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ABSTRACT 

The Hartree-Fock plus BCS method with the Skyrrne interaction is used to 
analyse the equilibrium deformations of nuclei in the A~10O region. It is 
shown that the theoretical results are consistent with the NnNp classification 
scheme. Relations between the nuclear deformation effects and the neutron-
proton interaction are discussed. 

1. INTRODUCTION 
The concept of nuclear deformation is a very useful and efficient tool to 

analyze various properties of non-magic nuclei. It is by now well understood 
in terms of the spontaneous symmetry breaking mechanism and in terms of the 
nuclear shell structure. From the single-particle spectrum of particles moving 
in a deformed mean potential, one can immediately deduce the magnitude of 
deformation effects in a given region of the nuclear chart. The guiding rule is that 
the Fermi energy 'avoids' the regions of the large single-particle level density. Such 
a rule has deep roots in the general properties of many-fermion systems and has 
successfully been employed in e.g. the shell correction method. 

The single-particle spectrum of a nucleus is determined by the nuclear two-
body interactions, and hence the roots of the nuclear deformation effects can also 
be looked for in the properties of nuclear forces. Within the nuclear shell model the 
long-range neutron-proton (n-p) interaction has been assumed1 "^ to be a source of 
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the nuclear deformation. On the other hand, the isoscalar long-range quadrupole-
quadrupole (Q-Q) interaction has been used in the Pairing-plus-Quadrupole model 
(see e.g. Ref. 4), where the neutron-proton effects are implicitly introduced by 
assuming equal deformations for protons and neutrons. Both suppositions can 
be quantitatively reconciled ), and the relations between the isoscalar and the 
isovector Q-Q coupling constants clearly show that the n-p component dominates 
the Q-Q interaction. 

A method to analyze the properties of the two-body effective interaction 
with respect to the nuclear deformability has recently been formulated in Ref. 5. 
It has been shown there that the Skyrme force Slip) contains the correct Q-Q 
component, and the effects of the n-p interaction on the nuclear deformation have 
been analyzed on the example of the germanium isotopes. In the' present paper, 
the same method is used to study the deformation properties of nuclei from the 
As; 100 region. 

Experimental data for low-lying collective quadrupole states have recently 
been discussed by Casten •") in terms of a simple NnNp parametrization by the 
product of numbers of active valence protons and neutrons. The importance of 
the TV,,Np parameter for a description of the experimental data is often considered 
as a strong argument supporting the dominant role of the n-p interaction. The 
main goal of the present study is to unveil the existence of the NnNp systematica 
in the theoretical results of the Hartree-Fock method, and to analyze its relation 
to the n-p component of the effecive interaction. 

2. HARTREE-FOCK CALCULATIONS IN THE A=*100 REGION 
The Skyrme forr*r', which we use in this study, consists of several terms, 

of which the simplest one is the ordinary contact force, 

V» = M(ri - r,)(l - x0P„) , (1) 
where P„ = *(1 + 0\ -ffj) is the operator exchanging spin quantum numbers of the 
two interacting nucléons, and to and x0 are the parameters. The isospin depen­
dence is hidden in the antisymmetrizing operator (1 - PgPrP^), by which the V» 
interaction is multiplied. The operator PT = |(1 4- rx • tj) and the Majorana op­
erator PtA exchange the isospin and the spatial coordinates, respectively. Because 
of the presence of the antisy jimetrizing operator, one has 

t{ri-ri){l-xQP9) = 6{rl-rt){l + z0PT) , (2) 
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which results from the fact that the PM operator is equal to unity when multi­
plied by b(r\ — fj). Hence the Skyrme force can be considered as being explicitly 
dependent on spin or isospin, but in fact, because of the antisymmetrization, it 
depends on both of them. 

Apart from the pure contact component, the Skyrme force SHI contains 
the terms in which 6{TX — rt) is multiplied by {V\ + Vj), V! • V 2 or p(r), and 
it also contains the two-body spin-orbit force. Altogether it depends on 6 pa­
rameters, which have been adjusted to reproduce some bulk properties of nuclei, 
and in particular, the volume and surface energy, the symmetry energy, the Fermi 
momentum, the effective mass, and the spin-orbit splitting of the single-particle 
states. 

The isospin dependence of the Skyrme force is thus determined by the ad­
justment to the symmetry energy. The fitting has been is done 6' by referring only 
to the magic nuclei, and the capability of the force to describe the deformation 
effects has not been taken into consideration. Despite of that, the Skyrme force 
has been successfully used to describe deformed nuclei. 2* 

In the present study, the deformation properties of the even-even nuclei 
with 38 < Z < 48 and 50 < N < 72 are determined by the Hartree-Fock plus 
BCS (HF+BCS) method. The HF equations were solved by expanding the single-
particle wave functions in the spherical harmonic oscillator basis extending up to 
the N0 = 14 major shell. For every nucleus in the specified range, we have per­
formed unconstrained calculations on the oblate and on the prolate deformation 
side, which has determined the positions of the minima. In addition, the con­
strained calculations at the spherical extremum (Q=0) has also been done. For 
those nuclei, where the deformed minima do not exist, the unconstrained calcula­
tions converge towards the unique spherical solution. 

The pairing correlations have been taken into account by the BCS method 
and by assuming the fixed pairing gap parameters10) determined from the odd-
even experimental mass differences. ) In nuclei where the experimental values are 
not accessible, we have used the values of the pairing gap from the closest isotope 
where they are known. 

In Fig. la the prolate equilibrium deformations, i.e. the values of the mass 
quadrupole moment Q* for which the HF+BCS energy has the minimum, are 
presented. In Fig. lb the equilibrium deformation energies 6E"=E{Q«)-E{Q=0) 
corresponding to the prolate equilibrium deformations are shown. It can be seen 
that the equilibrium deformations of the nuclei from the A=rl00 region increase 
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Fig. 1*: Prolate equilibrium deforma­
tions Q'1 of nuclei in the Ac; 100 region 
plotted as a function of neutron num­
ber. The mass quadrupole moments are 
expressed in barns. 
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Fig. lb: Prolate equilibrium deforma­
tion energies *JS*«=£r(Q*«)-.E:(C?=0) of 
nuclei in the A:; 100 region plotted as a 
function of neutron number. 

with increasing neutron number N and decrease with increasing proton number Z. 
This is consistent with the fact that, with increasing TV, the nuclei in this region get 
further apart from the neutron magic number JV=50, and with increasing Z they 
get closer to the proton magic number £=50. This simple pattern is disturbed 
for nuclei with N < 60, which can be seen in the results shown in Figs. 2a and 
2b, where the same data are plotted as functions of the proton number Z. For 
N > 60, the equilibrium deformation energies are monotonie functions of Z, while 
for N < 60 both Q'1 and 8EH show extrema or an irregular behaviour. 

The qualitative change in structure occuring at TV=60, predicted by the 
HF+BCS calculations, is in agreement with the analysis of the experimental data 
performed by Casten, ' who classified the energies and the B(E2) transition rates 
of the low-lying collective states according to the number of active valence neutron 
and proton holes or particles, Nn and Np, respectively. It has been shown, that 
for JV < 60 one should consider as being active the protons which are in the shell 
between £=38 and £=50, while for JV > 60, those which are between Z—2% and 
Z=50. With the numbers JV„ and N, calculated according to such a prescription, 
the experimental data have been shown to depend smoothly on the product NnNf . 
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Pig. 2a: Same as in Pig. la plotted as a 
function of proton number. 
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Fig. 2b: Same'as in Fig. lb plotted as 
function of proton numb*r. 
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Fig. 3a: Same as in Fig. la plotted as a 
function of NnNp . 
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Fig. 3b: Same as in Fig. lb plotted as 
a function of NnNp . 

In Figs. 3a and 3b we plot our results as functions of the product NnNp . 
One can see a striking unification of the theoretical results when thay are presented 
in this way (see also Ref. 14). Especially the equilibrium deformations tend to 
cluster around a smooth curve, while the equilibrium deformation energies lie in 
a well defined band. Departures from the regular behaviour are seen for the Sr 
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and Zr isotopes with N=58, for which the consideration of the shell 38 < Z < 50 
seems not to be justified. In the plot of the equilibrium deformation energies, the 
points are rather scattered at large NnNp , which can be attributed to two facts: 
(i) the equilibrium deformation energies have clear extrema at AT=64, and not 
exactly at the middle of the neutron the shell, i.e. at AT=66, and (ii) the heavy Sr 
isotopes have larger equilibrium deformation energies then the heavy Zr isotopes, 
which suggests that the number of active protons (proton holes) should be 7VP=12 
and Np=10 for Sr and Zr isotopes, respectively (and not Np=10 for both these 
elements, as resulting from the proton shell 28 < Z < 50). On the other hand, the 
results for the equilibrium deformations support the standard way of determining 
the number of active particles. This inconsistency illustrates the extent to which 
the HF+BCS results can actually be classified according to the N„NP scheme. 

3. THE N = 5 6 SUBSHELL CLOSURE 
Before discussing the hypothetical relation between the NnNp unification 

scheme and the dominance of the n-p component in the nuclear interaction, let 
us analyze the source of the change in structure occuring at 7V=60. Federman 
and Pittel3> have proposed a suggestive interpretation of such a change. In their 
picture, both the 197/2 neutron and the ljfo/j proton orbitals are fairly empty 
for N < 60, and thus the effect of the n-p interaction is small, (interaction is 
strongest for nucléons occupying large-j orbitals*)). When the neutrons start to 
occupy the lg7/j orbital, they pull the protons into the lg^/i subshell, and by the 
mutual interaction and polarization both spin-orbit partners become occupied, 
which results in a brusque onset of deformation. 

The mechanism proposed by Federman and Pittel invokes two different 
effects, * which can lead to changes of the occupation probabilities of the large-j 
orbitals with increasing neutron number: (i) the monopole effect which shifts the 
positions of the spherical single-particle orbits, and (ii) the quadrupolc effect which 
is responsible for the polarization of the 0 + pairs and the configuration mixing. 
In our approach the occupation probabilities are determined by the BCS method, 
and therefore they depend only on the single-particle energies and on the pairing 
gaps. In Fig. 4a the spherical-shape neutron and proton occupation probabilities 
as functions of neutron number are presented for the series of strontium isotopes. 
The results show that the occupation probability of the lgyt proton state, as well 
as other proton orbitals, is practically constant in the studied range of neutron 
numbers. It means that the Federman and Pittel n-p monopole mechanism is not 
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Fig. 4a: Occupation probabilities of 
spherical single-particle neutron (solid 
lines) and proton (dashed lines) states 
in the strontium isotopes. 

Neutron number 

Fig. 4b: Spherical single-particle neu­
tron (solid lines) and proton (dashed 
lines) levels in the strontium isotopes. 
The neutron and proton Fermi energies 
are shown by the closed and open cir­
cles, respectively. 

present in our Hartree-Fock calculations, and the presence of the ljfr/j neutrons 
docs not increase the lg9/j occupation probability. This is clearly related to the 
fact that the position of the lg 9/j proton orbital relative to the Fermi energy is 
in our calculations not affected by the presence of the Igj/t neutrons (Fig. 4b). 
The same conclusion can be drawn for the palladium isotopes, Figs. 5a and 5b. 
Despite of the absence of the Federman and Pittel monopole effect, the change in 
structure at N—60 is visible in our results, and requires another explanation. 

In terms of the spherical shell model, an explanation can be found by observ­
ing that the single-particle energy of the ljr/i neutron orbital depends significantly 
on both neutron and proton number (Figs. 4b and 5b). A necessity of the relative 
changes of this energy has already been suggested from an analysis of experimental 
data. ) In the light strontium isotopes, the lgT/t state lies rather high in energy, 
leaving the 2d%/t neutron state well separated from the rest of the shell. The 2df/j 
orbital does not have large enough quadrupole moment to create the deformation 
by itself, and consequently the nuclei with TV < 58 stay nearly spherical. When 
the neutron Fermi energy enters the Igj/j subshell, the nuclear deformation sets 
in. This effect disappears at larger proton numbers, where the energy of the lgr/t 
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Fig. 5a: Same as in Fig. 4» but for the 
palladium isotopes. 
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Fig. 5b: Same as in Fig. 4b but for the 
palladium isotopes. 

neutron orbital is smaller (Fig. 5b) and the spherical gap at W=56 closes up, and 
where the proton AT=38,40 gaps do not stabilize the sherical shape. 1 7) 

With increasing deformation the quadrupole Federman and Pittel effect be­
comes more and more important However, based on the occupation probabilities 
calculated for the deformed orbitals 1 8*, and on the deformed shell-model analysis 
of the intruder states, 1 9 ) one can attribute the increase of deformation mainly to 
the dominant role played by the l n n / j neutron orbital, and less to that of the 
lg7/t subshell. 

Our results show that the proton spherical gap at Z=38 (Figs. 4b and 5b) is 
not affected by the number of neutrons. Therefore, the different way of counting 
the active protons below and above /V=60 may in fact be an effective way to 
account for the neutron subshell closure, which in our case is visible at # = 5 6 . 
It is, however, still possible that the changes in the position of the \glfi neutron 
orbital arc caused by the presence of the strong n-p interaction; the influence of a 
varying one-body spin-orbit intensity can be an alternative explanation. 

The details of the subshell structure can be different for various Skyrme 
forces (cf. Réf. 12), and the effects of the AT=56 gap can thus be different. For the 
SIII force, these effects are rather weak and only visible when comparing results 
for many nuclei. 
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4. NEUTRON-PROTON INTERACTION ENERGIES 
In the HF approach one can explicitly calculate the n-n, p-p and n-p inter­

action energies as 

E"' = JT^TrtTr^TOV , (3) 
where r, r' —p or n, Vg' are the isospin components of the Skyrme interaction, 
and pn and f? are the neutron and proton one-body density matrices determined 
by the HF+BCS method. 

The nuclear ground state energy E is composed of five terms: 

E = £*"* + ET* + £"* + E" + JBnp , (4) 

where EHn and Ef%T are the kinetic and the pairing energy, respectively. The 
Coulomb energy is included in the p-p interaction energy E™. The dependence of 
E and its five constituents on neutron number is shown in Fig. 6 for the spheri­
cal shapes of the molybdenum isotopes. The pairing energy and the p-p energy 
(in which the Coulomb energy strongly cancels the nuclear component) contribute 
much less to the binding energy then the three other components. The n-p interac­
tion energy Enp is several times stronger then the n-n energy Enn. Consequently, 
the nuclear binding is a result of cancelation between negative s u m . ^ + E"" and 
the positive kinetic energy Ek,n. These results indicate that the n-p interaction is 
indeed the most important factor in providing for the nuclear binding. 

On the top of large values of Enp, £"", and Ekin, one is not able to see shell 
effects, which are smaller by around three orders of magnitude. In order to make 
the shell effects visible, the deformation energy 6E=E-E(Q=0), together with its 
five components, 

6E = 6E*n + 6Epair + 6E"" + 6E" + 6Enp , (5) 

is presented in Figs. 7a and 7b. In the spherical nucleus M Mo (Fig. 7a), the 
increase of the energy with increasing \Q\ is due to the increase of 6Enp and 6Enn, 
which is partly compensated by the decrease of 6Ekin and 6E". The situation is 
almost opposite in l 0 6 Mo, where the decrease of 6E is a result of the decrease of all 
interaction energies, 6Enn, IE", and SE"*, partly balanced by a strong increse of 
SE*"*. On should note, that in both cases the explieite role of the pairing energy is 
negligible, and the pairing correlations influence the deformation properties only 
through the other components of 6E. 
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The results shown in Figs. 7a and 7b seem to negate the dominant role of 
the n-p interaction in constituting the deformation energy. The effect of 6E"* is 
apparently equally large. But a crucial influence of the kinetic energy suggests 
that the splitting of E into the five components given by Eqs. (4) and (5) may 
not necessarily be the best way of looking at the n-p effects. The influence of the 
interaction is, of course, present in £***, because the nuclear wave function for 
which the mean value of the kinetic energy operator is calculated, is determined 
within the variational method where the interactions are essential. Hence, the 
decomposition of the energy, as given by Eqs. (4) and (5), is not very instructive 
when studying effects of the interactions on nuclear deformation. 

Another way of analyzing the deformation energy SB consists in expanding 
every isospin component of the interaction energy as 5) 

E"'= B?'+ E? + E?' + . . . ' (6) 

where the J = 0,2,4,. . . terms can be interpreted20) as the monopole interaction 
energy and the quadrupole, hexadecapole, etc., correlation energies. The multipole 
terms are defined as 

EY' = — ^ T r ( T r V p V ; , (?) 
1 + oTTi 

where p} is the rank-J spherical operator obtained by the multipole decomposition 
of the density matrix, 

Pr = ^ + / 2 + />f4 + --- (8) 

In terms of the multipole components, the ground state energy can be presented 
as 

E = E0 + Et + E, + ... , (9) 

where the monopole part E0 reads 

E0 = Ekin + Epair + E$n + E? + E? , (10) 

while the quadrupole, hexadecapole, etc., energy is the sum of different isospin 
components: 

Ei = E? + E? + E? . (11) 
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In Fig. 8 we present the deformation energy of 1 0 6Mo together with the 
corresponding monopole component SEo and the consequtive sums 6E0 + S Et and 
6Eo + 6Ei+6Et. As seen in the results shown in Fig. 8, the positive monopole en­
ergy SEo >s very different from SE and rapidly increases with |Ç|. The quadrupole 
component SE^-is negative and brings SEo down almost to SE, while the addition 
of ££4 exhausts SE almost completely. The deformation energy is thus composed 
of the monopole term balanced by the quadrupole term, and a relatively small 
hexadecapole correction. Neglecting this correction for the subsequent analysis, 
and noting that the spherical symmetry imposes the vanishing of the multipole 
correlation energies at Q=0, i.e. SEt — Eti we have 

SE = SEo + E;n + E? + E? . (12) 

All four terms are nearly quadratic functions of the quadrupole moment, which 
justifies the determination of the quadrupole-quadrupole (Q-Q) coupling constants 
as5) 
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QrQr' 
from which the isoscalar and isovector, KQ and ICI, coupling constants can be cal­
culated: 

«o = -{Knn + Kpp) + -K»p , (14) 
4 / 

*1 = "(*nn + * W ) - -K-np . (15) 

For all the nuclei studied here, we have performed additional constrained 
HF+BCS calculations requiring the quadrupole moment to be equal to —1.56, and 
from these results we have determined the coupling constants KQ and * l t which 
are plotted in Fig. 9a as functions of mass number. In the same Figure, we show 
the estimates 2 1- 2 2- 5) KQ = -23.3A~7fsMeV fm'* and #c» = ISAA-^McV fnC* 
resulting from the harmonic-oscillator model. The derived Q-Q coupling constants 
agree very well with the simple estimates, which are consistent with the exper­
imental data for giant quadrupole resonances, suggesting that the correct Q-Q 
component is contained in the Skyrme interaction. The ratio of the calculated 
isovector and isoscalar coupling constants is almost mass independent and reads 

K,//Co st -0.5 , (16) 

which results in the ratio of the n-p to the n-n and p-p coupling constants *„,/«„„ — 
Knp/tpp — 3, and illustrates the dominance of the n-p component in the nuclear 
Q-Q interaction. 

The contribution of the isoscalar and isovector Q-Q interaction to the de­
formation energy is of the order of icc(Qn + Qp)* and Kt{Qn - <?p)*, respectively. 
Since in the low-energy quadrupole mode one has Qn zz Qp, the isovector contri­
bution is small compared to the isoscalar one. Therefore, the deformation energy 
results from a cancelation between the positive monopole energy, and the negative 
quadrupole isoscalar energy. The cancelation can be illustrated by introducing the 
monopole stiffness paramater C0, 

« - » § ! • <"> 
which has been calculated from the HF+BCS results constrained at Q=l.5b. Fig­
ure 9b shows the values of CQ in the AsdOO region. On the top of smooth depen-
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Fig. 9b: Monopole stiffness parameter 
Co, Eq. (17), as a. function of mass num­
ber. 

dence of Co on mass number, one can see the influence of the Af=50 closed shell. 
The sum of KQ and C0 is much smaller than each of these, and reflects deformation 
changes in the nuclei studied. Because the shell structure influences the values 
of Co much stronger than those of *o, one can say that C0 is the main factor in 
deciding which nucleus is spherical, and which is the deformed one. The monopole 
energy can be related to the mean value of the spherical mean field Hamiltonian 
calculated for a deformed state. Mixing of the spherical configurations, which 
occurs in the deformed state, and which is favoured by the Q-Q interaction, is 
unfavoured with respect to the spherical field. The deformation results from such 
two opposite tendencies. Depending on the position of the Fermi energy in the 
spherical shell, the monopole effect is stronger or weaker, and as a result some 
nuclei are spherical ond other are deformed. On the other hand, the Q-Q interac­
tion energies (as shown by the values of *o) a r e much less shell-dependent, and 
provide for a steady deformation-driving factor. In this way, the mean value of 
the Q-Q interaction (in which the Qn-Q, component is the dominant one) m the 
equilibrium point is correlated with the product N„NP , while the position of the 
equilibrium point itself is decided by the monopole energy. 

14 



5. CONCLUSIONS 
In summary, the following conclusions can be drawn from our HF+BCS 

analysis of the A~100 nuclei: 

• Equilibrium deformations and equilibrium deformation energies obtained in 
terms of the HF+BCS method with the Skyrme interaction can be system­
atized by considering the product N„NP as a useful paramater unifying the 
results for various nuclei in the Acs 100 region. 

• Theoreticaly, one does not find any obvious indication for the monopole 
influence of the lgr/t neutrons on the lgt/i protons. The structure of the 
proton spherical single-particle spectrum does not seem to be depenent on 
the number of neutrons. 

• A change in structure at N=60 is predicted theoreticaly for different ele­
ments. One can interprète this change in terms of the position of the lg7/j 
neutron orbital with respect to other states of the 50 < N < 82 shell. 

• A dominant role of the n-p quadrupole component of the Skyrme interaction 
in generating the nuclear deformation is found. However, this component 
depends weakly on the shell structure Whether a given nucleus is spherical 
or deformed depends on how strongly the monopole energy resists the steady 
quadrupote interaction. 

This work was supported in part by the Polish Ministry of National Education 
under Contract CPBP 01.09. 
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