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We shall consider the behaviour of a real valued solution y of a Schrodinger equation
in the neighbourhood of a zero. Let

(-A+V)y=0inQ,
where €2 is a domain in R*, n > 2 and V € C*(1) with V real valued. (1)
Without loss we assume O € 2 and ¢(O) =0.

Note that ¥ € C=() by elliptic regularity. Furtherlet € > 0, B, = {z € R"||z| < £} such
that B, C . In the following we present 2 survey of results recentiy obtained in (8] on the
behaviour of the nodal set and the nodal domainsof ¢ in B,. Let A, = {z € B,|y(z) =0},
a comvonent D of B, \ N, will bz cailed a local noda! domain (I.n.d.) of  in B, and we
define

D, = {l.nd. D of v in B, with O € aD}.

Let C, = {z € B, |y(z) = 0,V¥(z) = 0}. It is known (see [2.3,4]) that under the above
assumptions the manifold A, \ C, is as regular as the solution ¢. and that the Hausdorff
dimension of C, < n — 2. So clearly the case O € C, is the interesting one, and given
D € D, one may ask whether it satisfies an interior cone condition. Furthermore we shall
also deal with the question of the cardinality of D,. To investigate such problems we rely
heavily on a result of Bers {1]:

Proposition: Let y satisfy (1). Then there exists & harmonic homogeneous polynomial
Pu(z) # 0 of degree M > 1 such that for 0 < v < 1

(¢ — Pu)(2)

dzv . .0zin

for£=0,1,...M, where }°7_,i; = L.

Using polar coordinates z = ry with r = |z] and y = z/|z] € S™!, S*! the
n — 1-dimensional unit sphere, we can write Py(ry) = rMY)(y) with Yy, some surface
harmonic, and (2) implies

= O(JzM=**) for |z| = 0 (2)

r~My(ry) = Yu(y) forr—0, forye S™'. (3)

We denote the nodal set of Yy, with A'(Y),) and the set of nodal domains of Yy, with
U(Yy). (The components of S*~! \ N(Yy) are called nodal domains of Yy,.)

For dimension n = 2 Cheng [3] showed that the nodal lines of ¥ look locally as the
nodal lines of Py, which are straight lines intersecting in O and forming an equiangular
system. So for £ small, D, and U(Yys) have the same number of elements.

For dimensions n > 3 the situation is more delicate as can be seen from the following
harmonic function in R?

¥(21,23,73) = 212 + 2373 — 23/3



which hzs a zero in O of order 2. The corresponding harmonic homogeneous polynomial
is Py(z,,22,23) = Z123, so obviously #U(Y;) = 4. On the other hand studying the
intersection of the nodal set of ¥ with planes 23 = ¢ withc < 0, =0 and > 0, it is easily
seen that ¢ has only 2 nodal domains.
To state our results we need the following definition: For D € D,, D arbitrary but
fixed, let
S(r)y={yeS'frye D) for0<r<e.

Further we denote |{-}] = J(.ydo, with do the surface measure on et

Theorem 1: Let n > 3, suppose ¢ satisfies (1). and let Y, denote the surface harmonic
for which (3) holds. Let D € D,, D arbitrary but fixed, with S(r), 0 < r < € given as
above.

Let M C S™! denote the union of all nodal domains U of Yy with the property
that there exists a sequence {r,ym} with rny,, € D for all m, r,, — 0 and y, — § for
m — oo for some y € U.

Then M #0@and M\ S(r)US(r)\ M[{—0 forr— 0.

‘This result, which implies |[S(r'' — | M| # 0 for r -» 0 in particular rules out that
S(r) “shrinks” for r — 0 into a subset of A(Ya). There are some rather immediate
consequences:

Corollary:
(1) There exists a cone K with vertex O and K C D.

(i1) #D, < #U(Yn), furthermore #D, is constant for ¢ small encugh. (#{-} denotes
the cardinality of {-}.)

(iii) Let Y3(r) = fs;,) ¥do and y2,(r) = fsn-s $?do, then
My~ ([ Yido)'? > 0

and
%/‘b«w - (/M Y:’ddl /3"-' Y:’da)llﬁ forr — 0.

These findings show that the local properties of ¢ in the neighborhood of a zero are
determined to a certain extent by global properties of the nodal set of the corresponding
surface harmonic.

Of course it would be desirable to study the local behaviour of the nodal domains
of ¥ with weaker regularity assumptions on V. It would be also of interest to extend
the foregoing results appropriately to the case where the Laplacian is replaced by more
general elliptic operators.

Let us sketch the main idea of the proof of Theorem 1 (for the full prcof see [8]): The
difficult part of the proof is to verify that M # 8. For this purpose we investigate the



asymptotic behaviour of ¥u(r) = (/s %°do)"/? for r — 0 and proceed similarly as in (6]
where we studied the asymptotics of a solution ¥ of a Schrodinger equation for r — oo.
We suppose indirectly that M = @, which implies

IS(r)] =0 forr—0. (6)

Let for 0 < r < ¢, € small

\(r)= inf / |Lyf*do/ / lpl?do

w€eC(S(r))
where —L? denotes the Laplace-Beltrami operator on S"~!, then we obtain from (6)
AYr) w00 forr —0. (7
It can be shown that g, = r(»=*¥/2yy satisfies

&2 ; (n—- l)(n -3) z\z(r)
(—2;5 + uelgnf-l v+ 4r2 + r?

Jwp <0 for0<r<e (8)

in the distributional sense. The proof of the following inequality is rather involved (com-
pare Lemma 3.2 in [6]) and we note that the C*-assumption on V' plays an essential role
here. We have for some C > 0
o2 Cl——=)" forr<e
Ar)
n-—1 (9)

with2y =M + 7

Now we take into acccunt (7) and obtain from inequality (8) by standard comparison
techniques that .
Yo = 0(r™) forr — 0forall me N. (10)

On the other hand combination of (8) and (9) yields
~J+ P <0 for0<r<R, (11)

for some a < (27)™! and some R, < ¢. Finally a further investigation of this nonlinear
differential inequality shows that ¢ vanishes polynomially in O contradicting (10). Hence
M#£0.

In connection with the results given here more detailed questions about the local
behaviour of nodal sets arise in a natural way. For instance one might ask whether S(r)
is connected for r > 0 sufficiently small. This we could not answer, but for dimension
n = 3 we obtained more detailed results about the set M.



Theorem 2: let n = 3 and suppose that the assumptions of Theorem 1 hold. Let
{rmym) be a sequence With rpy. € D,Vm and rpy = 0, yu — § for m — o0 for some
y € S*71, then § € M. Furthermore M is connected (M denotes the closure of M).

Note that the case Yy (¥) # 0 is trivial since per definition § € M. To verify that
§ € M, if Yp(§) = 0 we used the fact that on S? there are only finitely many zeros of
order greater one of Yy.

Though we could not prove it we believe that Theorem 2 holds also for dimensions
>3

As already noted the methods for the main part of the proof of Theorem 1 have
been developed in (6] to investigate the asymptotic behaviour of nodes of solutions of
Schrodinger equetions in exterior domains for dimension n > 3. We remark that there
the situatior is much more complex than here, even for the 2-dimensional case it is rather
delicate (see [5]). For a survey on these results see also [7].
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