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ABSTRACT 

I review the dynamical structure of strong coupled QED in the 
quenched, planar l im i t . The symmetry structure of this theory is 
examined wi th reference to the nature of both chiral and scale 
symmetry breaking. The renormalization structure of the strong 
coupled pnase is analysed. The compatibil ity of spontaneous scale 
and chira symmetry breaking is studied using effective lagrangian 
methods. 
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1. MOTIVATIONS. 
Gauge theories w i th slowly running coupling constants appear to 

have an approximate scale symmetry. Hence, the dynamical breaking of 
chiral symmetry in such m o d e l s m should be associated w i th an 
approximate dynamical breaking of scale symmetry ( 2 ) . Quenched, planar 
QED has no perturbative running and provides an interesting laboratory 
for the study of dynamical symmetry breaking. The possible existence 
of a nonperturbative fixed point with large anomalous dimensions in this 
theory has led to new speculations about the role of technicolor 
models ( 3 ) and properties of fixed point gauge f ield theories. 

2. DYNAMICS OF QUENCHED, PLANAR QED. 
Quenched, planar QED contains the basic dynamical structure of 

gauge field theory and may represent an approximate treatment of QED 
and/or nonabelian gauge theories w i th s lowly running couplings. 
Dynamical symmetry breaking is studied through the Schwinger-Dyson 
equations 

S F ' K P ) = p - S(p) = p - m 0 - i(47T)-4Jdk {D j i V(k)-e2TM-S F(p-k)-e^} (1) 

Solutions to these equations have been extensive studied over the 
y e a r s ( 4 , 5 , 6 ) . There is a unique infrared so lu t i on 1 6 , 2 ' to the equations 
having a dynamical mass scale, 1(0) = E 0 * 0, 

S(p) = et • u(t+t 0), t = log(p), t 0 = -log(Z 0) (2) 

where u(x) satisfies e x -u(x) -* 1 asx-» -°o. The ultraviolet behavior of 
this solution depends on the gauge coulping constant, <x. For strong 
coupling, o< > cxc = TT/3, U(X) is given by 

u(x) -* A(cx) -e~2-x -sinlVo</o<c-1 -(x + 8(<x))] 
(3) 

~ A(o<) -e-2-x -{sintycx/cxc-1 -(x + S(<x))]/vWcx c-1 } 

where A(cx) ~ 1.2, 8(<x) ~ .55 for ex ~ cxc. For weak coupling, cx<cxc, 
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u(x) -» A(o<) -e_2-x -{sinhtyi-cx/cxc -(x + 8(<x))]/yi-cx/o< c } (4) 

where u(x,o<) is analytic in ex for fixed x and ex ~ <xc. 
The weak coupling solution has pure power behavior 

I(p) = p -u(log(p/Z0)) -» m/(p)*m + < * * > / ( p ) 2 - t f m (5) 

reflecting the scaling structure 1 7 1 of the operator product expansion of 
the fermion propagator and the f in i te anomalous dimension of the 
fermion mass operator, W, given by tfm = 1 - •/1 -cx/cxc . The 
presence of both terms in the expansion of Eq.(4) confirms the resul t ( 5 ) 

that there are no massive solutions in the chiral l imi t , m = 0, for weak 
coupling. 

For strong coupling, we must use an u l t rav io let cutoff, A, and 
examine the boundary condition for the bare mass ( 4 , 5 ) 

m 0 = (A/2) -[u* + 3-u ] ( t A +t 0 ) , t A = log(A) (6) 

In the chiral l imi t , m 0 = 0, there exists a massive solution with scale 

E0 = e 8 -A •e-(©A/°</°<c"' ), 0 < e < 7t (7) 

This solution w i l l correspond to dynamical chiral symmetry breaking 
wi th a f inite fermion mass scale, S 0, only in the Miransky l im i t ( 8 ) with 

ex = <x(A) -» cxc + cx c -e 2 / log 2 (A/x) , 9 -• rr, as A -> oo (8) 

However this solution is incomplete as it neglects four fermion 
operators which are generated from the gauge interactions. Some four 
fermion operators have large anomalous dimensions in the planar l imit , 
d("^vj,)2 = 6 - 2-25'm -» 4, o< -* cxc, and are relevant (or marginal) operators 
in the continuum l imi t . Hence we must consider instead a modified 
"Nambu-Jona-Lasinio" model ( 9 ) where the gauge interactions are included 
in the lagrangian 

L-MNJL = ^ { i D - J i 0 } * + (G 0 /2) • [ ( ^ ^ ) 2 + ( ^ i 2 r 5 ^ ) 2 ] (9) 
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In planar approximation, the Schwinger-Dyson equations are simply 
modified by the inclusion of a fermion tadpole contribution to the bare 
mass term which changes the mass boundary condition of Eq.(6) 

m 0 = j i 0 - G0 • < * * > = (A/2) -[u* + 3-u] ( t A +t 0 ) (10) 

and 

<"**> = (l/2TT2)-(o<cAx)-e3-tA -[u'+uKt/vto) (1 0 

The gap equation is modified to read, G = (G0-A2/Tt2)-(o<c/o<), 

jio-A = (A 2 / 2 ) •[(1+6)-u ,+(3 + 6 ) - u ] ( t A

+ t 0 ) 

= (A/2) -Z.Q2 -[(1-G)-sin(e)/yo</o<c-1 +cos(e)], cx>o<c (12) 

e = vWo<c-i -(iog(A/E0) + s) 

= (A/2) - I 0

2 •[(1-6)-sinh(G)/7l-(x/o<c +cosh(0)]. o<<cxc (13) 

e = s/1 -cx/<xc -(iog(A/E0) + 8) 

For (x > cx.c, the vacuum solution requires 0 < 9 < TT as before. 
In our planar approximation, the fu l l scattering amplitudes are 

modified by the four fermion interactions which generate the bubble 
diagrams of the NJL model dressed by the radiative corrections of the 
gauge interactions. For our calculation we need to know the fu l l , 
dressed vertex functions as wel l as the bubble functions. Fortunately 
we are able to compute the exact solutions in terms of the asymptotic 
behavior of the self-energy function, u(x) {2). The results for the scalar 
and pseudoscalar vertex and bubble functions are 

r s°(p,p) = 3m02(p) = etA • u , ( t A + t 0 ) / O m 0 / 8 t 0 ) 
( H ) 

= r s R(p,p)/Z s , Z s = - eto -Om 0 /8to) 



5 

r p°(p,p) = £ 0 (p) /m 0 = etA • u ( t A

+ t 0 ) / m 0 

(15) 
= r pR(p,p)/Zp, Z p = eto -m 0 

B s(0) = 8 m Q < * * > = 8 t o < ^ * > / O m 0 / a t 0 ) 
(16) 

= - (1 /2K 2 ) -(cxc/o<) -e^-tA+to) • [ u "+u , ] ( t A + t 0 ) / Z s 

B p°(0) = < * * > / m 0 

(17) 
= (1/27T2) -(cxc/cx) -e(3-tA + to) -[u'+uKtA+toVZp 

The gap equations, Eqs.( 12,13) now have nontrivial solutions for all 
values of the gauge coupling constant, <x- G = G((x,A/E 0). We may now 
search for scale invariant fixed points. We might expect to find a 
continuum l imi t for general values of the coupling, G 0 , but only 
particular values on the induced four fermion interactions may preserve 
the scale invariance as was the case for scale invariant -q f 6 theory 1 1 0 5 . 
Actually, no scale invariant fixed point was found ( 2 ) and the apparent 
scale symmetry of quenched, planar QED is broken even when the induced 
four fermion interactions are incorporated. 

However, the continuum l imi t is modified by the presence of the 
four fermion interactions. There is now a nontrivial continuum l imit 
along a cr i t ica l line, G = G(<x) > 1 and o< < o<c, as emphasized by a 
number of authors ' 1 1 ' . The existence of this c r i t i ca l line at weak 
coupling is somewhat surprizing as the effective anomalous dimensions 
of the four fermion operators should make them irrelevant at weak 
coupling, d(yy)2 = 6 - 2--s/\-<x/<xc > 4. This result for weak coupling 
may be an ar t i fac t of the factor izat ion propert ies of the planar 
approximation, although i t may also indicate an interest ing 
renormalizable phase of the gauged, Nambu - Jona-Lasinio model. 

3. DILATONS: FACT OR FANCY. 
The dynamical generation of the fermion mass scale, i 0 l breaks both 

chiral and scale symmetry. If these symmetries are not explici t ly 
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broken, then we expect corresponding Goldstone pole in the appropriate 
S-matr ix elements. With the inclusion of the four fermion 
interactions, we expect the Goldstone poles to come from the bubble 
sums and not the ladder diagrams of the pure gauge theory. Therefore, 
we must examine the renormalized bubble denominators for zeros 
reflecting the existence of Goldstone poles in the fu l l amplitudes. The 
renormalized scalar and pseudoscalar denominator functions are given by 

DpR(O) = Zp 2 . (1/G 0 + B p°(0)) = (1/4*2) .£2 .EQ2 . (O^/OO . ( I / G ) 

•{sin(e)/7o</o<c-1 +cos(e)H(1-G)-sin(e)/Vo</o< c-1 +(1+G)-cos(e)} 

= 0 (chiral l imi t ) (18) 

DsR(0) = Z p

2 -(1/G 0 + B p°(0)) = (1/47T2) -A2 -Z 0

2 -(cxc/oO -(1/6) 

•{( 1 Wcx c )-sin(e)/ycx/o< c -1 +cos(e)} -{[(2-G)+( 1 +G)-(oc/<xc-1) 

•sin(9)/-/o</cxc-1 + (1+3-G)-cos(6)} 

= (1/4TT2) -A2 -Z 0

2 -{2-o<c/o< + 1 + 1/G} (chiral l imi t ) (19) 

The above formula for the scalar denominator in the chiral l imi t is valid 
in both weak and strong coupling. Clearly, the scalar denominator does 
not vanish at strong or weak coupling confirming previous r e s u l t s ( 2 , 8 , 1 2 ) , 
but condradicting recent claims of a fixed point along the c r i t i ca l 
l i n e ( 1 3 ) . There is a spurious vanishing for repulsive coupling, G < 0, 
which is due to the vanishing of the scalar vertex renormalization 
factor, Z s , but this pole in the bubble sum is exactly cancelled by a 
related pole in the ladder diagrams wi th no resulting singularity in the 
S-matrix elements. 

There is, however, an interesting partial cancelation in the scalar 
denominator function. Dimensional analysis, wi th the known anomalous 
dimensions, would predict that the scalar denominator should diverge 
with the cutoff 
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D S

R (0) -» A 2 V ' - O < / O < C -» oo (20) 

as the four fermion operators should be irrelevant at weak coupling. 
Instead, the scalar denominator remains f ini te along the cr i t ica l l i n e m ) 

as prevously discussed. This behavior may be an ar t i fac t of the 
factorization treatment of the four fermion interactions or may imply an 
interesting weak coupling, renormalizable phase of the ful l theory. 

A f inal possibi l i ty would be that the observed behavior at zero 
momentum represents a decoupled dilaton, much like the pseudoscalar 
Goldstone boson in the normal NJL model. In this situation we could 
have F^ j i a ton -* °° and m 2

c m a t o n •» 0 as A -> °«, To rule out this 
possibi l i ty, we must compute the momentum derivative of the scalar 
denominator, 8p2D s

R (p 2 )p2-n ~ F 2 di la ton. t 0 determine whether it 
remains f in i te or becomes divergent. It is not possible to get an exact 
expression for the result, but an estimate of the diagrams indicates that 
it remains f in i te and the decoupled dilaton scenario is not viable. 

By our analysis of the symmetry structure, the gauged NJL model 
the chiral symmetry is preserved and can be dynamically broken even at 
weak gauge coupling, ex < <xc. The scale symmetry is expl ici t ly broken, 
as in the pure gauge case, and there is no dilaton, or decoupled dilaton, 
in either theory. The four fermion operators seem to remain as 
relevant operators even though their physical dimension seems too large, 
as d("vp\j/)2 > 4, although this feature may also be an ar t i fac t of the 
approximations. Finally, it is s t i l l possible that a scale invariant 
theory may exist beyond the quenched, planar theory wi th the presence 
of additonal relevant interactions. 

4. RENORMALIZATION. 
In this section we discuss the renormalization properties of the 

quenched, planar theory. The continuum l imi t seems to require a 
particular cutoff dependence of the bare coupling constants. This 
cutoff dependence would seem to imply nonperturbative ^- funct ions 
describing the strong coupling phase of the the theo ry ( 8 , 2 ) . Normally 
these ^- funct ions would be related to the physical behavior of the 
amplitudes of the theory through the application of the renormalization 
group equations. However, the quenched, planar theory does not seem to 
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allow for a dynamical running of the gauge coupling constant and the 
normal renormalizat ion properties of the theory are brought into 
question. 

We could study the dynamical running of the coupling constants if 
we could expl ici t ly integrate the high momentum behavior of the theory 
and study directly the renormalization f low of the coupling constants. 
Despite the great simpl i f icat ions of the quenched, planar theory, it 
would seem to be quite di f f icul t to integrate the high momentum parts 
of the various rungs of the ladder and self-energy diagrams as in Figure 
1. From this diagram, it is clear that the four fermion interactons 
must be generated from the high momentum structure of the pure gauge 
theory and must be included in the renormalization f low if these 
interactions become relevant. 

F igured Renormalizaton Diagrams 

Although we can not integrate the specif ic diagrams direct ly, we 
can compute their effect indirectly by using the fact that our theory is 
defined using a momentum cutoff on the fermion self-energy. By 
varying the cutoff, A, while holding the low energy physics constant, we 
can effectly study the renormalization f low of the coupling constants. 

For the gauge coupling constant near the c r i t i ca l coupling, the 
fermion self-energy function has a nearly universal behavior. For 
moderate momentum, l 0

 < P < < c A - w e u s e Eqs.(2,3,4) to obtain, 

I(p) -* A(cx) -(E 0

2 /p) -(log(p/Zo) + S(o0) (2 1) 

To hold low energy physics fixed we shall use the generated fermion 
mass scale, z 0 , as an invariant quantity. An alternative would be the 
renormalized fermion condensate, 

< * * > R = Z s • < * ¥ > = -(1/2TT 2) -A 2 -(cxc/cx) - Z 0

3 (22) 
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where we have used Eqs.( 11,14,6) for the pure gauge theory result 
although exactly the same answer is obtained in the gauged, NJL model. 
We should be able to use z 0 , < ¥ ¥ > , and S(p) as the low energy 
parameters. This would seem to imply that ex must be held fixed during 
the renormalization flow in agreement wi th the diagram structure. 

The flow of the four fermion coupling constant, G, for constant £ 0 

can be computed directly from the gap equations Eqs.( 12,13) in the 
chiral l imi t . 

G = (tan(e)/7cx/o<c-1 + 1)/(tan(e)/ycx/cxc-1 - 0 

-» 1 + 2/ ( log(A/Z 0 ) + 8-1), tan(e) ~ e 
(23) 

where this l imi t is valid for both the weak and strong coupling regions. 
The physical running of the four fermion coupling is required to keep the 
low energy physics fixed. This flow is shown in Fig.(2) where the bare 
coupling, G 0 = G-(cx/o<c), is plotted as a function of the cutoff. 

0.00 0.10 0.20 030 O.40 0.50 O.40 0.30 0.20 0.10 
l / log(A/Z 0 ) l / log(A/Z 0 J 

Figure 2- Renormalization Flows G 0 and m 0 

The flow is given for various values of the gauge coupling, ex, which does 
not flow wi th the cutoff in ladder approximation. The flow indicates 
the presence of an apparent ultraviolet fixed po in t ( 2 ) as G -» 1, <x -» cxc. 
If we require that G 0(A) be held fixed, for example at the pure gauge 
theory value: G 0(A) = 0, then a spurious renormalization of the gauge 
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coupling constant would seem to be required to maintain a stable low 
energy theory. However, all relevant coupling constants must be 
included if the low energy theory is to be fu l ly renormalized and the 
four fermion interactions are generated. Away from the chiral l imi t 
the bare mass parameter, m 0 , w i l l also f low w i th the cutoff and this 
dependence is also shown in Figure 2. Actual ly, the renormalization 
flow shown for o< > o<c can not be maintained to the continuum l imi t as 
the vacuum eventually becomes unstable due to short distance effects. 
However the continuum l imi t can be achieved for the theory in the range, 
0 < o< <. cxc. We have not investigated the s tab i l i ty of the fu l l low 
energy effective theory and further running of other relevant coupling 
constants may be required to achieve a fu l l renormalization of the 
complete theory. 

We have examined the renormalization flow of the quenched, planar 
theory which requires the dynamical running of the four fermion coupling 
constants but not the gauge coupling constant. A smooth continuum 
l imit seems to be associated with an ultraviolet fixed point where G -* 1 
and o< -» o<c as wel l as the apparent cr i t ical line at weak coupling' 1 n . A 
more complete analysis of the renormaiization properties of the fu l l 
theory is needed to establish the complete continuum l imit . 

5. EFFECTIVE DYNAMICS OF SPONTANEOUSLY BROKEN 
SCALE AND CHIRAL SYMMETRIES. 
Recently a NO-GO theorem has been proposed' 1 4 1 which suggests a 

basic confl ict between the low energy theorems for scale and chiral 
symmetry. We w i l l show, by the explicit construction of an effective 
lagrangian, that both scale and chiral symmetry can be realized in the 
Goldstone model in the presence of expl ic i t symmetry breaking of 
"fermion" mass term. The low energy theorems of both scale and chiral 
symmetry are shown to be satisfied by the the amplitudes generated by 
this effective lagrangian. 

In a scale invariant gauge theory, only the fermion mass terms 
should explicit ly break the scale symmetry. The divergence of the 
scale and axial currents should be given by 

a^D M = e^ji = 0 + t f m ) • * m * 
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(24) 
8MA3JJ = * {xa/2,m} - i -y 5 * 

where m is the fermion mass matrix and tfm is the anomalous dimension 
for the fermion mass operator, 4"^. Dynamical breaking of both scale 
and chiral symmetry would imply that Goldstone bosons carry the scale 
dimension and chiral i ty. We can introduce the Goldstone fields, TT(X) 
and D(x), by 

U(TT) = exp{ iX-TT(x)/fTT } 
(25) 

S(D) = exp{ D(x)/F D } 

where U(TT) is a dimensionless matrix wi th SU(N)®SU(N) flavor symmetry 
and S(D) is the dimension one, scale f ie ld. If the Goldstone bosons 
saturate the low energy theorems then al l operators must have a 
Goldstone realization in terms of TT(X) and D(x). The fermion bilinear 
operator w i l l have the representation 

* R j * L i = - r 0 " F 2 * •(S(D))3-^m -{U(TT)}JJ (26) 

where the S factor generates the correct dimension and U(TT) the correct 
chirality. 

The effective action is given in terms of the nonlinear lagrangian 

L = (1/2) -F^ -O^S) 2 + (1/4) •F 2 ^ -S2 -tr{ a R l + ^ U } 

+ r 0 -F 2 ^ -(S)3-^m • tr{ U + -m + m -U } (27) 

- (1/2) T 0 - F 2 ^ -(3-2fm) -tr{ m } -S4 

where the coupling have been defined so that the classical vacuum state 
w i l l have <S>0 = 1, <{U>jj> 0 = 8jj or <D>0 = <7t>0 = 0. The ful l energy 
momentum tensor is determined from the above lagrangian to be 

e^ v

 = F 2

D •{ assays - (i/2)-gpv-(3o<s)2) 
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+ (1/4) -F 2 ^ -S2 -tr{ 8^U + 3 V U + SyU+SjjU - g ^ - S ^ U ^ U } 

" Qjiv To -F 2 ^ -S 3 -^m -tr{ U+-m + m-U } (28) 

+ g p v - d /2 ) -r 0 - F 2 ^ -C3-2fm) • tr{ m } -S« 

- F 2

D ( 1 / 6 ) •{ 9 ^ - g | l v - 8 2 } S 2 

where the final term is a necessary "improvement" term. Using the 
classical f ield equations derived from Eq.(26), the trace of the energy 
momentum tensor in Eq.(27) is given by 

©ji j i = -U + t fm) T 0 -F 2 ^ -s3-tfm -tr{ U+-m + m-U } 
(29) 

= (1+ff m ) V m * 

in agreement wi th Eq.(24). Of course the axial current divergence is 
also correctly given by using the classical f ield equations. 

We may now direct ly check the structure of the low energy 
theorems for scale and chiral symmetry. We can f i r s t determine the 
masses for the Goldstone particles 

m 2 j t = 2 T 0 -(mj + mp = - ( l / F 2 ^ ) •(mj+mp <VV>0 

m 2

D = 2 -r 0 -(F^/Fn) 2 -tr{m} -(3-2Tm) <\+*m) (30) 

= - (1 /F 2

D ) -(3-^m) <\+7fm) -trim} - < * * > 0 

If we use the divergence of the axial current for the interpolating f ield 
for the pseudoscalar Goldstone bosons as in Ref.(14), then we may 
directly evaluate the matr ix elements for the trace of the energy 
momentum tensor. The pseudsoscalar f ield is given by 

$>a = y{xa/2,m}125' 5 ^/F T r m 2

7 T -» Tta -(1 + (3 - t f m ) -D /F D + •••) (31) 
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The appropriate diagrams are shown in Fig.(3) and yield 

r = <<D(p) <D(p') e j i | 1 ( p , - p ) > 0 

= (p 'Z -m 2 * ) - 1 • ( p 2 - m 2

7 T r 1 •{ [ ^p -p 'Mm 2 ^ ] 

- F D - q2 (q2 - m 2 D ) - i . ( 1 / F D ) . [ - 2p -p ' + m 2

T r ( 3 - ^ m ) ] } (32) 

- (p^-m^r'-FryqW-m^rHl/Fn) -(3-#m) 

- ( p 2 - m 2 T t ) - i - F D - q 2 ( q 2 - m 2 D ) - i . ( 1 / F D ) . ( 3 - t f m ) 

where it is essential to keep the contributions of the dilaton poles. 

< > h. •< 
D 

it n n it it ft 
Figure 3 : Diagrams for trace matrix elements 

The matrix elements for the divergence of the scale current are 
given by 

r m = <<D(p) O(p') (1+2 f m ) *m* (p ' -p )> 0 

= ( p ^ - m 2 * ) " ' . (p2 - m 2 7 r ) - i .{ [(]+vmym2n] 

- F D -m 2

D (q 2 -m 2

D ) - 1 - (1/F D ) - [ -2p-p , +m 2

7 r (3-2frYi) ] ) (33) 

- (p^-m^ri-FD-mW-m^rMl/FD) -(3-tfm) 

- ( p ^ m ^ - i - F D - m ^ q ^ m ^ r i - d / F D ) -(3-2fm) 

The scale identity is determined from Eqs.(31,32) and given as 

r = r m - (3-y m ) • (p ' 2 -m 2

7 r r 1 - (3-y m ) -(p^m2^) 2-m2 > 1 (34) 
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where ( 3 - # m ) is the scale dimension of pseudoscalar f ie ld, $, used to 
compute the matrix element. The relation found above is precisely as 
expected, contrary to the result found in Ref.(M). 

We can use these results to compute the on-shell relations for the 
meson matrix elements 

<Tt(pJ) | ejjjjL | Tt(p)> = lim ( p ^ - m 2 ^ ) • (p 2 -m 2

7 r ) T 

= [ q ^ - m 2 ^ ] - q 2 - ( q 2 - m 2

D r 1 -[q2+(1 - ^ - m 2 ; * ] (35) 

= <7T(p ' ) | ( l + t f m ) - ^m* |7 r (p )> 

It is clear that the presence of the dilaton pole is essential to a 
consistent evaluation of the low energy theorems for the meson matrix 
elements of the energy momentum tensor and the divergence of the scale 
current. 

I conclude that there is no NO-GO theorem. There is a consistent 
low energy phenonemology for the Goldstone real ization of scale and 
chiral symmetry. Further, there seems to be no constraint on the value 
of the anomalous dimension, tfm. Hence, there is no consistency barrier 
to the simultaneous realization of scale and chiral symmetry. 

Of course, it is s t i l l essential that the fundamental theory have the 
softly broken scale symmetry, as in Eq.(24), to apply the relations of 
scale current algebra. The results of the previous sections have shown 
that the nontrivial phase of quenched, planar QED is associated wi th a 
hard, expl ici t breaking of the scale symmetry and, hence, the scale 
current algebra can not be applied to this system. 
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