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ABSTRACT

A model which predicts the aaymptotic time behavior of the mneutron
distribution in mult-dimensional systems is presented, The model is
based on the kernel factorization method used for stationary neﬁtron
transport in & rectangular parallelepiped, The accuracy of diffusion

theory in predicting the asymptotic time dependence is assessed, The
use of neutron pulse experiments for predicting the diffusion
parameters is also investigated,



INTRODUCTION

The field of multi~dimensionul transport theory is still 1lurgely
unexplored /~1 7, Exuct unalytical solutions are available only for one
speed neutron trunsport in one-dimensionul systems [f2,3_7. The Fourier
transform method was applied to the integrul form of Boltzmann cquation
in pulti~dimensional systems / 4,5_/. Fourier trunsform inversion is
required to obtain the flux, ILquivulence between thc integrul truns-
form method and the spatial Legendre expunsion of the flux was shown
[fs_?. A method based on factorized kernel legendre expansion is used
to solve the stutionary one speed integrul trunsport equation in a
rectangular purallelepiped / 7,8_/. The method has the advantage of
converting the integral equation into u set of linear algebraic
equations with the matrix elements being calculated precisely by virtue
of analytical evaluation of integrals / 7_/, ‘

Exact solutions to time dependent neutron transport problems in
multidimensionual systeme are extremely difficult [fg,lo_]. The
uBymptotic time behavior of the flux in a reactor or in a pulsed (non

multiplying or suberitical) assewbly hus been extensively investiga-
ted using diffusion theory und usymptotic reactor theory / 10_/. Exp-
eriments are suggested to weusure thermal diffusion properties based
on the diffusion theory predictions /" 11_/., Transport theory models
are used to investigate the asymptotic time behuvior of the flux only
in one-dimensional systems [/ 10_/.

In this work, the kernel factorization is extended to give the

asymptotic time behavior of the flux in & rectangular parallelepiped,
The method is compared with availauble exact methods in the limiting
cage of stationary neutron trunsport in an infinite slab, The
accuracy of diffusion theory in predicting the asymptotic time dep-
endence of the neutron distribution is assessed, The validity of using
diffusion theory for predicting the diffusion parameters in connection

with neutron pulse experiments is also assessed,


http://subcritiCs.il
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II. THEQRY

we presont hére briefly the model ueed in theis work based on the
kornel fastorization wethod used for solving stoady #tate onse speed
neatron trbnsport in 4 rectangular parallelepiped L‘e _J+ the tiwo
dépendent ome spoed integrodifferentinl transport cquation is fiven by

~1 Ve S i H%ﬁdﬂii- ~5(r.t) (1)
3 5?2-4& 2 Ey g/ (rgem ) = IS (102

vhore A/ (r,.2-)t) and ¢ (ryt) are tho ungulur und scolar fluxos,
rolpootivoiy. In Bq.(1); wo assume somttering, fismion and msourcoe to
be imotropis wiid the system to be wniform, Since. wo ure intorested in
the sspwptotio time befavior whore no extermal socurce is prosent,
8(r,t)y in wet ogual to zero in Bq,(1),

Assuping the asymptotic solution to be meperable in spuco and time,
wo seak a solution to q,(1) of the form

A (R b))z A(r y .rn) axp (- 0 L) (%)

where A im the aeymptotio doouf'oonsbunt, if pulsed syatoms urc
consldered, and tho invorso of the saympiotic mtable peried, if the
oritionlity of nultiplying sywtous is investigutud, Bq,(1) then
reduces to

E"ﬁ-’ Ve (& - -%-'- i\r"!’(.l:. ) Z-_I:I*‘ E:/975 (x)
' ' (8)

The oorronionding integral equation /71 _/ is given by



ar*
flr) = ’f{ s oxp (- & rex') )( z,wzF ) #(8) (4)
where

LA

Noticc that assuming sepurability us given by Eq.{2), we are able to
convert the time depondent problem inte o pseudo stationary problem
which contains the dynuwmic property of the aystem in 23 which replaces

ib in the stationary problem, Notice, wlse, A/v acts as o fictitious

1/v absorption. It ia oonveuiont tvo rewrite Eg.(4) with all distances
being measuroed in units of 22 , In this came Eg,(4) reduces to

ﬂ(l‘)' f oxp ( - " - & ﬂ (Lo ) "‘f-’ , (“)
AW |ro r'l
where
s +.|nt‘f
Qe ™ vy npe
A 2 (7)

the integral kernel in Iq,(6) can be written in the foww /'8 _7

w
: wlpwrt
A,z ') = oxel-in -‘.'.J ) - (aw)” j errc(u)exp(-lr-rl a/ow.a)du
aw jroxti ® 8 (8)
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where the complementary error function is defined as

erfc(z) = -—J—_Y_,%r‘~ exp (- ta)dt. (9)

we express the Sepi-~infinite integral in Eq.(8) in terms of an N-points
nonclassical Geussian quadrature rule /8 _/ assooiated with weight
function erfc (u), The wveights wI(IN) snd chaisaas u!(IN- are deter-
pined such thet the Gaumsian quadrature rule ie exact for #ll poly-

" nomials of degree (an-l) or leas, This Qoumsiun quadrature rule vas
showm [g_-/ to give very good resui's and to be supcrior to the usual
Gauss = Laguerre guadrature rule, Using the Goussian quadrature rule,
Eq.(8) becomes

Mzr,z) = (sm) E}:,,, wﬁm exp(=fr - r[ o/4 E“,‘,N?f)- C“,(,N)J - ('10)

-

we expand £ (r) and A(r;r) in & somplets set of orthogonal
functions of polition[hi (5)} ue

-]
g (x) = qi,f\f'*(r) ; (11)
and ) '
A(ryr) = ? Alr) b (r) , (12)
where fi n )’ g (r) hi(lr) dr (13)
v

and y @ - f amn n e )
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* Substituting from Eqs.(10),(11), and (12) into Eq.(8), we get

A
. :'7 k ¢
31‘ = 07‘ . Ai )‘,'i’ k=0’1,2’ooooo’1 (15)
=
where
k f
A=y d hlo) vf dr A(nyr' ) (z'), (18)

and expansions in the set {hi(r)} are truncated to (1+1) terms,

The sysiem of linear algebraic equations (11) can be arranged

in a matrix form as

(17)

ferred
]

c;‘ é

finvie

where the A matrix elements are defined by Eq,(16). Note that Eq.(17)
describes an eigenvalue problem from which c¢; can be determined,
However, the matrix elements depend om 7 through their dependence on
the dimensions of the system measured in units of EA'I and }

cannot be determined in a straightforward menner, Before explaining
the method of calculating 7 , we give tnc expressions of the matrix

elements,

For a three dimensional parallelepiped of dimension®s 2a,2b, and
2¢c, the set of orthogonal functions {hi(g_)_g is taken to be

U]

i 2:‘1il +1 212 +1 2i_+1 x ¥y z
‘ P, . &), ), &)
i1 “\) 12 'gfa s éh

i, i.i (r)?r ! 2
J L = M . LY
2= | 20k 2Py 2%

=25

h

A

where ¢ = a g, , pz=b2') ’ -{,}. = ¢ E.A s &nd Pi(u) is the il

Legendre polynomial,



The matrix elements are, therefore, given by

(N) |

k koko kykok, 1 Mow (x)
Aiiiaia 3111818 it [“(//)J" l(d’\ sdys Ky 2:1 ).

(v) ! (N)
I(ﬂ) 918 ’ kg9 8: ). I( XAJ 1° ? kap ﬂg ) 9 (19)
where
klkaks ah_-o- 1 fi_[“ ‘kl « 1 akl + 1 2kj:-i 2k!+1
Rigig R oo 8fy sy axy 24, 2Y,
and " ’(20)

¢ u, & \
I (€ yijkx) :g du Pk(é—")ej‘d“' P*( é‘i) exp -(n—m)a/xg *(21)

The integrals given by Eq, (al) are performed enslytically snd given
by

lekeld

.2 ‘ '
Z ¥1
’ Z)Tr';"(l‘/ﬂe)v"n(a /%yV)s (1+k)even

(€ yi)kx) = Veo . 9(dek)edd (a2)

0 y



where -
R (3
“ l+1 y K3 Hr:
L oal=) (irkeled =2§)( demils ' =j), ¥

i
[T
(& s)(p-1)]

and

n+l a
14 \ (24)

with 3 ( Eél y ya) being the incomplete gamms function of integer und

half integer orders,

Tt is clear from 7q,(21) that interchonging any of the pairs i und
Ik yields the same result implying that the wmutrix A is symmetric, If

the supmutions over the indices ili2 and ia ure irancated to vulucs I
Ty and 13’ respectively, the matrix 4 is of order (I +1)(I.+1)(I +1),

COnsxderuble reduction in the order of the matrix cun be cbtuined by
not1ng thut becuuse of the symmetry of the problem, the flux ¢(r) cun bo
expunded only in Legendre polyomials of even order, The sumnulivns in
Egs,(11) and (12) have to be taken only over even volues of i, Hence,
the matrix order rcduces to (éIl+l)(§12+l)(§Ia+1). The advantage of

uging the kernel factorization method is cleur by noting that the g-fold
integral in Eq,(6) is converted into u finite suwm of products of three
2-fold integrals which are evaluated analytically in terms of appropriate

special functions,



In case of infinite two dimensional parallelepiped of rectangular
cross sectional area of dimensions Qe ond g%, on® can follow the mape
procedure and expressions for the matrix elements can he obtained from

Eq.(19) by taking the lipits as V)—)-oo and sstting i = ks = 0 because

8
the flux is uniform in the z direotion, The matrix elements for the
infinite one dimensional alak of thickness ga cen be obtained by taking
the limit aa /03.-)06 and Setting 4 = k
two dimensional came,

The method adopted in this work to oslculate Ais motivated by
noting that

e " 0 in the expressions for the

oryoy & (5 SVE) amed (womee 4 vif ) (25)
AT *F Tt =t
wherec = 35.". Thersfore; for s given gerometiry, i,e, for given ratios

of b/a and o/s; one can obtain o, for different sasumed velues of
using Bq,(19) and (15), The relation betwesn the produote,Cyand

can, therefore, he determined snd plotted for a given geometry, Given
o syatem of certain dimensions sod eomposition Eq,(25) can be used to
calonlate o<Ac;\ for the aystem, The correaponding value 0fo<>0&ll be

cbtained from the copputed relation hetween cﬁhc;‘md o<>‘. Therefore,
can he caloulated frome< vie

A
“&,: ¢
-
fk = Vv ({,_,t - ?29 ) (23)
In & dimensionless form, Eq, (26) oan he written o

L

: o Z .
Aty = Q- -;a-&“)/(l- —é-;'-) (27)

The stable period oau ba determined from }‘ y Via T - '1/}\ .



It is interesting to consider the case of infinite system in
vhich the flux is uniform and the matrix A reduces to a single element
which can beshown to be equal to unity. From Bq.(15) it is clear,
therefore, that the eigenv"alue ¢, for an infinite system is equal to
unity implying that

-

2P 1
% ™ g 1= - —-—‘ 1=
~ v da( ?:B) td &9) (28)
vhere t, is the diffusion time and kK is the infinite multiplication

factor, This result is identical with the well known result obtained
by using diffusion theory for an infinite system,

In the limiting case of steady state, we set 7 =0 and ¢, in Bq,(15)
reduces to ¢ j and oy, 3, and Yy used in the calculations of the

matrix elements reduce to o(,IS and ¥, respectively, The critical c
value is, therefore, given by solving the eigenvalue problem,

11I.NUMERICAL RESULTS

I11.1 Criticality of Multiplying Systems

For a critical system, A =0, and the critical c value is the
lowest eigenvalue of the eigenvalue problem

é(‘} = -—1—

thyy

. | (29)

LY
©

This value of ¢ gives the mean number of secondary neutrons per

collision for which a stationary neutron distribution can exist in the
critical system, The eigenvector corresponding to the critical ¢ is the
coefficient vector from which the critical flux distribution is determined,



Table 1 gives the valuss of the oriticsl calculeted using the

mwodel developed hers for diffsrent siges of three dimensional recten-

gular parellelepiped and two dimenmionsl infinite rectangular parallel-
epiped. The Tesults ars obtmined using the gGavssian guedreture rule of
order N = 20, In the two dimensional sasen wt usoe Iy = 18 = 14 and in
the three dimensionsl case we use Iy = I' w 4 with Ia w 14, The eriti-
cal o value obtsined using diffusion therory are given also im the table

with the percentage error for differsnt valuss of & /& pig,1 is a
plot of the percemtage error im the timmte of ¢ resulting from using
diffusion theory versus the optiecal half thickness -~ of sn infinite
ons dimsnsional slab, It is olear from tha resuvlts thet the error in o
caloulnted using diffusion theory detrsnsss o ;H;Agft increases and

the sise inoressss with the ssme result (n = 1) obtained from this
mode) amd diffusion theory im ths limiting owse of an infinite system,
The resulte show also that diffuaion theory sonsiderubly undsr catimatoes
the critical ¢ for very small syateme while it overestimates ¢ for

large aystoms,



slab optical halt thickness,x

FIG(1) PERCENTAGE ERROR IN C FROM DIFFUSION THEORY



- 1l -

Tuble, 1

Comparison Between Criticul ¢ values gbtained
Using this Model and Dpiffusion Theory
for Two und three Dimonsional Rectungular Purallelepiped

T™his Model fgiffulion Theory
E' - 012 é'- ;‘.Hol
| @ | % - /% s/ 08
C 4 C Zk%é
0.5 0.30] a,agragone) 1,5607180 - 80.28 | 2.156044 | -3.61
1,0 1,00 1,54178800] 1,4880008 - 0,73 1,6117524 | +4,54
2,0 2,00 1,21151978 1,2R901480 + 0.41 1,85061818 |+3.08
5.0 5.00 X l,049174c9] 1,1184358 + B.060 l1.0604262 | =L.¢1
1,0 | . 0,25 2,26304885 | 1,9402854 - 46,890 | 1,98075¢0 |~23.4
8,0 0.25 2,20118441] 1,822490286 - 42,28 | 1,8820839 |-17.8
10,8 0,25 2,24156730] 1,.82040687 - 41,00 | 1.8765479 |~18,80
10.0 1,00 1.88815220P 1,6210880 - 19,42 | 1.80200034 |~0,22

the Pourier tranaform methed /7 5_J was applied to the problem of

critieal one dimensional slub,

critionl o vuluos evaluatod by this theory and by Fourier trwnsform
mothod for o slub with optical hulf thicknesa of (.8 wnd for differont

trauncut;on ordore il .

with these of the Pogrier trunaform wmethod,

‘
[

;
i
’ 4
LR R T [
rog &

¥

L]
B IS Y L g 400 -
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e
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i
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i

v danrd st Yige

SO MO UTHE MORT 2 Wl o

Tuhle 2 pives & compurimon hetween the

1L 18 clear that our resultis agree very well
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Table 2

Critical ¢ ysing this Theory und Fouricr

Transform Method for a Slab withed =0.8

[+
1
1 This Theory Fourier Transfrom
2 2.03603247 2,03602643
4 2.03599842 2.03599015
8 2,08599127 2,1 3598538
8 2.03598611 2.03598490

The singular eigenfunctions or Case's method / 9_/ was developed
to provide exact solutions for one-~dimensional problems, Table 3
shows an excellent ugreement between values of ¢ calculated by caseo's
method and those calculatod by the theory used in this work, The ratio
of the surface flux to th: flux at the center of a slab of optical half
thickness ¢ i8 cualcalatc s wing the model adopted in this work and
tiffusion theory, These i'viults ere compared with the results of Caso's
cthod / 8/ 'in Table 4, Very good agreement betweon tho results of this
model and Cuse's method is demonstruted, Diffusion theory is found to
give higher eatimates for the flux at the surface with the orror being
aignificantly high even for large s /§? and large syatems, We con~
clude that although diffusion theory might be useful for predicting
integral properties such as the critical ¢ value for relat1vely
large systems with smpull absorption, it gives a bad cstimate for the

flux distribution,



Table 8

Comparison Between Values of ¢ Calouluted by
The Theory Used in this Work and cuse's
Kethod for Slabs

)
ol

Caso's Method This Model |
0.3 1,6153785 1,8153806
1.0 1.2771018 1,2771018
2.0 1,1084678 1.1084679
3.0 1,1582089 1.0382089
5.0 1.0864020 1.0384021
6.0 1,0l80722 1.0487942
8.0 1.0107668 1,0180722
10.0 1,0071887 1.0071358
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Tuble 4

#o/¢, Calculated by Case's Method the Theory

Used in This Work, and piffusion Theory

Case's This jodel piffusion Theory
Method
o<l A €,/ 5=0.4 < /&g=1.0
B/bo | 418, % b :

B/8, | A% | Bo/B, AP
0.5 ¢.55556 6.56304 | -0.20 | 0.93502 |68.3C | ¢.78183 40.75
l.0 0.439212 0.43520 | €.27|0.83147 |91.53 | 0.58778 35.40
2.0 ¢.801686 C.8(425 | ¢.86 | 0.65486 | 117.08 | 0.38268 26.86
3.0 0.22073 0.23248 | 1,19 } 0.58208 | 181,59} 0.28173 22,63
4.0 0.18483 0.18785 | 1.53| 0.44574 | 141,18 0.22252 20,39
5.0 0. 15430 0.15715| 1.84 | 0.38268 | 148,01 0.18375 19,09
6.0 €. 13229 c.13514 | 2.15] 0.33488 | 153.13] 0.15643 18,25
8.0 0. 10277 ¢.10577| 2.72| 0.26753 | 160.32] 0.12¢54 17,29
| LI ¢. (8394 0.08662 | 3.27| €.22252 | 165,12} €.098C2 16.76




Ad1l1,2, Asymptotic Period in & MNultiplying System,

We have shown that the kernel factorization method gives
results which agree very well with the exact Case's method for slab
geometry in the steady state case, In this msection we use the theory
developed in section 11 to calculate the asymptotic period of mult-
iplying system, Since the time dependent problem is transformed into
a pseudo Stationary problem in which the dynamic properties of the

system under consideration are contained, we expect the results to
be highly accurate, The accuracy of the non-steady stute diffusion
equation in predicting the asywptotio reactor period is assessed by
cimparing the results of diffusiontheory with those of the

exact transport model used in this work,

A8 explained in Section II, the starting point in determining the
asymptotic time behavior, umsing the kernel faotorization method, is
to determine the relation between the product °<¢>‘ C ) and &y for
e given geometry, The relation between °A and czjél obtained by

solving the eigenvalue problem given by Eq,(10), From this relation
the required o<, C. —-0<A‘rolation is cbtained, Pig.2 gives this
relation for &n fafiéite slab and u two dimcasional parallelepiped
with square cross ssction, Given u reuctor with certain ccmposition
and dimensions, the productM?F)il caloulated ueing Eq,(25) and &<, i@
obtained from Fig,2, ‘The asymptotio A is then culculated using Eq,(25)
from which the steble period ouan be caloulated via ”T_": - l/,\ The
period is calculated also using diffusion theory and compared with
that obtained using the transport model adopted in this work to assessa
the validity of using diffusion thoeory in non-steady state calculations
we have shown in Section II that both mebhodé give the sume value
for and infinite systom,

o~
In Fig.d, the dimensionless stable period L /td is plotted

versus slab optical half thickness for - e Y E S



it

10

1. dim oo slab

~——— — 2. dim with square cross section

- FIG(2) @y €)=0Cy RELATION FOR A ONE DIMENSIONAL SLAB

AND A TWO DIMENSIONAL INFINITE PARALLELEPIPED
WITH SQUARECROSS SECTION '

PR R
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d 25
WITH i =01



_]_g-

1,5, and 1,8 with the corresponding ¢ values being ¢,5, .6 and 1,9;
respectively, It is clear that as E:f/gi , increases, the critical
ol decreases, Tables 5 and G give 2’/td for different values of
o¢ with 5'./ £, = 0.4 and y%./ét =0.5 and 1,0 , The results
are given for the cases of diffusion theory and the transport model
used here with the percentage error of diffusion theory given also,
In Fig.4, the results of Zf/td calculated from transport and
diffusion theories are plotted versus o~ for Ei./2§t=o.7.

Table 5

Dimengionless Stable Period From Transport and

piffusion Theories for Different $lab of
Cptical Halfthickness oC and ¢ = 0,9
With Es/€t=°°4 and y %,/& ;0.5

) T 1 4(transport) T/t (diffusion) b %
0.2889 - 0.6262008 - €.9005593 - 43.86
(:,6209 - 1,0044672 - 1,2172208 - 21,19
0.8974 - 1,3548420 - 1,4536579 - 7.80
1,4190 - 2,0319741 - 1.8990129 + 6,59
3.5280 - 4,0113328 - 8.4052615 + 15,10
5.6938 - 4,9241720 { - 4,9498027 + 11,87
8, 9850 | - 5.4751200 | - 5.0794681 + 9,99
‘ o< - 6.0 % = 6.0 . -4 0.0
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Table §
Diménsionless Stable Period from Transport and
piffusion Theories for differents Slabs
of Qptiocal Halfthickness o¢ and
o=1l,4 with 5—;/2""-0.4 . wad

JE/E =10
o< |T/v,itrensport) T/t g(diffusion) | A %
0.15086 - 0,8417849 - 2.7202654 - 928.0
0,0001 | = 1,6088801 ~ 7.80680814 - 858.0
0.5760 | = 4,5000787 - 70,778262 - 1470,
0.0182 6.20402588 “8,6050882 5.98
2,2680 1,8582678 2.24582058 20,84
8.6600 1,8302708 1,8018882 11,78
5.7760 1,5580805 1,8584880 .12
7.1940 1,5881420 1,8050010 4,05
oo 1,8 1,8 0.0

It 48 olear frow the results that diffusion theory gives
oriticulity at values of o swaller that those predioted by transpory ¢
theory, We notics also that diffusion theury gives o period vhich is
smaller than that given by tramsport theroy for very small systems,

For larger aystems, diffusion theory is found to overestimate the
period, 1t is observed thut the largest error in T ooours in the
renge vhere the system is nearly oritical with the error decreading o

us o< inoreases reaching sero a8 '

The stable period mway be rewritten as

T « v ( € o i'_“) , (80)
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whore -(a<' /a) = £, is the ubsorption cross section required for
oritioality (2:-40) Using diffusion theory, one can eusily show that
the period is given by

= 1/v( & woD” ) ’
with

< =& o nn?
"®0D V DD d

where B® ia the bucking, The relation hetween 7 and Eﬁ., for & two
dimonsionul infinite rectangular purallelepiped with square oroas seo-
tion or u givon siwe, im obtuined using trunsport wnd diffusion theories,

Connlder two systeus with amb=20 om und umbel0 om, The datu used
uroéﬁhno.aoo om'l,y Efruc.cooa om'l. und veg,gx1¢d om/mc0, for fully
enriched Uraniuw fuel, it is ippurtunt to notice thut &:u oun talo unly
values greater than)) £,/ =0,0086 w2, £ ao FOF the two systems ure
caloulated; they are 0,047 and o.ola4a‘on'1, reapeotively, 1t is olear
therefore, that the second system im always suboriticsl and csnnot he
made oriticul, Rolations between T ind £ o from transport and
diffusion theories are plotted in fig.8 for the firat aystem, The rosults
show that diffusion theory underestimates the abmorption oross section
required for oriticality, The error in Z’ll found to bo pronounced in
the range where the period ie large, i,e,, when the asystem is nearly
oritiocal, The error deoreases as the lyIQOD.‘OOI ovay from oritioality,
Morsover, for supercritiocal aystems, diffusion theory gives hipher
values for 7/~ , while for amuboritiosl aystems, diffusion theory givos
smsllor values for /¢ 7, The values of ﬁ?u required bo givu arvuin
period / im calouluted using trunsport and diffusion theorium, fhe
porcentage orror in ?“ is plotted versua 1/ + , for the lwe uystemn
undor oconsideration, in Pig.d, It is oloar that diffusion theovy
underestimutes the value of ' roquired to give certain volue oi ',
For the sume period, the error in - “ deorcases us the aiwe inercascs,
Moreover, for the same size, A € “% dooreases us the system buoomes more
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subcritical, The reason is that Ai.-. is independent of Z  and is
egual to A<  Therefore, Ai‘% decreanes as Z. incresses,
ao’

111,8, Decay. of a Neutron pulse in an Assemblys

when an intense neutron pulse of brief duration is injected into

an assembly (either nonmultiplying or subosritical), the subsequent of
the neutron distribution can be followed by detectors and the results

way be used to infer muny properties of uhe assembly, Assuming space

and time seperability and using one speed diffusion theory, the asy-

mptotic decay oonstant in & pulsed nonmultiplying assembly is found

to be ['11 _7

A= v + b e ve, (04 1f) (s1)

Note that diffusion cooling effest is absent in Eq, / 81 _/ because

it is based on one speed theory, Eq, (81) is the basis for neutron
purlse experiments in which the asymptotic, desay constant is measured
for assemblies of different sises and plotted versus the buckling 32.
The data are then fitted to s straight line from which the diffusion
time 1/v€, oand the diffusion length {or the diffusion coefficient)
are determine, In this saotion; we omloulate A for assemblies of
different sizes using the kernel fattorization mehtod presented in
Section 11 to amaess the validity of diffusion theory in studying the
neutron pulse decay, The oaloulations are performed for nonmultiplying
assembliss, Note that the asyuptotic decay constant in a pulsed
suboritical assembly is obtained from the stable period; given in
Section 11,2, via A ua )./.Z- .

Consider the deoay of & neuiron pulse in a graphite assembly, The
thermul properties are ¢ £, = 0,87741 on'l, 5,‘ =0, 0002400 cm-l,
E'-o.anlesl om'l, and D ~ 0,84 om, The asymptotico decay constant is
caloulated for an infinite slab and a two dimensional parallelepiped

of square oross section, The results of the transport model presented



in this work together with the results of diffusion theory are given

for different slah sizes in Table 7, A is plotted versus 32 for a two
dimensional parallelepiped with square oross section in Fig,7. The
results of diffusion are also included for comparison,

It is clear from the results that if small assemblies are used in
the pulse neutron experiments; diffusion theory underestimates the
asymptotic decay constant A , If the results of transport theory,

confidered to be- exaot, are fitted to & mtraight line; a slope which
is higher than that predicted by diffusion theory is obtained, The-
refore, if experiments are performed on relatively small systems of

sizes investigted here, they will overestimate the diffusion length

and the diffusion coefficient and underestimate v 5 o+ For exumple;
if the A versus 32 relation ohtained by transport theory in

Fig.7 is fitted to a straight line, we get D » 1,008 om am compared
with the exact value of 0,84 om. It also gives Vig“ ; =950 aec'l
vhich is much smaller than the exact value of 58 sec , We conclude
that for a good estimate of diffusion parameter:, very large assem-
blies wust be used in neutron pulse experimentas,
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Table, 7

A va, 32 for an Infinite Slab of graphite

o cm) p2(en™2) Transport }\(no-l) piffusion A(lee-l) ) A'A%
0.570 0.3760840 70115,53 69524.9 - 12,12
1,015 0.2720897 81358, 20 50480.9 - 17,73
1,481 0.2043852, 45881,80 37854.1 - 17,50
1.618 0.1893955 42049,00 35038.9 - 17.07
2.140 0.1445590 316 30,40 26756.6 - 15.41
8,984 0.0853022 18010,40 15827.0 - 12,12
5.874 0.0339883 81239.60 7420.5 - 8,065
8.412 " 0.,0227976 4570.60 4264, 2 - 6.176
10.980 0.01406645 2016, 80 2761.8 - 5429
13.580 0.0017682 2088, 70 1932, 17 - 4,18
18, 150 0.0074972 1476, 10 1437.9 - 2,59
18,800 0.,0057078 1128.20 1107.8 - 1,42,
21,420 0.0045018 888,00 884,5 + 0.17
24. 050 0.0036384 701,70 728.1 + 8,33
26.6R0 0.0030015 588,80 807.4 £ 9,77

oc 0.0 53,00 53,0

}0.00

An extensive work ia now in progress to improve the model used in
this work by treating the energy dependence in the context of the multi-

group method to examine the diffusion ocooling effeot,
seperability assumption is alsoc being removed,

The space time
The model will be

cupable of prodicting not only tho asymptotic timo behavior, but also the

gyslom lrunsienis,




IV, SUMMARY AND CONCLUDING RFMARKS

A wodel, based on the kernel factorization mehtod, is presented to
predict the asymptotic time behavior of the neutron distribution in a
rectangular parallelepiped, The kernel factorization method converts
the one speed integral transport equation into a set of homogeneous
linear algebraic equations in which the matrix elements are accurately
determined by analytically evalusting the integrala in terms of
appropriate special funotions,

The limiting steady state case is exumined aund values of the

critical ¢ value obtained here ars oupared with those obtained using
Case's pethod and Fourier trausform wethod in the limting case of
slab geometry, A very good sgreement is obtained, The oritical ¢
value is also caloulated using diffusion theory and compsred with the
results of the transport model used here, Diffusion theory is found
"to give good results only in the case of very awall absorption and for
large systems, On the other hand, diffusion theory is found to give
o bad estimate for the flux distribution even for relatively large
systems with amall absorption,

The model is used to assess the acourscsy of diffusion theory in

predicting the asymptotio reactor period, It is found that diff-

usion theory gives a siable period whioh is spallsr than that given by
transport theory for suboritical systems, For supersritical systems,
diffusion theory is found to overestimete the period, The largeat
error in is found ro ocour in the range where the system is nearly
ocritioal with the error decreasing a8 the aize inoreases reaching

gero an infinite system, Diffumsion theory is found to underestimate

the value of absorption oross section required to give certain value of T

The relation between the asymptotic decay constant A and the
buokling 3% in pulsed nonmultiplying assemblies is obtained using
the model presented in this work,



-w-

The results are compured with the diffusion theory prediction which

is used to measure thermal diffusion parameters in neutron pulse
experiments, It is found that diffumsion theory underestimates
particularly for small systems, Using relatively small assemblies in
neutron pulse experiments is found to give values of D and td that are
higher than their actual values, It is corcluded that for a good
estimate of diffusion parameters, ver large sassemblies must be used

ir neutron pulse experiments,
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FIGURE CAPTIONS

Percentage Error in C from Doffusion Theory,
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‘E/&A from Transport Theory vVersus of of Slubs with
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for ../ £ =0T

T vVersus €  for Two Dimensional Purullelepiped of a=b=g0 cm,

4 2‘..8:/, versus I/E for Two Dimensionul Cusos,

A vs, Ba

Cross Seotion,

for Two Dimensionul Parallelpiped with Square



