8 

1932.7 

1437.9 

1107.3 

884.5 

725.1 

607.4 

53.0 

* \ * 

- 12.12 

- 17.73 

- 17.50 

- 17.07 

- 15.41 

- 12.12 

- 8.Go 

- 6.70 

- 5.29 

- 4 .73 

- 2.59 

- 1.42, 

+ 0.17 

+ 3.33 

± 3.77 

0.00 

An extenaive work ia now in progrtaa to improve the model used in 

thia work by treating the energy dependenoe in the context of the multi-

group method to examine the diffuaion oooling effeot. The apace time 

separability aaaumption ia alao being removed. The model will be 

capable of prodioting not only tho asymptotic tinio behavior) but also tho 

ays ton! trans ion Is, 
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IV. SUMMARY AND CONCLUDING RTOARKS: 

A model, based on the kernel factorization mehtod? is presented to 

predict the asymptotic tine behavior of the neutron distribution in a 

rectangular parallelepiped. The kernel factorisation nethod converts 

the one speed integral transport equation into a set of homogeneous 

linear algebraic equations in which the matrix elements are accurately 

determined by analytically evaluating the integrals in terms of 

appropriate special functions. 

The limiting steady stats case is examined and values of the 

orltical c value obtained here art oopared with those obtained using 

Case's method and Fourier transform method in the limting case of 

slab geometry, A very good agrttmtnt is obtained. The critical c 

value is also calculated using diffusion theory and compared with the 

results of the transport model used here, Diffusion theory is found 

to give good results only in the oast of very small absorption and for 

large systems, on the othtr hand; diffusion thtory is found to give 

a bad estimate for the flux distribution tven for relatively large 

systems with small absorption. 

The model is used to assess tht accuracy of diffusion theory in 

predicting the asymptotic rtactor period. It is found that diff­

usion thtory givts a ttablt period which is smaller than that given by 

transport theory for subcritioal systemt, For supercritical systems, 

diffusion thtory is found to overestimate the period. The largest 

error in is found ro ooour in tht range where the system is nearly 

critioal with the error decreasing as the sine increases reaching 

zero an infinite system. Diffusion thtory is found to underestimate 

the value of absorption oross stotion rtquirtd to give certain value o f C 

The relation between the asymptotic decay constant % and the 

buokling B 2 in pulsed nonmultiplying assemblies is obtained using 

the modtl presented in this work. 
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The results are compared -with the diffusion theory prediction vhich 

is used to measure thermal diffusion parameters in neutron pulse 

experiments„ it is found that diffusion theory underestimates 

particularly for small systems* U»ing relatively spall assemblies in 

neutron pulse experiments is found to give values of D and t. that are 

higher than their actual values, it is concluded that for a good 

estimate of diffusion parameters, ver large assemblies must be used 

in neutron pulse experiments. 
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FIGURE CAPTIONS 

Fig.l percentage Error in C from Doffusion Theory. 

Fig,2 °<\0\ — o£\Relation for a one Dimensional Slab a Two 
Dimensional infinite purullelepiped with Square Cross Section 

Fig,8 '%jl from Transport Theory Versus ©< of Slabs with 

Fig.4 <•/£•£ Versus from Transport and Diffusion Theories 

for i ; £, t - 0.7. 

Fig.5 t. Versus <? for Two Dimensional parallelepiped of u-b-20 cm. 

Fig. 6 /j *"$» versus 1/ £ for Two Dimensional Casos, 

Fig.7 A vs. B 2 for Two Dimensional parallelpiped with Square 
Cross Section. 


