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In some problems of the mathematical theory of particle coun-
ters/46:33/ film or filmless measurements of track ionization
in high energy physics/28.7/  queueing theory’®/,random walks,
etc,, a class of semirecurrent and m-semirecurrent events ap-
pears. These classes have interesting properties and here we
study the numerical estimate of probabilistic formulae corres-
ponding to integer-valued random variables denoting the first
occurrence of the experiments at the n th trial, and their asymp~-
totically exponential properties. We present very precise and
computationally convenient formulae.The application of m-semi-
recurrent events to counter theory with prolonging dead time
is studied in more detail, and an illustrative numerical example

is given.

}. PRELIMINARY RESULTS

We sugpose that during the kth experiment, k= 1,2,..., an
event, » either may occur or not. The occurrence of the event
at the nth trial, n = },2,.40.y Will be denoted by A; and its
non~occurrence by AE  The events !Ak. nk>1} are said to be
semirecurrent if for any k >1 and 11 "with 1<ig<i << ,n2l,
we have

. . ok ki k+ig
PAY o Af TAY ) = PO Ay ). (1.1

Denote by v, ik >1 an integer-valued random variable saving
that the event A occurs in the k th experlment for the first

time and put P = Ply, =n) = !:’(A1 ...A 1A ).
Using (l.1) we may prove that

= P(A:)-
(1.2)

K _ pak ozt Ky p k4]
Pa- P - T PAHPLT L mxz
Let us define for any k>1 and |z{<1 U,(z) = ;‘2 (A )z ,where
P(A5) =1 and P, (2) = z PX2%, Due to (1.2), we have P,(2) =

= }: P(A"m_ n(z))z



An interesting case is obtained when there is an integer m
so that P (z) = Pm_'_l(z) = eee . Then semirecurrent events are
said to be m-semirecurrent, In this paper we shall concen-
trate ourselves mainly on this class of semirecurrent events.

Remark I.1. It is clear that if !An. nk>1 are m-semi-
recurrent events, then !Bk- n,k >1}, where Bk A“‘*1 kon>1,
are (m-l)-sem1recurrent.

If m=1, then (1.1) and (1.2) do not depend on the super-
scripts. The W=-semirecurrent events are recurrent (for the de-
finition of the recurrent events see, for example, /9.10/) iff
m= ], In this case (1.2) reduces to the known formula 8,10/
for the recurrent events

P

]

P(A, ),

(1.3)

-1
P - PA, )-"2 P(AP,_, » 022,

where P = Pl-= pﬂ:..., P(A,) = P&} )=P@A2)=... for each n. It
is evident that semirecurrent events {Ak: n, k> 11 are m-semi-

recurrent iff {BY: n,k>1}, where BE~ A'“’"‘“ nk>1l, are re-
current events.
If m= 2, then (1.1) has the following form: for any k = 1,2

and ij with

15i0<i1<...<in, nxl, -
k k k 2 .
P A A7) = 1>(All_10 L
Therefore for (1.2) we conclude that
= P(AY),
(1.5)

Lo pal) - z P(A" )P“, n>2,

for any k=1, 2 Th1s class of semirecurrent events is also
known in literature as the recurrent events with delay/10 s

Some basic properties of the semirecurrent and m-semirecur-
rent events are studied in more detail in/8/,

Without ambiguity we shall write {A:' n>l, k=1,..,m| for
m-semirecurrent events fA :n,k >1}. We say that for m-semi-
recurrent events {A%in> 1 k=1,...,ml the case of periodicity
holds, if there is an 1nteger t>1 such that PAY) >0 if n=

=t, 2, ... In this case P(An) =0 whenever n# jt, The greatest
integer t>1 with this property is called the period. In the
oppos1te case {AP1Y_, is called non-periodic. The sequence
lA lpwy, for k= l,..., m is said to be certam or uncertain

according to whether ¥ PE-1 or £ pEqy,
i n=1 1 =1



2, APPROXIMATIVE FORMULAE

In the present paper we shall deal with m ~semirecurrent
events {Ak:n>1, k=1,..,m} with

. 1

(i) P(A,) > PAL)> .. > PA™), n>1,

iy P@Y) > Pk > k=1,..,m

(11) ) sney = ytesy » (2-1)
(iii) Py, D<P@%*Y), a1, k=t m-1, if 2.
Here we derive approxxmatlve formulae for {Pnln=1,k 1.

This result will be applied in Part 3 to the modified counter

with prolonging dead time,
Define for any k= 1,,.., m

oo

a, (@~ % ak o+l g <y (2.2)
n=0 R

where a - p@ak )—P(A ., 020, (P(A'(‘,) =1), and
¢, (@ =z-a,(2), |z| <1, (2.3

We suppose that p>0, where p = limP(A"') Then iAnln_ is cer-

tain and, consequently, due to /8/ Th.4.1 , each {A n l,k.lv.”nhl,
is so. According to’/8/ Th.4.2, p=1limP(A¥) for any "= l,ee.,m.
n

It is clear that ¢, (})=p, k=1,..., m, and from the evi-
dent equality U, (@ -1 -=:/:k(z)/(1—z), k= I,e0s, m, Jzj<l,
we conclude

m-k-1 .
Po® =W @+ 2 PG,@ ~ vy @20/ U=z @) (54

k=1,.,m,
We recall that here the sum over the empty set is defined as O.
The next result generalizes the analogous one from ’2/.

s

Theorem 2.1, Suppose that for m-semirecurrent events with
(2.1) we have
(i) p>0,
(ii) the equation aléz) =1 has a solution, Then for any
k= l,.0.,m

k _ -n-1 k
P _bkﬁlﬁ +r,0>1, (2.5)
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where

o0 j=1 1 o i j
1 4 1 d i
A=l+ Iy ;;J—-i[lﬁm @, . B =J=zo T g @y
b =f=-1, b =¥, (@) If m>2,

{=1
Pt = Yy (B) ¢ 151le-iﬁl(ﬁ-l-.,bm_m(ﬁ)), for 2<i<m-l,if m»3,

and [r¥| <C (a1 ~P(4])))"(the constants C, >0 and g >0 do not
depend on n),

Proof. If P(A])=1, then P(AT) =1 for any n and a (z) =0
which contradicts with (ii), so that P(A]P) <1. According to the
Cauchy formula, (2,4) entails

SUNTRVE. LN T (CL
B2l (y(ny g m+l 2mi ja0=1 (1---z+xbm(i"))t"4"+1

where F,(z) k= 1,..., m denotes the numerator of the right=-
hand sige in (2.4). Since

ob

1-z+¢vm(z) =1—-zn=‘.£0 aﬁz“=]—am(z). (2.5)
then its value for z =1 is p> 0. The coefficients for an(z)
are positive, therefore, due to (ii), there is a positive root
of the equation a (z) =1. Denote by 8 this minimal one, It is
clear that 1-2z2+¢ (z) has no zerosein the circle |2z} < 8. If
there is 0«< 8y < 2 such that am(ﬁej ©)=1, then this can hap-
pen only if cosfyn =1 for alln>1 for which ag  #0. There-
fore a (2) 1is a power series in z! for some integer t>1, and,
consequently, a.g‘=0, which is impossible. So, we have shown
that B8 is the unique zero of 1-z +y (2 in the circle lzj < 8.
It is clear that it is simple, because a (8)>0.

Denote by R> B the radius of a circle n that (2.6) has the
unique zero 2= 8. From (iii) of (2.1) we conclude a}i‘s am_ et

+.e+ a2l n>m-k. Hence F (z) has no singularities in the
circle |z{ < R. Denote

F, (z) dz F. (8
pho L [ k k + Pz 2.7

0" Zni ]zi=n(1-z+¢m(z))z"“= W (8 -1)8"*!

The integral on the left-hand side of (2.7) can be estimated
by the maximum moduius [r¥| < C,R~®. From (2.6} we have that
- P(A"l’)) <1, therefore there is q> 0 such that R=1/q(1-P(A"1‘))
and the estimate of the remainder is established.
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Putting B, =1/(1-¢ (8) and b,=F (B) we may obtain (2.5)
from (2.7), From (2.5) we see that the convergence radius for
the power series for Py(z) is at least B, hence (2.4) implies
b, >0,

b To establish the explicit expressions for g and B, respec-
tively, we consider a function w =12 - ¢ g (2) that 1n a con-
form way transforms some neighbourhood OFf the point w= 1 to
some neighbourhood of the point z= 8, Therefore w=w(z) has an
inverse function z=2z(w). It is clear that 8=2z(1) and g = z°(1).
Using the Lagrange expansion formula/!8/we obtain the formulae

for B and B;. Q.E.D.

Remark 2.2, The root of the equation «g(z) =1 may be eva-
luated more effectively using the Newton approximation method.
In fact, it suffices to take into account the form of (2.6).
Then for Bl we have [31_ ~l/a’ (B)

As will be shown in Example 3.4, formulae (2.5) give very
precise estimate of PK even for small n. The remainder Lerms,
f‘,‘l. are, for sufficiently large n, very small with respect to
the main factors. Therefore from (2.5) we obtain very precise
and computationally convenient formulae P'; = bk [ilﬁ“"‘*, k-1,
veeqs M.

Corollary 2.,1,!. Let t>1 be an integer and let 1ak . n-1,
k= 1,...,m} be m-semirecirrent events with P(A*) = whenever
nis not a multiple of t, k = l,.ue,m. Suppose (2,1) holds when-

ever n is a multiple of t and
(i) UmP@AT) >0,
Y a+l

(ii) the equation & (z) ); (P(A )-P(AMH))z =1
has a solution.” n=0
Then for each k= !l,..., m n = b B B +rn,where B B, a
b, are evaluated from Theorem 2.1, replac1ng u (z) by

- % (Pa% ) - P@k, Nz" L k=1, m.

n=0 nt+t
Proof. Deflnlng Al —-Ak n>l, k= l,..., m, we obtain the
case described in Theorem r? i. Q.E.D.

3. APPLICATION TO COUNTERS

An important class of semirecurrent events is obtained if
we consider a modified counter with prolonging dead time,

Suppose that particles arrive at the counter at moments 0 =
=71, <75 <.. according to a recurrent process with the common
distribution function F(t) = P(T,<t), where Tp =Tpe1~7p.02>1,
are interarrival times, Any arriving particle generates an im-
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pulse of a random length (may be constant, too). Due to inertia
of the counting device, it is possible that all particles will
not be registered. The time during that the device is unable
to record is called the dead time. A counter with prolonging
dead time is one in which dead time is produced after registra-
tion of all impulses of emitted particles. This counter has
been studied in /12-18,5/ For modified counter with prolonging
dead time we suppose that any registered particle determines
an impulse of a random length with a distribution function, in
general, different from the distribution function of a non-re-
gistered particle, Since in the present paper we shall study
exclusively counters with prologning dead time, we shall call
such counters simply counters.

Let ix 7., be a sequence of impulse lengths, so that, it
is a sequence of non-negative independent random variables, in-
dependent of {T,}; -1, with distribution functions

H W) = P(x, <), Hy(t) =P(x , <t), n> 2. (3.1)

This counter will be denoted by the triple (F.H ,H,). If H,=
= Hp, then we obtain a non-modified counter.
Putting
A:=ka<Tk+...+Tk+n_1. X. 3 <Tk+1+"‘+Tk+n—1"“'
(3.2)
b, n>1, k=12,

< T
Xk+n—1 k+n—-1

we defined semirecurrent events with delay. The random variable
v, may be interpreted as the number of particles arriving at
the modified counter (F,H,Hy) during the dead time, Similarly,
v, denotes the same for the counter (F,H, Hy).

It is clear that if for distribution functions of the lengths
of impulses we suppose the existence of an integer m> 2 such
that

H® =Plx, <9, k=lp,m-1, H®=Px <, k2m,

then (3.2) defines m=-semirecurrent events. Hence all results
of this part may be easily modified for any m. We recall that
the last above case is a particular one of the semirecurrent
events studied in/4/ and the same processes may appear in queue-
ing systems with infinitely many servers/2/.

It may be easily checked that if H () 2 Ho(t) (> Hg(®)>...2H (1)
for any t, then {A :n>1, k=12 (..,m} fulfil (2.1).

Theorem 3.1, Suppose a modified counter (F,H, Hy) satisfies:
(i) Hyj(®) > He(v) for any t;



(ii) r Hp (1) dF(t) >0;
(iii) sup{u>0 r N dHy(t) <ool = on.
Then Theorem 2.1 holds.
Proof. According to /1, from (ii) we conclude that p>0. In

order to prove that the equation ap(z) =1 has a solution, it
suffices to show that for any ;>0 we have

T
0<a2 <Plyy,p2 To+e+Ty, o) <Me BX2 yme *T2y)nt

. . Loy . Ty
The convergence radius, R, of the series 2 a%z" is R > L/ME™ 2>

>1.If u»m,then R=~,and the condition (ii) of Theorem 2.} is
fulfilled. Q.E.D.

For example, if (1)H (t) is the distribution function of
a positive constant rdndom variable; (ii) dH (t) =a exp(-bt %) dt, t>0,
for some a>0, b>0, ¢> 2; then the condltlon (iii) of Theo~
rem 3.1 is satisfied.

We recall that if F(f) =1 —e=At , t>0, and

= T tdHy®) <o (3.3)
0

then, due to/17/

p=eD, (3.4)

Theorem 3.2. Let (F,HI,HQ) be a modified counter, where
F() =1 ~-e ™ £>0. Let ut =suplu0: [ e¥' dHy(V) <whand Hy(D) =
(43

2 H,(0 for any t. If p+>0 and 1/u+< D, then Theorem 2.1 holds.
(Here we put 1/w =0 1if p* =o ).

Proof. If y* =, then the assertion follows from Theorem 3.1,
Let now p* <. Choose 0<fi<u*. Then from our assur@tlons it
follows that there is a c¢>1 such that 1-H,() <ce#t, t>0.

It is easy to check that

) = ““Or(l-n (+e bty g )

2
0<al <Pl o2 Tyt T

n+1

exp(—)«(tl+... tn+1)) dt1 e dtn+ <c@A/A+ )

Hence the convergence radius, R, of the series Ean?zn is
n



R > 1+3/A, so that.R>1+ g/A. Using the following simple
chain of inequalities, holding for any x>0,

e¥>1+x, 1/(l+X>e ™, 1+1/x)1=e %) >1,

+ - At X
we may show that (L+p /M +e A i )>1. it is clear that
for any e>1
Y
Qeept/MNL +e™ME H>1, (3.5)
Kot

so that, due to the continuity, (3.5) holds for some 0 <eg<l,
too. Then for z =1l+egu*/A < R we have, according to (3.4),

- T .2.n s 22 _ +/)(1 —e~*D) >
>zon}=20anzo> z0n§=loa,n (l+eou/ ( ) >

+
> segut/MA-0™ME )51,

Hence the eqqation az(z) =1 has a solution. Q.E.D,

Corollary 3.2.1, If in Theorem 3.2 H, is the Gamma distribu-
tion, especially, if Hy(®) =1- e ,t>0, for some p>0, then
Theorem 3,2 is true.

The nexi theorem was proved in

/37,
Theorem 3.3. Let (i) F be a distribution function of some
constant a >0 ; (ii) 0« Ho(na) < Hy(ma), n>1; (iii} [ tdH,(6) <o,

Moreover, if H,(na) <1 for any n>1, then let (iv)

lim (1 - Hy(n8)) /(1 ~ Hy((@ +1)8)) =R >1; () £ (1-Hy(@+1)a))
n 1

n=

n-=F

H, (ia) R @) >1.

i=1

Then Theorem 2.1 holds.
For example, if Hy is the Gamma distribution, or the geomet-
ric one, then the conditions of Theorem 3.3 are fulfilled.

Example 3,4. In Table | we give a numerica. example of the
application of Theorem 2.! to the counter (F,H,H), where F
is the distribution function of the comnstant equaled to 1, and

Ht =1 - e""2 » t>0. Here the parameters 8 and 8, are eva-
luated by Remark 2.2: g = 2,515773, B,= 2.338680,

8



Table

n Py by A n Py by ,/31f‘-l’-n-1
1 6.3212 =01 5.6010 =01 6 5.5578 -03 5.5578 -03
2 | 2.2097 -01 2.2263 -01 | 7 | 2.2092 -03 | 2.2092 -03
3 | 8.8531 -02 B8.8500 -02 | 8 | 8.7814--04 | 8.7814 -04
4 | 3.5175 -02 3.5176 =02 | 9 | 3.4905 -04 | 3.4905 -04
5 | 1.3982 ~02 1.3982 -02 |10 | 1.3875 -04 | 1.3875 -04

From Table we may see that the formula (2.5) yields a very
precise estimate for P, even for small n.

4. ASYMPTOTIC PROPERTIES

We shall continue the study of the properties of m-semi-
recurrent events, In this part we show that under some condi-
tions v, , k = 1,..., m, is asymptotically exponential when
p- 0,

So, we suppose that m-semirecurrent events fA':l: n>1l, k=
l,..., ml satisfy the condition (2.1). We introduce, for any

k=1l,...,m a function

¢ (@ =1~ 3 afz" lzgl<1, 4.1)
=0

where a = P(a l*‘) - p(ak a+1)e 02 0.
It is obv1ous that for (2. 3) we have

(2 =29, (2), lz] <1, (4.2)

and if p>0, then qS 1) =

For the generatlng functlon, qb (z) ,we may give the following
probabilistic interpretation, Let p>0. For any k=l,...,m
define the integer-valued random variable, fk, such that

 =m=af 020, PE == =p. (4.3)

Then (4.1) and (4.2) entail that
13
¢ (@) = 1 -Mz “I¢, <=), |z| <1, (6.4)

where I(C) denotes the indicator function of a measurable set C.

9



If we put, for any k= l,..., m,

3

- Tk_n S fk
—P(n<£k<n) n >0, Qk(z =nﬁoqnz . lgl<1, Pk(z)=M(z I(£k<=o)),

_ - (4.5)
then (1-2)Q,(2) = P(§k< =) = P, (2), and
P =Q,(M). (4.6)
Therefore from (4.,5) and (4.6) we have that
-] o k
X onag= 5 (PG -p). (4.7)

Lemma 4.1, Let the m-semirecurrent events iA:::nzl, k=1,..,m
fulfil (2.1) and let p> 0. Then

. 3 L3 Ey_ o).
(1) 67 = 3 (P@E)-p)
(i1) 18] <o 1 (gDl <= I, etes, WIS < » iffM <o,

where M = M(um(um ~1). (4.8)
In this case
m-—k-1
H = M(Vk) = (¢;(1) —¢r:l(l)+ 1+ = P (dz 1) - <,i>;i ‘i an/p. (4.9)

j=1

Proof. (4.8) follows from the above note and (4.7). Hence
if l¢{()] <=, then = > o (] > &7 (1)[ > 16 (.

Let now |¢’ (1} < o0, Then for any n>m, we have P(A ) s
<PAT-miD . whl(‘h implies that l¢7 (1)} < =, Theorem 5. 3 in
and (4.8) prove the equivalence of |¢ W} <o and M <=, Using
(4.2) and taking the derivative of (2 4) we may ea511j check
(4.9). Q.E.D.

Varying the paranmeter p &(0,1] we may nbtain, iu general,
differeat functions &y (z), k=1,...,m. Taking into account
this dependence on p we shall write @ (2) = &pk (2). Analogically
we write P(AS) = P(AK(p)).

'8

Theorem 4,2, Let the m -semirecurrent events lAl;:n >1, k=
= ly,e., ml satisfy (2.1) and let pe(0,1] vary so that (i)
Idz’ O} < e (ii) lim "”51(” =0, Then for any k= 1,..., m
p -0t
11m P(a (p)u >t)= e~f, t>0, where ak=ak(p) =1/M(uk).

p-ot C . . ..
Proof. Uslng (4.9) and conditions (i) and (ii) we may show

that lma, (p) =0, lim a(@/p=1.
p*0+k p,,0+k

10



From (2.4) we conclude that

—8a, ¥ -8a —-8a —-8ay j -8a
P *f)=le ‘@ “)+ I Ple (4 °

SR CIL BY I S I P e N C

— m—k-1 - - -
e 8a ) (1 s j?l P;‘ o 88, ) (qu(e 88 )/qbk(e lak) _

P R 2 N RS I ( S VPN L

. e-sak qu(e-sak )/qSk (e-aak ).

. P . ~8a (p)
First of all, it is clear that lim (1-e kK
Nexuv we show that p-+0*

)/ p=s.

lim & k(e-“j(p))/p -1 (4.10)
p- ot
for any %,j = l,..., m. We note that for any fixed pe(0,1]
&, (2) is nondecreasing for each 0<z<1. Using that and the
elementary inequality ™% >1-%%x>0, we obtain

1 e (1-sa ()
—¢vpk()_<_¢pk(e )_<_<;bpk - 53 ;(m).

Due to the inequality (1-x)"

>1-nx, n>0, [xi<l,
for sufficiently small p>0,

we have,

<p + sa. (p) E nak
n=1

B, 158 @) =1 -ni:o (1 ~8a, ()" ak

=P -sa, @), M.
Hence

1< -sa; (p)

bpx (& )/p <1 ~sa;(p)/pép, (1),

so that (4,10) holds,
Using this fact we have

11m ¢ (e ~8a k(p)) /¢ Eﬂk (p) ) l

for each i, j = t, .., m.

11



Therefore

lim P €% )y 21/ +s), s20,
p-0?
and the theorem is ccmpletely proved Q.E.D.

Remark 4.3, The condition (ii) in Theorem 4 2 is equivalent
to the following two conditions lim P(Al ) -0, lim ¢p’m(1)=0
P"D p—40+
Indeod it suffices to take 1nto account the ineciuallnes
P(al) (P(An_ml) nx>m, and PQA})2P@AL)> ... > P@AL).

Example 4.4, Define the recurrent events with delay. Let
ng<ny  be given and 0 <PLSPgS . SPy <l.Pp st =1,0<pf

< p¥<..sp* < * -1. W
by “pm°<" pmo+1 ! e put
* * 1 -
1 * * 3 - -
P(An) _{ pl... pn, if Nyt I <n comoy
N N .
Py P if Mg <M,
. N R if 1 _n mg,
P(An)
* * .
LETEITHN if MmN,

For this case Theorem 4.2 holds.

Ir the rest of this part we apply Theorem 4,2 to the modi-
fied counter with prolonging dead time. Similarly as in Part 3
we confine ourselves to a counter (F,H;, Hy).

Theorem 4,5. Let (F,Hj, Hy) be a counter with (i) F(1) =
= e—M, t20 A>0); (ii) Hy(D 2 Hyp(t) for any t; (iii) D=
= of t2dH2(!J <o (iv) H2(0+) =0. Then Theorem 4.2 holds when-

ever A oo,

Proof. We shall examine conditions of Theorem 4.2 and Re-
mark 4.3. 1t is casv  to check that

P(AY =x TH, (e ar, P(a2)-a"1/n f ({ Hy (0 00" e dt,ns,
0 (4.
12



¢p(z) = L~ fexp(—-\ {(1—zH2(u))du)(1 Hoy)), dy, fz{< 1. (4,12)

Using (3.4) or directly (4.12) when 2= l’ye have that p-e"“) .

where D is from (3.3). Since Dg < =, then fy(]-Hz(y))dy < o
and the integral 0

y y
r(l—Hz(y)) exp(~A [ (1 - zH,(w)) du) [ Hy(u) du dy
0 ) 0

converges uniformly in z €(0,1]. Therefore we may take the de-
rivative of (4.12) with respect to 2= i, and obtain

8o oq y

$g (2 = =A% [ (1-Ho) exp(=r [ (1~ zHy(w)) du) [ Hp aay
0 0

We have to show that Um ¢5(1) =0

lL.et A>0 be arbitrary. Denote

A o y
I‘()\, A) = AZ fQa —}!Z(y)) exp(-A fQ1 -Hz(u)) du) [ Hz(u) dudy ,
0 ] 0

LAY = ¢ () =1 O B)
A
It is obvious that 1,(, A) < A%exp(=d f 1-H, (W) du)D,
0
Because of D< e, for an arbitrary ¢>0, there is Agle, A)> 0
so that Iz()\, A) <¢/4 whenever A> Agle, A).
Using the per-partes integration nethod, we conclude
Il()“ A) = !3(4\, A) + 14()\, A) + IS(.\, A),

where

A A
13()\, A) = A eoxp(-A {(1~H2(u))du) sz(u) du ,
0 0

A
I, A) = exp(=A [ (1-Hp(u))du),
0

A
A [ exp(~-A {yu - H (u))du)dy -1,
0 0
It is clear that us('\ A) | < AA exp(A f(l- H o(W) du). Hence there
is Ag (¢, A) >0 so that }I °y ,A)[<e/3 ° whenever A>Agle, A).
Slmllarly there is A,le, A) >0 so that |I,(, A)!< (/-1 when A >
A (e,4).

I(}\ a)

The condition Hy(0%) =
is Ale J with l-¢ <1-H
fore

0 entalls that for any ¢, >0 there
(u) < whenever 0< u <Ale;). There~
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A(rl) A((l) A(l-e
-€1)y
A O[ e")‘y dy <1, A) < [ e dy -1
0

and

‘)\A(fl)
e

—I\A((l)
<1y, ) < -e )/ (M-e)~1<e /(0 =¢,).

Using the inequality ¢;/(1-¢;) < 2¢; which holds for 0< ¢<1/2,

-AA - :
we get HB(L A)| < max(e kl{ 2,). Now, for a given ¢;> 0, we

may choose A le,)>0 so that e—AA(q) < 2¢; whenever A>Agle,).

From this restriction we may choose e¢; and A so that ¢y =¢/8
and A =A{(c/8). Hence if A > 2<n11agS(Ai(c,A(c/B))).then lg ()] < e

Using (4.11) we see that, according to Remark 4.3, the proof
of Theorem is finished. Q.E.D.
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B 06veAnHEeHHOM MHCTUTYTE AAEPHHIX MCCNEAOBaHMIA Hauan
BuxoauTh cbopHuk "Hpamxue coobyenu’a OHAH", B Hem
ﬁyA,YT noMeliaTeCA CTaThM, Ccogepwalime OPpUrMHaNbHLe Hayu4Hue,
HayUYHO-TexHHUYECKHEe, MeToAMYecKHe U NPUKNAAHBE Pe3ynbTaTi,
Tpebyoume cpouHoli nybnukaumm. byayun uvacTen '‘Coobuenuin
OUAK'', cTaTbu, Bowepuwme B COOPHMK, MMENT, KaK v Apyrwue
napanma OHAKU, cTaTyc oduymanbHeX nyGaHkKaywii,

C6opHnk "Kpatkue coobuenun OMAH' GyageT BuxoAnThb
PeTyNApHO,

The Joint Institute for Nuclear Research begins publi-
shing a collection of papers entitled JINR Rapid Commuri-
cations which is a section of the JINR Communications
and is intended for the accelerated publication of impor-
tant results on the following subjects:

Physics of elementary particles and atomic nuclei.
Theoretical physics.

Experimental techniques and methods,

Accelerators,

Cryogenics.

Computing mathematics and methods.

Solid state physics. Liquids.

Theory of condenced matter.

Applied researches.

Being a part of the JINR Communications, the articles
of new collection like all other publications of
the Joint Institute for Nuclear Research have the status
of official publications.

JINR Rapid Communications will be issued reqularly.
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COMMUNICATIONS, JINR RAPID COMMUNICAT!IONS, PREPRINTS,AND
PROCEEDINGS OF THE CONFERENCES PUBLISHED BY THE JOINT INSTITUTE
FOR NUCLEAR RESEARCH HAVE THE STATUS OF OFFICIAL PUBLICATIONS.

JINR Communication and Preprint references should conhtain:

names and initials of authors,

abbreviated name of the Institute (JINR) and publication
index,

location of publisher (Dubna),

year of publication

page number (if necessary).
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Dubna, 1984,

References to concrete articles, incliuded into the Pro-
ceedings, should contain

names and initials of authors,

title of Proceedings, introduced by word ''In."
abbreviated name of the Institute (JINR) and publication
index,

location of publisher (Dubna),

yvear of publication,

page number.

For example:

Kolpakov I.F. In: XI Intern. Symposium
on Nuclear Electronics, JINR,D13-84-53,
Dubna, 1984, p.26.

Savin I.A., Smirmov G.I. In: JINR Rapid
Communteations, N2-84,Dubna,1984,p.3.



IBypevuenckuit A., Ocockos T.A. E5~84-701
YucrneHHHe acnekTH, KacawimuecA OJHOr'o Kiuacca
M—QeMHPeKYPPEHTHHX COGbITHII H HX NpHMeHeHHe

K TEeOpHH CYeTuHKOB

B HexoTOpHX npobjileMax MaTeMaTddecKoil TeopHH CYeT4YHKOB
YacTHL, (PUIBEMOBHX H 6ec¢unhuosmi H3MepeHHMAX HOHH3AIMH ThHEeKOoB
B GHU3HKe BHCOKHIX 5Hepruii, a TakkXke B TEOpDHM ouepepeli, cnyuai—
HHIX GIyXRIAHWiI M Op. HOABJIAKTCH KJACCH CEMHPEKYDPEHTHBIX H I~
CeMHpeKypPEeHTHHX coburHil,B pa6oTe MSYYawTCH YHCIEHHHE OUEHKH
BEPOATHOCTHEX $OPMYII, COOTBETCTBYWIHX BEpPOATHOCTH IepBOro
MOABNEHMs COOLITHA Ha N-—-OM HCHHTaHHK. [IperncTaBiieHH OYeHE
TOYHHIe M yHOGHHE [ BEMHCIEeHHH NpubmixeHibe dopuyiul, Teopus
fpUMEeHAeTCH K CUeTUMKaM C MepTBEHM BpeMeHeM MpPOAJIeBanlerocs
THNA, ¥ ONHH YHCIIEHMLEI npHMMep HMOKasaH B KauyeCTBE HILIOCTpAalHH.

PaGoTa BHmosHeHa B JlabopaTOpHH BBMHCIIHTEN.HOII TeXHHKH
H aBToMaTHSauuH OHAH,

Ipenpmut 06beaHBEHHOrD MACTHTYTA SAOEDHHX Hcclenopawuit. IyGua 1984

Dvurefenskij A., Ososkov G.A. E5-84-701
Numerical Aspects Concerning a Class

of m-Semirecurrent Events and Théir Application

to Counter Theory

In some problems of the mathematical theory of particle
counters, film or filmless measurements of track ionization
in high energy physics, queueing theory, random walks, etc.,
the classes of semirecurrent and m-semirecurrent events
appear. In the paper the numerical estimates of the probabi-
listic formulae corresponding to the probability of the first
occurrence of an event at the nth trial are studied. We pre-
sent very precise and computationally convenient formulae.
The application of the theory to the counters with prolonging
dead time and an illustrative numerical example are given.

The investigation has been performed at the Laboratory
of Computing Techniques and Automation, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1984
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