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Abstract

_ The effect of QCD loop corrections to the weak interactions of
hadrons is studied in a non-perturbative framework in which the matrix
clements of the bare effective weak Hamiltonian between hadronic states
are computed. The QCD renormalisation is carried out in the static cuavity,
alleviating the scale maiching problem of the standard short distance
analysis.  Specifically, we study the Al=1/2 rule by computing the QCD
corrected K-m matrix clements. The modified static cavity model used is
characterised by four parameters; the effective quark-gluon coupling
constant, the confinement pressure, the zero-point energy and a paramecter
governing the centre-of-mass corrections. These paramecters are fitted to
the x and p masses and the charge radii of £ and K. Results are given for the
ultra-relativistic (my=my=0) secior and for a region (m,=my=140 MecV)
where the Al =1/2 rule is uniquely reproduced.




1. Introduction

Many dcvelopmeats in cffective field theory(!$) over the past few
vears have led to powerful and clegant technigues by which QCD
corrections to the effective weak Hamiltonian can be computed
pcrniurbatively. It is expected that QCD corrections to the dynamics of
hadrons will be of importance in the quantitative description of .long
outstanding phcnomenon such as the Al=;— rule observed in the non-

leptonic decays of kaons and hyperons.

Although the techniques of cffective ficld theory have resulied in
reliable perturbative calculations of the leading order QCD corrections to
the bare effective weak Hamiltoian, the lack of ability in computing
hadronic matrix clements at a similar level of sophistication have
frustrated these cfforts to understand the phenomenology of non leptonic
weak interactions. Most notably the lack of detail in current models of
non-perturbative QCD lcads to a mismatch between the cffective weak
Hamiltonian .operator cocfficients and the non-perturbative matrix
clements of the effective operators. Whilst the Wilson coefficients possess a
well defined scale dependence, p, which in principle is cancelled by that of
the cffective operators, the evaluation of the matrix elements of the
effective operaiors in current models gives no explicit scals dependence.
For the case of the effective three quark (ud,s) AS =1 interaction, relevant
to kaon deccay, the ‘Wilson coefficients are valid only at a scale bounded
above and below by the charm quark mass and non-perturbative
modifications of the gluon propagator (the lower limit is commonly taken
to be about 1 Gev, however, detailed studies suggest®? that this value is too
low) whilst the scale at which the corresponding matrix clements are
computed in bag or oscillator models is most likely O(mg). This is the scale
maiching problem which provides the motivation for the work carried out
in this paper.

Although in principle large scale simulations of QC> on the lattice
can overcome this problem, in practice realistic results including
dynamical quarks may not be possible for some timec. Thus,
phenomenological approaches such as that adopted in this paper are still of
interest,  Altemative methods usually involve a long distance analysis. . The
most notable of these, for the meson case, is the use of the effective chiral
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Lagrangian(). However, we will in this work concentrate on the technical
difficulties of the standard short distance analysis.

The approach we take involves a framework in which both QCD
corrections to the bare cffective weak Hamiltonian and the hadronic matrix
elements are computed thus rendering the scale dependence irrelevant. To
this end we employ the static cavity model of QCD bound states for which
meson wavefuncticns to first order in the quark-gluon coupling constant
have been constructed”).  Matrix clements of the bare effective weak
Hamiltonian using these wavefunctions thus include most one loop QCD
corrections, subject to the level of approximation involved in the original
static cavity model. Although the attention here is exclusively on meson
dynamics, the techniques developed are readily generalised to the baryon
sector.

The paper is organised as follows. In section 2 the model employed is
reviewed, Section 3 deals with the computation of the diagrams relevant
for the K-n matrix clements. Results and discussion are given in scction 4.

2. Large-Basis 0O(g) Wavefunction

The framework employed in this paper is based on QCD in the static
cavity approximation, in which meson wavefunctions containing O(g)
bremsstrahlung (]q3G> ) and vacuum fluctuation (|qGq3G> ) states in
addition to the usual valence configuration have been constructed and
fitted in the ultra-relativistic (m,=m4=0) sector(’), In the notation of Ref.7
the “"full” O(g) meson wavefunction (containing all states in the static
cavity basis of j=1/2 quark and I=1 gluon states with the exception of three
gluon vacuum fluctuation states which only contribute to the overall
normalisation in the applications considered here), denoted l\|!>';l , is firstly

decomposed into parts giving rise to connected (C) and disconrected (D)
energy shifts to the unperturbed valence ground state as

ly>)=N, {I\v>c’+ lw>;} 2.1)




——r——

where N:: is the Fock state normalisation and J the spin of the meson state.

In terms of the quark and gluon basis states in the static cavity, the
connected par, Iv)é.is

Np
| - Lgs 330a = TE-
ly>: = h1515> +E %[am';‘(l.n,) + am‘;“(l.n,,)]IISISG,,‘>,qi

Ng Np
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- J
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(2.2)
where the labels TE!1 and TE2 refer to TE bremsstrahlung off q and q quarks
respectively (and similarly for TM bremsstrahlung), Jg5 is the spin of the

qq pair in the |qgG> state (since we are studying exclusively pseudoscalar
states, i.c. J=0 and Jg=1, we will supress these labels when their meaning is
clear), the flavour subscript on the vacuum fluctuation (VF) Fock states,
19G9GG> , denotes the flavour of the "quark-sea”, the labels VF1-VF4

correspond to the four VF orbital configurations and the label set, {i},
represents the spin and colour Jabels of the quarks and gluon in the VF
state (left uncoupled at this stage for the VF states). The basis size, Ny,
serves as the truncation parameter in the regularisation of quantities
calculated from the wavefunction, (2.1).

The disconnected piece of the wavefunction, l\|l>; , 1S given by
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Iv> -2 Z ) { p1(8A.0g) A (4.0) lnSnchE S
I nBng (i)

| B 2 TE. 1oy 5 D2
+ ap,(0f.ng) Asay) In PASCTE:1SIS X0

+ 8] (B0 ] 84000 Axlap.) |a SASCTHISIS P
J = - =D
+ap (ad.ng), I PAPGTIISIS RS } 2.3)

The flavour label, f, is summed over f=ud,c.s,b. The VF configurations in
the disconnected states have been classified by the labels D1 D4 . To avoid

double counting of the VF states in the connected part of the wavefunction
the factor, A,(qi.qj). has been included which is given by

A.(‘Ip‘l,) =] - snlsqiql . (2.4)

One of the most serious problems associated with bag models in
general is that the static cavity approximation breaks translational
invariance and it is not possible to construct planec-wave states from static
cavity wavef{unctions using a Lorentz boost. One plausible method
commonly used to overcome the problems of centre-of-mass corrections
and the construction of momentum cigenstates, associated with the static
cavity approximation, is the wave-packet, or Peierls-Yoccoz, ansatz(®-10), In
this approach the static cavity wavefunction, |y>, centred at the origin
X=0, is expanded as a superposition of planc-wave states, [y (p)>, weighted

with some distribution ampliude. Taking |y (X=0)>s=|y> we have

ly>= fpzs( Iw(p)>e"’x| : (2.5)

where E(p) = Vpi + M2 and ¢(p) is the momentum distribution amplitude

which is parameterised as

4 2,02
e P /A
@) = uA I ‘\/(21:) ’ (2.6)




The above for ¢(p) is based on the Gaussiau approximation for the
overlap, <y(X=0)|w(X)> . Once the form of ¢(p) has been specificd the
rcquired plane wave matrix clements can be extracted quite simply from
the associated static cavily matrix clement using the above prescription.

The four parameters of the model govern the quark gluon coupling,
the confinement pressure, the zcro-point energy and the CM prescription.
For the wavefunction (2.1) these paramcters have been fitted (for
m,=my=0) 10 the light meson masscs and charge radii for Ng =1 to 10 in
Ref.7 and we usc thesc values as input to the ultra-relativistic calculations

prescnted here.

3. Matrix Elements of the Bare Effective Operator

Since we are working in time independent perturbation theory the
inclusion of O(g) states to the meson wavefunction leads to a proliferation
of contributions to the AS =1 matrix clements. The AS=1 and 2 bare effective

operators are (the colour structure is diagonal)

Oisar =37 (1 =¥ u B9, (1 -1 d: = :5y*(1 -y c Ty, (1 -7,)d:

3.1

and

Qisa =:57*(1 -7)d 57, (1 -y d: (3.2)

To begin a systematic approach 1o the computation of the large number of
diagrams involved in the AS =1 and AS =2 matrix clements, thc latter of
which will studied in a scparatc paper, we first define an operator, O,

where the label, k, corresponds to the three dJistinct operators above as




SYR(1-7)u ﬁ'y"(l -Y)d:, k=1

O,=Y :SY*(1-7,)c E‘y‘l(l-‘y,)d: v k=2 . (3.3)
SYH(1 -y d Sy (1-v9d:, k=3

This opcrator is written down in terms of its sixteen component operators as

16
O\(x.0) =‘zl Gx) . (3.4)

Since we will refer 10 these component operators throughout this section it
is a necessary exercise to write them down in full in order to establish the
notation to be used. Explicitty (I =y*(1 =%Y,)), we have

G(n =l§'ﬁ,q) T Uy x) By 2 T U X) 8 0,80, 07210 1)D(Q5.2)b1(q,,3)b(q,.4):
G(x) =,§,}7,< R) THL(2) T ()T V(%) 8,0, 800,01 (21, 1)b(q5.2)b 1 (q4,3)d 7 (0,.4):
C*(x) =.§.,‘71‘5’ U () V(0T U(x) 8 8., b1(a,,1)5(a2,2)d(5.3)b(q,.4):
G 5>=l§’t7,<yr“u,<y V(0T V(2)8. 0,8, b1(a,.1)b(a,,2)d(a,,3)d7(q,,4):
GP(x =“Z_:1'E,( 0) TV, (x) ()T U (%) 8, B, 5 1(a,,1)d7(q,,2)b1(q5,3)b(q,.4):
C®x =|§'l7,(5)1'“v2(1)l73(5) TuV(2)8 8., :b7(q,,1)d%(q,,2)b1 (5,341 (q,.4):

CP(x =|§uﬁ,( DTV, (3) V(0T U (%) 8, b (q,,1)d7(q,,2)d(4,,3)b(q,.4):

G = ,g;}?,( O TV ) V0 T V(8 8B 1011, 1)Hq2,2)4(05,3)d (@, 4):




Q”(5)=l§'\71(5)1“"lﬁ(5) Uy(x) T U (%) 8, 0,8, :0(9,,1)D(q,.2)b¥(q,.3)b(q,.4):
G'9%x) =.§.‘7 COTPU(x) B x) T, V(x) 8 ¢;8c,:(q,,1)b(q,,2)b 1(q5.3) (g, 4):
C_‘“’(;)=l§‘\7,( O U(x) V()T U(2) 8 ¢, B, :4(9,,1)b(a5,2)d(q4,3)b(q,.4):

G 1>=,§,\7,<1> TR0 VT V() BB, 10001 1)D(02,2)4(a5.3)0 (0, 4):

C{”’(g)=hzw.f’_,(5_)l""vz(5)17,(5)1‘“%5)8 Beye, d(q,.1)d%(9,,2)b1(q,.3)b(q,.4):

CUNCTR

C{“’(g)='§.\7 O TV (x) By )T Vi(X) B 0, 8:,:d(q,, 1) 1(q,,2)b1(q,.3)d (g, 4):

G 5_)=l§h\7 (O TPV (x) V(0T U (x) B B, :(q,,1)41(a,,2)d(q5.3)b(q,.4):

G =zah\'f,( 0 THV,(0) V(1) T, Vi(%) 8,0, B, 1d(a,,1)d1(0,,2)4(4,,3) (g, 4):

- (3.5)
where the label sets are

{q.i} = {qi.niLi.si.c,} ’ (3.6)

(the quark flavours, q;, can be read directly from (3.3) for each value of k)

and the notation has, for the present, been simplified by rewriting the
spinors, un(,:j),(l), as U ,(x) (and similarly for the antiquark spinors). The

notation is further developed by writing the integral over d¥x of the
component operators, (3.5), as

fd3x Cix)= é' TOLD 8, 8., (G, (3.7)
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where [C! ], contains the Fock space operators and the integral over tac

op
spinors is given by T‘.”(n—f..'s') with the vectors nL and § representing the

various labels of the spinors, i.c.
— —
nL = (nlL‘.nsz.n’L‘.n‘L‘). s = (‘p‘-‘v‘,"g) (] (3'8)

Taking the i=1 casc as an example, we have

T(al,3) = Idh U ()T (x) Uy () T U (x) (3.9)
and

[CM],, = 1(q,.1)b(95.2)b1(g5,3)b(q,4): - (3.10)

When the labels of TO(al,?) need to be written out explicitly we will adopt

the following notation:

ol aly

ngly n L,

| PR i)
TO(al.5) = T[ ' ’]( : G.11)
sy s, )k

Nearly all of the component operators, Cf’. will contribute to the

calculation of the AS =1 (and AS =2) matrix clements of states contained in

the full O(g) wavefunctions leading to a large number of distinct diagrams.
We will begin the analysis by considering first the K9-n© and then the K*-

®* matrix clements. We calculate the matrix elements in two stages. First
the expressions in terms of the spinor integrals, T:i)(n_l'.,?). with definite
arguments, are derived for all the matrix clements required. The angular
integrations over the static cavily spinors are then performed, giving the
matrix clements in terms of simple overlap integrals.

Proceeding in this manner highlights the many similaritics in the
dynamics of the AS =1 (and AS =2) matrix clements and aids in thc cventual

numeric computations.
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(1) KO-n0 matrix clement.

As a starting point we will first consider the non-VF diagonal
contributions, i.c. the valence and bremsstrahlung diagrams contained in
the diagonal matrix clement of tne connected part of the wavefunction. In

terms of the amplitudes of the wavefunction this matrix element is (to
distinguish = and K we place a bar over the pion Fock state amplitudes)

F<7K°|0,3.,(_X_.0)|K°>P = N; N; { ‘°<ls 1S 'Q3.|(£.0)l 1S 1S >K°

connected
N

+ Z [ 5;E|(n',ng) a1g(nng) <n'S lSG‘I;::le.,(z.O)ln S1S GEE 0
n,n ,ﬂl

+ Agy(n'sng) Argy(0.0g) KISDSGLLIQsi(x.0)In S 1SGT >
+ ﬁ;El(n',DZ) aTEZ(D.ng)“,(n ‘S18 G‘I;E'OAS.;(E.O)IIS nS G‘l;‘i >K°

+ 5;52( n’.ng) a'rez(“-“s).o<l Sn’S 01;'2'053-1(5.0) {1SnS 01;& >xo

+ A7y (' ,0g) Aryg (n,0g) <n P 13(;73:]0“.,(5.0)“ PIs GT:: %

+ A7pa(0'1ng) Apy (5.0g) K150 ’PGT,":IOAs.l(g,O)In P1S GT,',‘: >0

+ A7y (0'ng) arp(ning) S P1SC "lllou"(z'o)l 1SnF GT:: %

+ Any(n'ag) Appg(ning) K150 PG  Oisai(x.0) 180 PGT > ]

+ VF tcrms} . (3.12)

where N'é and Ng arc the kaon and pion normalizations respectively.

The reason we have written the matrix clement out in full is 10
facilitate the identification of the various diagrams involved. The first
term in (3.12) is just the valence graph shown in Figure 1. The four TE-
bremsstrahlung terms correspond to the diagrams of Figures 2a)-d)
respectively.  Similarly, the four TM- bremsstrahlung terms corrcspond to
the diagrams of Figures 3a)-d).

The AS =1 operator component responsible for the wvalence and
bremsstrahlung K9-%° matrix clements is Cf'”. Below we present the initial

aspects of the calculation of these matrix clements.




11

a) Valence KO-n°® matrix clement.

The neutral kaon and p:on valence states are given by,

Ke°: llSlS)--——Z EC (s o) O

3 5,8y S b1(d,18.s,,c,.)d1(5,1S.5,.¢c,) [0 >
Se

CoCp

and

m°: [1S18> Zs z (s 88) 8¢ e bt(u.18.s%,c5) dt(u,18,s;,.ct) |0>}

where we have projected out the uu component of the neutral pion state,
b¥(f,nL,;s,c) and dt(f.nL.s,c) are the quark and anti-quark creation operators

for states with flavour, mode, orbital, spin and colour labels given by the
arguments respectively and Cq’q(‘-"b) are the Clebsch-Gordan coefficients

for the qq pair coupled to spin J. From (3.14), the operator part of the C !

valence matrix clement is
‘o<1s1s|[C§"’],p|131s>K°=-s“,sz.,»a,.'s... (3.15)

where the label sets follow from (3.14) and (3.5). Inserting into (3.15) the
full expression for Cl(”). summing over labels and including the

integration over dx gives:

L §094=1:15,15,1818) . (3.16)

K18 1s|fd3x C™¥(xl1s 18> = e

where the spin summation S{” is given by
44 T[n, 1 Mly
T1 k n,L; ntL,

T n,L, n,L
+T 11 72
4T nsly ngl,

) n,L, a,L.
SO (k :al) m T[ v

n,L, n‘l.‘

nL, n,L

1~y "2~
-T

nyly nely,

T
Tl](k

T
e (3.17)
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For clarity we will label the graphs as G where (i) is the operator

component(s) and the subscript, m, labels the diagram type from the

corresponding figure.  Hence, the valence coentribution is

G - 5_1‘5 NENF S (k=1:18,18,18,1S). (3.18)

b) Diagonal - bremsstrahlung AS =1 matrix clements.
The bremsstrahlung staies (T;=TE, TM) are written as

Ke: In_L.n,L,,GI:>
and

e In'.L;n;L;G;r:>. (3.19)
where explicitly we have

T; _ _]_ 0,1 L. _1_ a
{n,L,n,L, q,s> 7 za: C.Z% Eb Cﬂo(s..al,.y_;)‘5 lc,cb
is

x cah(T;n,.j3) bY(q,nS 5,.¢,)d1(qp.15.5p.c0) 10>

(3.20)

where the gluon creation operator is denoted by c”(T;.ng.jg) and the

B 19 . .
Clebsch-Gordan coefficient is Cqﬁ‘('}" . The algebra involved in the

bremsstrahlung matrix element is analogous to the valence example above

and nced not be written down here. So, from (3.20) the bremsstrahlung
matrix clement of the operator Cg“’ is

Snilg n;L;,G;,r;l fd:"x Cl(""(g)ln.L.nbLbGI; o

=- 8\1/——2- [2S(z"“(ksI:nbLb.n;L;.n'.L;,n.L,) + S;”)(nl:n,,L,,.n;,L;.n',L;,n,L,)] .

(321

The spin summations, S%’; , are given by
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Sz (k 'nL)- T[.’L’ "L‘ T T k * T ‘,L, -‘L‘ l l k ‘ ( | )
and
- i) oL T
(P SRl M R ot
SJ (k:ol) = T_n,l_, oL (T Tk * [aytyn Ly [T 4k
Pn|l-| a,L, i1t P"l"l'i"’? T
. 3.23
* T_.,,L, oL, jd T](k ¥ TL“JLS a4 4 i o

Using (3.21), the various bremsstrahlung contributions of Figures 2
and 3 can be obtained.
In order that the rest of the spin summations relevant to weak matrix

celements need not be written ouwt in full, we will adop' a convenient
notation by introducing spin coefficients, e,(i‘). defined as

SP(k:al) w Z g@) TO(L9). (3.27)

For reference the spin coefficients, ej('i), required for the study of weak
matrix elements in this framework are given in Table 1.

This completes the initial analysis of the K9-m© matrix clement with
respect to the non-VF part of the wavefunction. We proceed now to the

diagonal vacuum fluctuations.

¢) Diagonal VF K%-nt° matrix clements,
(i) uu component of pion state.

The uu component contributions to the K°-m° matrix clement from
the diagonal VF states originate from the component operators Cf”’.Cﬁ”.
C‘;”.C‘l'o) and Cﬁm. The last four mix sea-quark flavour. in order to be able

to identify the various processes graphically it is necessary to present the

algebra involved in a measure of detail. To illustrate, we present the
calculation of the VF matrix clements of C,“”, beginning with the

disconnected states which are simple since there is no Pauli interference

in Jy>).
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We write the fermionic part of the discoanccted states, D;=D1-D4,
for the ncutral kaon and pion, |K°h'a and If)é , in label sct notation, as

Ke:  [K*>p= bY@ )bt (,2)dt(s.3)d .40 >,
and
ne |u°>,; =\,—1§— bt (u, 1M1 (£,27)dt (u.37)dt(f.4)] 0 D>. (3.28)

The operator part of the matrix clement is then given by
[f)j<nol[Cl(l3)]°p|K°>t;]=—[A| + A+ Ay + A+ As + Ag] , (3.29)

where
Ay ® 858257 831" 8418277844 s By m = 88148257 8317841 8227830,
Aym = 88135824 831841822784y, Aaw = 881382378317 8478177840
Osm = 8yr8138237 8378418217844 » B ® Bur815824 83276418217 845 .

(3.30)
The complete matrix element, after inclusion of the disconnected
amplitudes is

i<l [ CONpIRe>]

1 R n Ly nyL,

i Bl e
- \5[26] IEI u{‘!’ld'*’d"l'h'-'tk”'l ni'z"ld"+qld'44"+k“|l T nyly Ly,

s 5 13)
Sy 5,)

W Ul
x fdsx W :n,,L,..n,.L,,:s,,.s.,).15,',‘,-3( x) Cﬁ(s,..s,.) At c, 8c,c,

L}
. . T;
x | a3 W (xn,. Ly, Ly 8,8,.). A

Pagiy(x) Cq(sl”'sl”) )‘ca‘,.cz,,ac,,,c,,.

X[A,+A2+A3+A‘+A§+Aﬁ] (3.31)

ST RN 6 R R Y T

e




T
where A ngi3

(x ) is the static cavity gluon field, m'nl. arc the quark modc
numbers, R is the confinement radius and the VF part of the quark current
in the quark-gluon interaction is

WhkinLimglyisne) = G000 1 Vel (x) - (3.32)

It should be noted that the differcnt radii of the kaon and pion states
is to bc read implicitly in the above expression; this can be done simpiy by
recognizing the appropriate  particle labels as defined in (3.31).

The identification of the terms in the above expression with the
diagrrms of Figure 4 can now be made by performing the summations over
the operator indices, ol and $, and the remaining labels contained in the
A factors. By tracing the indices involved in the weak transition and the
vacuum fluctuations we see that the first term, i.e. that associated with A,,
contracts over the indices involved in the vacuum fluctuation and hence
corresponds to the disconnected diagrams, Figure 4a)-d). Similarly, we
identify the remaining terms, A; to As, with respect to Figure 4, as

corresponding to ¢) and f), g) and h), i) and j), k) and I) respectively. The
last term, Ag, is zero, due to the colour structure, and corresponds to the uu
component of the neutral pion originating directly from the vacuum
fluctuation.

After summing over all indices and substituting the overlap
integrals goveming the vacuum fluctuations for particular gluon types
these diagrams can be written down in analogous forms to the valence and
bremsstrahlung cases already considered. However, before writing the
expressions out, we make the important observation that the matrix
element, (3.31), ‘nvolving only disconnected states does not encompass the
diagrams of ~.gure 4 entirely. Some modes in the internal quark and
antiquark lines are excluded due to the counting factors, A (q;.q;), in the
disconnected part of the wavefunction and come from either matrix
elements of connected vacuum fluctuations or matrix elements which mix
disconnected and connected parts of the wavcfunction. The effect of these
inclusions i3 to simply fill in the gaps of the mode summations occurring in
(3.31).
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After the contributions to these diagrams from connected vacuum

fluctuations are also taken into account, the relevant expressions are given

by

13)
4a)

13)
4b)

13)
4c)

13)
4d)

3)
G

13)
4N

Np

- -3 NXN* 8o

- 2NFN;3H§"{°{P"“°S*‘“:
NB{

=-3 NXN* 82
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T TE
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x S{'?(k=1:15,18,18,15)  (3.33a)
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x 819 (k=1:18,15,15,1S)  (3.33b)
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x (' (k=1:15,15,18,1S)  (3.33c)
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x S (k=1:15,18,18,18)  (3.33d)
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™
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where the genecral TE and TM overlap intcgrals, resulting from the

transverse part of the quark-gluon interaction, are defined in terms of
quark and gluon normalizations, Ny and N:" , quark shell momenta, p, and

gluon mode numbers, k;é as(ih)

1
EfnLaLing) = NTE Nyt Ny [ £208 { ¥ ,0aLRE) jo(PartRD
0
£Poy §,(Po-LRY) Jo(PaLRE) } iy (KTgk) .

(3.34)
and

1
ML L 0 = NEMNy Ny [ 20t {jocp.LRn JoPa L RED jo(k a8
0

¢ LB, Far iy 0RO 5y 0at RO 100 - 25,6750}

(3.35)
In the above expressions the factor, Fyp, is given by
[m,,l_ + xmgR ]m
F = m . (x=x1 for L=P, S). (3.36)

For the analysis of thc uu componcnt of the diagonal VF
contributions we are left with the sca flavour mixing operators C !V, C{P,

C'? and C{'®’ cach producing two diagrams as shown in Figure S. The

expressions for these diagrams are given by

Na - -}
G(l) __ 1 NKN‘ 8a Z { EJnP.lS.ng) } {E‘i nP.lS,ng) }
a - —_— —
5a) 6\/5 FYF 3 nn’ng (D:P + (n'ls +k¥l§' " “;’P + dls . kt,i ]

x
—
iz

() (k=1:nP,nP,15,18) + ZS.(,”(kzl:n’P.nP.lS.lS)] (3.37a)

Np (v “
GV Lo NENr S Z {Mq..ins.ls.ns)} {_Mq'tns.ls.ng)}
T a2 T 3 awng | 0ig+ ofs +kag )y Ledg v ol + K0y

x [Sg”(k-nzn's.ns.ls.w) + 283”(1‘.1;..'5,..3,15,13)] (3.37b)
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X[S§1)(k=1:18.18.ﬁP.nP) +28{" (k=1:1S,18,P,n P)] (3.37¢)

Np + - “
G?. L NEN: S Z {Mq_hs ,AS,ng) } {M,.tns 18, “8)}
54) —6"5 FUP 3 n.fng “"ls*'mns*‘ k}"‘: X "‘t'us"'"ﬁs*'*ﬂ.: . /"

x[Si”(hms.ls.ﬁs.nS) + 2s;’>(x=nzls.1s.ﬁs.n5)] (3.37¢)

- T
) " 6v2 ohp + 0 + kng)y L afis + ofp + kn

x[zs‘,"”(ks::ls.np.ls.ﬁp) + S('o’(ksl:ls.nP.lS.ﬁP)] (3.37¢)

o - E {M«{ns 1S,ng) }K{M.dhs PRY

1
-1 NEN: B
W Tev2 T T3 whs + 0fg + kug ), | aig + g+ Kng ),

x[2sg‘°’(n-ms.ns.1s.35) + S§‘°’(k=1;ls.ns,1s.53)] (3.37f)

g (g“hsw Ghye =
G19 . L eyt ECtis,wp, ng)} {E.,,,hs.npng)}
Sg) \[_ 3 Aiag | g+ 0Fp + kT,f‘ o L eg+ afp+ kT,,‘; .

x[S‘,“’(kams.ls,ﬁP.ﬁP) + 28818 (k=1 :1s.ls,ﬁP,ﬁ'P)] (3.37g)

(e 1 §_
GSh) - TN N 3 l.ﬁ',n‘

% {M:hs.ﬁs.ng) } {Mghs S, ng)}
K ®

ofls + s + kng

O] . ™

x[Sg“’(k-ms.ls.ﬁs.ﬁ'S) + 28418 (ka1:15,18,7S .ﬁ‘S)] (3.37h)

We now move on to the dd component case.
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(ii) dd component of pion state.
The dd component diagonal VF matrix clements are essentially a class

of Penguin diagrams containing both uu and ct loop quarks. The relevant
operators are C{, C{!% and C{'" (with k=1,2) and correspond to the

diagrams of Figure 6a)-d), ¢)—-h) and i)-1) respectively. For loop quark
flavour f=u,c (corresponding to k=1,2) we obtain

Eitns.iP.ng) } { E(t nP.1S.np) }

ofs + ofp + kny "f-?“"ls”‘:':

) 1 X 8o
G(Gl) -6‘J§N thg{

x[ZS‘z"(k:n'P,nS.ﬁP,IS) + S‘,"(k:n'p.ns.ﬁp.ls)] (3.38a)

Ei{oP,dS.ng) } { ESY nP.1S.0g) }

qp + ol k:': afp+ 0fg + k:':

0 1 Nene ke
G%, -MNN'SE{

x[zs‘,"(k;n'p,np.as,m) + sg”(k:n'P.np.as.m)] (3.38b)

o . g{ M{tns,5S.ng) } { M1 1s,15.09) }

TR A T
g+ ofs + Kng of.g+ ot + k,,:

x[2S(2‘)(k:p'S,nS.°nS.IS) + Sg"(k:n's.ns.ﬁs,ls)] (3.38¢)

N "
GY .. L NENz B0 8a B{Mf“tnl’ .ng) ] {M;ltns,ls,ng) }
6dy =

6v2 . (q',p-rm’l,i-k &g+ 0jg + Koy

x[zs;"(k;n's,np,ﬁp,ls) + Sg"(k:n's,np.ﬁp.ls)] (3.384)
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o ] saz'i{li,tnpns%) }{E;ln?is:xs) }
0 -\T—_N Ne 3 ofp + ofs + kng Jy o .p+ 0hs + kng J,
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802{ 'Am(nSl ng) } {M )(nS fis,ng) }

m‘:,s+w‘s+k.,' +w-s+k,,'

13)

1
~ 60 6‘/_
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D 1 _Sgﬁ{_":*_“ils_“s’_}*{ M{toP.GP.ag) }

SR TP P M T AT A
]
x[zsg”’(x:ls,ip.np.n‘S) + S’*’,”’(k:ls.ﬁp.np.ﬁS)] (3.381)

When the diagrams of Figurc 6 arc related to the K°-z° matrix
clement of the AS =1 operator, (3.1), onc must include the negative sign (in
the operator(3.1)) for the charm quark case.

The above ecxpressions completes the analysis of the diagonal VF
contributions to the the K°-x° matrix clement. We now proceed to the off

diagonal contributions.

d) Off diagonal VF-bremsstrahlung K%-x° matrix ciements.
(i) uu component of pion state.

The two operators which give non zero contributions to the off
diagonal VF-bremsstrahlung for the uu cowmponent are C{” and C{'Y. In

Figure 7 we give the resulting diagrams. The cxpressions for these
diagrams are given by

G .- NKN' 8a NZB { E:hs.ns,ng) } { E:t nP,1S.ng) }

— 3 - JIE TE
\[— 3nn,n' dis - 0%s = Kn L dhp+ofy+ kn ),
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{M"hsapn,) }{Mf,:inp.ﬁp.ng) }
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(ii) dd component of pion state.

The off diagonal matrix elements of the dd component give risc to
Pengu.a class diagrams, as was the case for the diagonzi VF dd component
contributions.  The relevaat operators are C (¥ and C{'Y (with k=1,2)
corresponding to the diagrams of Figures 8 and 9 respectively. These
diagrams are given by the expressions
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This comp:icics the analytic analysis of the K°-X° matrix clement.
(2) K*-x* matrix clements.

a) Valence K*-x* matrix clement.
The operator giving risc 1o the valence component of the K*'-m*
transition, Figure 10. is C{'®. Using the same notation as uscd in (3.14) for

the K°-m° casc, the matrix clement of this operator and the valence states is

given by

L1518 [k Cnli1s18>, = %S(lm(kﬂ:lS.IS.IS.IS) : (3.42)

Hence the valence contribution is

% =3 NENF S{19 (ks1:18,18,18,1S) . (3.43)
2

An important differencce between the K°-%° and K*'-m* matrix
clements is the fact that the latter does not receive contributions from
diagonal bremssirahiung matrix clements. This is due to the singlet colour
structure of the bare effective operator and the fact that in the
bremsstrahlung states the qq pair are in a colour octet.

b) Diagonal VF matrix clements.
Diagrams diagosal in sea querk flavour come from C!'® whilst the

operators Cf“) and C{”’ (k=1,2) generatc non diagonal sea quark graphs.
The operator C£‘°). gives rise to the diagrams shown in Figure 11.

The expressions for the spectator diagrams, Figures 11m) to p) can be
obtained directly from the K°-m° case already considered (without the

amplitude factor of ‘j-%) from the expressions corresponding to the Figures

6¢) 10 h),

For the non diagonal seca quark flavour operators, C ¥ and C{'¥
(k=1,2), we obtain the diagrams of Figure 12 and Figure 13 respectively.
Note that there are only Penguin class diagrams because thc graphs
analogous to those of Figure § are zero by colour.

The expressions corresponding to the diagrams of Figures 11, 12 and
13 are given by

——
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x[%sgg"’(k:l:is.ls,ls.m) + ﬁSﬂm(k:l:ﬁS.lS.nS.lS)]' (3.44j)

TE
oip + dfig + Kng),

Np -
o N Y {E.uknp.ls ng) }
o = 7 alng | ofp+ aig+ Kng

{E{knp TS, ng)}

8’ K

X [%S‘,§°’(k=1:18.18.18.58) + 2840 (k=1:IS.lS,IS.ﬁS)] (3.44Kk)

o . { MStns,1s, ng)} [Mgtns.iSng)
1 = -NE NF 3 n.fi,ng (0‘n8+(d‘ls+kn' Klm:s-kcgs‘i»k:: «

1
x [%Sgg”(hlzls.ls.ls.m) + V2807 (k=1:18,15,18.88) | (3.441)

GO onENg 80 z{ Etes #.ng) }{ Etas g }

q‘,s+mﬁp+k,‘ o{s+mnp+k,.‘

x[;—S(,"’)(k:IS.nS.n'S,IS)-%_2-S(l'oo)(k:ls.ns,ﬁS.IS)] (3.44m)
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G.(:‘?.) -NEN; % Z{————E'm e } { i nii.}

+ ofs + k.. of.p+ 0fs + kng
n, Il‘

[2 S{9(k:1S,nP,6P,15) -I-S‘n':’(k 1S,0P,nP, 13)] (3.44n)

o0 =NENg 8o Z{ Mtns.5S.0g) }K{ Mgt us.5.0p) }.

f ™
g+ Ofg + k,,' of.g + Ofg + Kn,

x [-;- S{'9(k:18,n8,05,18) - ? S‘,‘:’(kzls.ns.ﬁs.w)] (3.440)

' Ns M:lnP.ﬁP ng) M,(;l n'P,uP.ng)
GO NN B 2N = [ VT
1p = 3 =, dp+ Ofp + k:"‘ X of.p+ ofs + kf.‘.‘ .

[—;-S“”(k 1S,0P,nP,18) —‘5 !9 (k:18,0P,0P, 13)] (3.44p)

0 1wk 8aNZB{ Etns,P.ng) } { ESY P,1S.zg) }
lil)v=-6_NPN; 3 a5+ ofp + k':" A dp+ ol +T-:€‘ .

.
] .II‘

x [28‘2‘)(k:n'P.nS.'ﬁP.IS) + S (k: n'P.nS.ﬁP.lS)] (3.45a)

Mw

. -} .
o =__NKN' 8a { ﬁ'{nP nS,ng) } { E‘i uP,15,ng) }
12b) 3 :‘1‘ u{.,+ ofs + k.,' (L dp+ois+ kf,': .

[ S{¥ (k:0'P,nP,1S,18) + S{Y(k:n'P,nP,7S, 13)] (3.45b)

Nz o Z{ M&’(n_s_n_s:;)_ }K{ M S, 18.ng) }

>3 a{s-a-mﬁs«'—k.,' w;sﬂnls-fk,,‘

Ny
12¢)

1IN
6

[2S“’(k n'S,nS,3S,15) + S{¥(k:0'S,n8 1S 13)] (3.45¢)
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NB{M:lnP .ng) } { M{1 1i8,18.n) }

le k'l'll

G(‘) =_1_N NI 8a ——————————— —————————
29 " ofp+ 0fp + gl ohs+ 0fg + kag J,

F3 s
on‘

x [23(2‘)(k:n‘S.nP.ﬁP.lS) + S‘,"(k:n's.np.ﬁp,ls)] (3.45d)

4)

Z{ E_,{ niP,15,0g) }K{ Eytns.@P,.ng) }

13a) "'LN: P fa 1 TB .
0 =% 3nn' ofp+ @fg + kag u{s+m-|,+k.,. ,
’
x[zs;‘”(kzls.ﬁp,ns.n?) + Sg'”(kzls.ﬁp.ns.ap)] (3.46a)
! M5 E‘Hk nP,1S,nq) i{n? nS,ng)
G(‘) =']—'NKN‘ _ﬂ. Z ~TE
1y =T NED 3;,;1‘ "’:P"""ls"’k-, X otp+wﬂs+k.,‘ .

x [28‘2'”(k:lS.ES.nP.n’P) + s‘,"’(ms.ﬁs,np.n'm] (3.46b)

0 %0 %{ M{Y us.15.09) }K{ M oS, 8S.ng) }

i 13¢) "’:s"""ls"'k-; s + 0fs +k’;“‘

x [23‘2”’(k:18.is.n8.n‘8) + Sg‘”(kzls.ﬁs.ns.dS)] (3.46¢)

B n'S,18,n “top ,AP,ng)
G(J) =]— ‘ —g Z{ quk E) M‘Hk 8
e =7 Np 3 "Eg "’=S+“’ls+kl; X 4P+mﬂ,+k
x[2S‘zm(k:lS.ﬁP,nP.n'S) + Sg‘”(kzls.ip.np.n'S)] (3.46d)
¢) Off diagonal VF-bremsstrahlung matrix elements. A

There are just two operators responsible for the non zecro off
diagonal matrix clements. These are C{'? and C{'¥ (k=1,2) and correspond

to the diagrams in Figures 14 and 15 respectively. The expressions for
thesc diagrams are

s

o remmmy e

| |
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NB [ E“11S.nS.ng) E‘“tns fiP.ng)

12 % 8 8
G‘“).=3 N:N;SG E, ________}{ }
) 2 | 3 [ K

T
m.ls - oY kn' ns + (I)ﬁp + kh.

x SO (k=1:18,18,8P,15) (3.47a)
N [ M{lis.op M{lop,dp
G(li) __é_NKNg 8_(1 Z { M tls.ﬂ ,ng) }{ {n ns) }
MDT, FTF 3 afa ng l 05~ o%p - k:: L Whpt Ogp + k,,' K

x S (k=1:1S,1S,fP,1S)  (3.47b)

{E.Hhs 1'S.0g) } {E‘(;tls,'ﬁ?.ng).}
ofis -~ aigs ~ Koy, wls + up + ki, x

x 843P (k=1:1S,18,5P,&S)  (3.47c)

. S EB {quhSnPng\}{M::)(ls 'ﬁSng)} 1

Q
=8

T
N |w

Z

R,
v
u|g
uM Z

2 3 wig - Wip k,,‘ o}g + 0fg + k’,,‘:

x SV (k=1:18,18,7S,5P)  (3.47d) |

Np &+ - =p
G(lz) ] NKbT‘ 80. Z {E%{IS,IS.ng) } { Q%DS ng) }
140) = F 3 ng k?‘ . s+ ofp kl‘; )

x[zs‘,“’(k 18,nS,7iP,1S) + S“”(kzls,ns,ﬁp,ls)] (3.47¢)

Np ( - =
) l NK . 8a 2 {E%ils.ls.ng) }{ E‘w{nP nS.ng) }
un =" AL .

F 3 ning Kng L dp+ ofg + kng

,.Lzs(,")(k 15.nP,7S,18) + S{}P(k:15,nP,7S, 13)] (3.471)
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Ng [ E(t1S.Sag) Eitns.iP.ng)
g g
12) 1 = 8
14|)='6_N:N _92{ n'}.{ }x

T8
olg - o%s - s + ©fp + kn,

X
—

2S4.P (k:18,nS.0P,0'S) + S‘,‘,”(k:ls.ns.ﬁp,ﬁ'S)] (3.47g)

{ ECX15,5'Sng) } { Ey(nP.7S.ng) }

TB [ TE
oflg - 0% — kg ) L ofp + 055 + Kkny

x[zs("’(k 18.nP,5S,1'S) + S{}Y (k:18,nP,AiS, nS)] . (3.47h)

| s ( M{lisEPag | [ Mylos.iSag)
o B |
n 13

o} - of.p - Kng s+ ofs + kay

x[zs‘,‘z”(k 15,08,8S,0P) + SY (k:1S,nS,AiS n'P)] (3.47i)

i F 3 aa | g opp - Koy J L+ agp + “::
i ,n'

w1 . 3"2{ MClis,aPag) }{Mf;knp {iP.0g) }K

x[2S(l'z)(k 1S,0P,iP,5P) + S} (x:15,nP, P n'P)] (3.47j)

E‘*hs nS.ng) } { E(')(nS nP,ng) }
K 3

wls - o} k,,'

Ng
14) -_i K 8.9
158) © 2 NFN; 3 n.z { ns+ ‘-"ﬁp + kn'

xSi;ﬂ(k:l:lS,ﬁP.lS,lS) (3.482)

Np *)
PRNETCT { M{11S.nP.ng) } { M&(nP,iP.ng) }
15b) 2 3 B ng kTM .

- - '}
(ols (onp ' P+wm,+k,..

x S{19(k=1:1S7P,15,1S)  (3.48b)
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L - i{ tlsns.ng)}{E{hSiPns)}
nsc)="2_ PNE S is Jx

F3 fs - k) L 0% + 0p + Kot

x 844 (k=1:1'S.iiP,18,1S)

. 14)

3 K 8a
|s¢)="2’NFN;

MZ

{M,,.hs,n.n,)} {M"hs S,ng) }
"‘S p k‘c K x

x 8{* (k=1:7'P,5S,18,15)

™
mm+m +k

NB (+ . -
0 et 3 {E,.’(ls;;s.ns) } {E‘,tns JP.ng) }
15¢) 6 F F 3 nidog k “{s“ “’uP + k.,‘ .

x [S(,',"(ms.ﬁp.ns.lS) +284 (ktlsvfﬂ’-"sv‘s)]

0 _1n E {E:hs .15,ng) } {E;tnyas%) }'

6 NS Bag Py dp + 0fs + kg,

x[S‘.‘,"u:xs.as.nP.lm » 280 18,85.0P.15)|

NB (+ -, - -
14) 1 NEN® 8_‘}2{ E‘tls.ns.ns) } {Eitns P.ng) }
6 FOOF 3 n,n K

=— E
15g) X g - ok - k’,,‘ o+ 0fp + kiE
]

[S‘,',"(k 6'S.GP,nS,15) + ZS“"(k:ﬁ‘S.ﬁP.nS.IS)]

N = —
G"9 ;—I-NKN‘ 8_«:2{ E,,hs n'S,ng) }{E.tn?.ns nsl
BT TFTF 3 0w Lug - ok k‘,',‘; ‘ “{P*"".{‘s*kn ]
A’ ng

—

x| 89 (k: A'SAS.nP,1S) + 2S‘,L"(k:ﬁ‘S.F-S.nPJS)]
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(3.48¢)

(3.48d)

(3.48¢)

(3.481)

(3.48g)

(3.48h)
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w 1 . ;.5 { MCtis.aPag) } {M:lns.ﬁs,nsy}
N =__NKNI -g
15i) 6 FUF 3 n ﬂﬂs—m'ﬁ.P - k':“‘ X "is*"’;s +k:: .

x [s‘l‘;’(k:ﬁ?,ﬁs.ns.m) + 23‘1‘:)(k:i’P.ﬁS.nS.lS)] (3.48i)

Ng { M55 Pag) }‘{ MglnaP,iP.ng) }

G‘I‘S)j) "":;‘N';N; S z

s - L T™ f ™

x [S‘,;"(k:ﬁ'p.ﬁp.np.w) + 2S‘,',"(k:a'9.ﬁp.np,13)] (3.48))

We have now completed the first stage of the analysis in so far as the
matrix clements of the operators O, for the full O(g) wavefunctions, as

classified by the diagrams G:i,). have been derived in terms of the spin

summations I'sted in Table 1. The terms in the various spin summations
must now be further reduced to one dimensional overlap integrals by
performing the angular integrations. To do this it is a matter of
substituting the spinors with the appropriatc spin and parity assignments
and integrating.  Although the procedure is straightforward ecnough the
large number of seemingly disparatc spin summations with various
combinations of parity assignments leads to a prohibitively large amount
of work. However, the problem can be overcome, to some extent, by
employing a symbolic algebra code.

To present the results of these manipulations we first introduce the
radial functions, f,(r) and g,((r), which appear in the quark spinors as

| if,g(r) Xa | ~igap(r)o-T Xa
uldx)= . uSx)= . . (3.49)
ar 8as(r) QEXo 4n £,p(r) Xa

(Xs is a two component Pauli spinor) and are given by

-3 .
fac(t) = R 2 Ny jo(par?)
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j=1....,8 and the label k gives the flavour
convention used in the definition of 0..

-3 +xmR i .
g.,L(r) =-R? NHL[E'L———'—-] Jl(pnl.r) .
ﬂ)d._mk

h¥(al) ’—:? Jrz dr g, 1 (OB fT)Ean (1) B 1)
1]

R
h;(;l’.) -‘l— Jl’z dr gnlLl(r)gnsz(r)fngb;r)fﬂlLA(r)
0

R
h}(nl) = -’lt— J',z dr 8o L (M o f ) L {1 8oy (1)
Q

R
hf(;l’,)-—’lt— Jrzdr B, ()t f1) Ba g ) o fT)
o
R
hk(r;i.)--l-Jrzdrf (1) 8o 1), 0 £T) 8ot LT)
s ‘ 2 LT ) BopL £ ) fa st {T) 8a {
0
R
h"(n_i.)-—l—Jrzdr f.(r) r) r)f , (1)
6 n oLy gngl-{ gﬂgL; nqlg
d

R
h} (nl) = -’l!— J'rz ar £, L (O 0 f1) 8oy {T) B LT)
0

R
h: (n—l’,) l";— J'l’zdf fn,L,( f)fnzl.{f)fnjl"(r)fn‘[“( f)
0

types corresponding
Explicitly, we have
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(3.50)

In addition, we define integrals over the cight possible combinations of four

—
spinor functions, containing even numbers of each, as hj"(nL). where

to the

(3.51)

In tcrms of these basic integrals over spinor functions we define 1wo

sets of integrals A{™, m=1,.5, and B™, n=1,..,6, as
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1]
A = T o™l X )
=1
and
s -
B(kn).EB}n)hji(nL) (355)

where the coefficients & (™ and Bj(") are given in Table 2.

All the spin summations required can ultimately be written 'in terms
of the integrals A™ and B{™, after angular integration. In Table 3 the spin
summations for the diagrams listed in this section are given in terms of the
overlap integrals defined above.

The results of the numerical evaluation of the weak matrix elements

will be presented in the next section.
4. Results and Discussion

Before presenting the results of the computation of the matrix
elements of the preceding section, we will briefly summarize the quantities
10 be calculated. The analysis of K— R decays is complicated considerably
by the two body final state. It is usual to avoid this through current algebra
and low ecnergy theorems which relate the K— 7% matrix elements to the
more tractable single particle K-x matrix clements. This is the case even
for lattice simulations whcrc'thc physical size of the lattice is not large

enough to accommodate the two body finai state. The low energy theorem
giving the K=K matrix clements of the weak Hamiltonian in terms of the

K -x matrix clements is(!2)

| o
<rene| oK >= b {ﬁ<n*<p)|%|x*<p)> . <1c°(p)|%|x°<p)>}

<R | Hoy|KO D= ;’-—h <n*(p)| HaIK* (p) >

<1t°7t°|9{w|l(°>=-i;5

h <n°(p)| HalK°(p)> (4.1)

e — —— Y o, D, W .

AL A e B B TR sy T e e

ST TR e T8O TR (8 1P VT 1 ygy = ST, & g A YT

Ak

TATATAPA A TA AT TP OV OO
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where p is the common four-momentum in the K-X transition and

(4.2)

If the K-t matrix clements are written as

<n*(p)IHw|K'(p) > =2 p?,

<no(p)|HwlK°(p)> =2 p?, (4.3)

then. the cxperimental data for K— R X decays arc reproduced from the low

encrgy theorem, (1.18), for the following “experimental” values of the
single particle matrix elements(12):

(A g = 1.555 x 1077 and 14 =1.052 x 107". (4.4)
pL

The question of the common four momentum, p, to be used when
comparing the calculated K-x matrix clements to the “experimental”

values above is unclear in this framework and so we will be more
concerned with the ratio of the K-% matrix elements.

As we have ignored mixing from the top quark im our effeciive AS =1
operator, (3.1), the bare effective AS =1 Hamiltoniap is

9{::"'-"%3;045-1- (4.5)

For the numerical calculations we will be interested only with the real part

of the interaction in order to compare with the extrapolated experimental
values of the K-® matrix elements, (4.4). Furthermore, we can assume that

the KM factor, A., is determined by the first two generations, i.e. A, =~8;,C;.
Writing the K-% matrix clements in the notation (4.3) and employing the
wavepacket prescription we have (B =0 or +)
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[ox cr10su0xe>,
p,zr%z_;t . (4.6)

3 3 QK(P) Ql(g)
an f" P 2Ex(p) 2Eo(p)

A similar and not unrelated problem to the common four raomentum
in the K- matrix clements is the question of confinement radius to be
used in the weak interaction overlap integrals. Fortunately, the difference

in pion and kaon confinement radii in the model is very small.  For
cxample, in the ultra-relativistic sector at Np =1 the difference is 0.4% of

R,, and decreases to 0.2% at Ng =10 (in the original MIT model!!?) the

difference is quite pronounced, about 2.4%). Hence we will assume a
common confinement radius, even for the wavefunction amplitudes, and
compule the matrix clements at threc appropriate values, namely R, Rx and

-;-(R.+Rx). In this manner we are able to estimate the sensitivity of the

weak matrix elements to the confinement radius. It is interesting to note in
passing that this approximate "degencracy” in confinemeat radii for = and
K states reflects the fact that the various observables, such as mass and
charge radii, appear to be strongly dependent on the underlying dynamics.
In Figure 16 we plot the values of A°p? (Figure 16a)) and. 4*p?
(Figure 16b)) as a function of basis size in the ultra-relativistic sector
using the parameters of Ref 7. Finally, the ratio of the K-% matrix
clements, which is free from the p? ambiguity, is plotted in Figure 17.

All values shown are for the "mean” confinement radius, %(R.-&RK).

which is used as the reference so that the "error” due to the difference of
Rx and Rk is estimated from the values obtained at the extreme confinement

radii, Ry and Rg. The resulting changes in the K~X matrix elemenis arc
shown as error bars.

The general impressions of the results given in Figures 16 and 17 are
that although the magnitudes of the K-® matrix clements are rcasonable,

the signs are incorrect. In so far as the K-m matrix elcments are
concerned, the “experimental” values, (4.4), only give the magnitudes and
not the signs. However, for the single particle matrix elements to
reproduce the exact Al=-;- rule they must satisfy the condition

N Ol Ae s o -t T AN . i gty B - e oD
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Figurc 17 demonstrates the fact the K-m matrix clements calculated here

have the wrong sign and poor rclative magnitude in comparison with the
"experimental® values,

Thus the full wavefunction, with m, ,=0, appears to do badly in
describing the weak interaction dynamics. However, we have still to
exploit the one remaining degree of freedom, namely the up, down quark
mass. We have refitted the parameters for various values of m, 4 up to 200
MeV. Since the non-zero quark mass calculations require a great deal of
computer time we have investigated the quark mass dependence for Np =1
to 6 only (this required a cumulative total of O(100) hours on a CYBER 99G).

The results for the K-& matrix clements and their ratio are shown in
detail for Ng=1 in Figure 18. The K°-®° matrix clement changes sign at
about m, 4=113 MeV whist the K*-x* matrix clement changes sign at about
m,,=146 MeV (note that the sensitivity of the K-m ratio to the
confinement radiugs is more pronounced in the region of the asymptote).
Hence, there exists a (unique) region from 113 to 146 Mev where the K-x
ratio has the correct sign. In fact at m, 4=138 MeV the ratio reproduces the

"experimental” AI=-;- rule. Since the valence K-t ratio is always positive
(the valence weak overlap integrals are the same) this observation of the
AI=%— rule is duc to the presence of the QCD corrections. The common four
momentum required to give the correct magnitudes, (4.4), for the K-x
matrix clements for Np=1 is, Ipl=96 MeV.

The corresponding change in the meson mass spectrum, for these
larger values of m, 4, will be small as indicated by the behaviour of K* and ¢

masses which were found to change by only about 1 MeV over the entire
range of m, .

Duc to limitations on computer time we have performed the
calculations for Ng =1, 2, 3 and 6 only. At each basis size we find unique

solutions for the value of the light quark mass required to reproduce the
experimental Al=l rile. The computation for Np =6 is given in Figure 19

which shows that the matrix clements have changed sign with respect to
the small basis size values (Ng<4). This change of sign is probably not
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significant as it reflects a typical instability, at small basis sizes, of
quantitiecs computed from the wavefunction.

The aim of this work was to study QCD corrections to the bare
effective weak Hamiltonian in a framework where the non;pcnurbativc
calculation of the hadronic matrix clements is made. Specifically, we have
computed the resulting QCD corrections to weak interactions of mesons
from O(g) wavefunctions in the static cavity fitted to the light meson sector.

Whilst we have demonstrated that the non-perturbative calculation
of QCD corrections to the bare effective weak Hamiltonian is possible within

the context of the static cavity model, the limitations of this approach to the

scale matching problem, due to the nature of the static cavity model itself

must be kept in mind. Nevertheless, we believe that the major problem of
the static cavity model, namely the CM corrections have been treated here
in a reasonable manner, although we acknowledge that, at present, a
complete and rigorous trecatment of the CM corrections can only be
performed in the soliton formalism(14.15),

It appears to be significant that the O(g) wavefunctions at mg 4=0
produce quite good results for the meson mass spectrum with respect to the
potential models(!6) and certainly in .comparison to the valence MIT
model(13), whereas the weak interaction dynamics does not seem to be well
described by this wavefunction. The fact that the weak matrix clements do
not come out satisfactorily may be an indicator that various higher order
contributions, left out in this analysis, will be important. '

Yet, if we are prepared to discard the notion that the 1ight ‘quark
dynamics must be ultra-relativistic, i.c. that the up, down quark mass is

small (in comparison with the static cavity energy scale 1/R), then we find
that for m, 4=138 to 146 McV (at Ng=1 to 6 so far) the full O(g) wavefunction

gives an excellent account of the K-1t system as well as charge radii and the
ground state meson spectrum. The significance of such a large |;p. down
quark mass in this relativistic framework is unclear. A possible conjecture
is that after confinement has been taken into account by the static_cavity
mechanism, the bare quark masses may be dressed non-perturbatively
such that the quark masses appearing in the resulting QCD are effective
masses. Alternatively, the large value of the up, down mass may also reflect
the absence of the higher order contributions. '

The most obvious of these contributions are those where the QCD
process occurs before or after the weak interaction. Such corrections 10
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the matrix elements of the bare effective weak Hamiltonian will arise from
QO(g?) states in the wavefunction. For example, the excited valence
configuration [qq> , produced from transverse and Coulomb gluon

exchange, and the sca-state, |q@qq> , wili play an important role here.

Furthermore, the wavefunction should ultimately be extended to include

higher angular momentum states, i.c j>—;— , for the quarks (and hence [>]

for the gluons). Since the meson mass spectrum is already well described
by -.lhe model considered here it may be argued that, in so far as the mass
calculations arc concemed, the higher j modes and O(g?) states may change
the overall scale whilst leaving the quark wass dependence unaltered in
such a way as to allow the model parameters to readjust.

The numerical calculations presented in this paper are quite
lchgthy, but perhaps not prohibitively so with respect to the above
modifications of higher i modes and O(g2) states. However. whilst the
inélusion of higher j modes will most likely only increase the amount of
computational work, the inclusion of all O(g?) states in the wavefunction
will lead to a vast, and perhaps unmanageable number of diagrams. An
altermative way to proceed may be to perform the calculations using the
Multiple Reflection Expansion techniques(!?) in a covariant gauge where
the number of diagrams will be manageable. The fact that this has not yet
been attempted may reflect the numerical difficulties in using these
methods for fitting purposes in order to obtain reliable parameters, and the
problems associated with CM corrections.

Within the framework of the O(g) wavefunction for mesons we have
been able to demonstrate two important aipects of the weak interaction of
hadrons. Firstly, wusing the wavefunction construction and fitting
procedures outlined in this thesis, the calculation of all O(g?) QCD
corrections to the matrix clements of the bare effective weak Hamiltonian,
including higher order contributions, is in principle possible for the static
cavity. Secondly, the O(g?) QCD corrections to the matrix elements of the
bare cffective weak Hamiltonian computed here are certainly significant
with respect to the valence contributions of the naive quark model and
appear to be crucial to the understanding of the Al=1 rule.
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Integral coefficients ;™ and Bi™.
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Table 5.3 (i)-(iii)
integration of the spin summations relevant (o
clements.

suppressed so that only the orbital assignments, shown for the spin

summations, have been given. c.g. the entry, S(cl) : SSPP, denotes the

casc

of reference mode

spin summation, Sg"(k:ms.nzs.n;?.n‘?).

Table 5.3 (i)

The overlap integrals resulting from angular
the weak matrix

numbers have

_Spin_Summation Integral Spin_Summation Integral
S84 : ssss AP S . ssss AY
S : sspp AP S : Psps -AY)
S{" : pPPSS AP S : PPSS AP
S ssss AP S . spps AP
SV : sspp AP S$) . ssps BV
S : PPSS AP S : sssp -B("
S . ssps -B{V S : Psss -B(»
SP : spss B S0 sSSP B?
SO : psss BY ST) : ssss B
SO : spss -BY? S{’: ssss -AY
S§) - sPss -BYY S : spsp AW
- 8% : pPsss B S : psps AP
S¢) . sssp BY S’ : sspp A
S : psss -B{Y §{) . ssss -AlM
S : ssss AP S . spsp AP
S¥ . PSPS -AY Sy : PsSPS A
Sy : PPSS A® SO : ssep AW
St : sPPS AP S¢ . spss B

e o m——
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Table 5.3 (ii)

Spin_Summation Integral Spin_Summation Integral
S . sSPS -BY S0P . ssps B
S : sssp -B{ S0P : sssp -B(V
S® : ssps B S(P . sssp B2
ST : SPSS B SUP : psss B
S5 : SSPS -BY S : ssps -AY
S?) : sssp -BY S : spss AP
ST : ssPs B S(P . sssp AY
S{{) : ssss BY S'P : spPPP AP
${9 . ssss -AlY S{'P . SsPS AW
S{9 . spsp AP S¢P : spss AP
SY% . ssss -A{Y S{P . sssp AP
S{% . spsp AP S . sppp AP
St : s8SS 0 S : ssss -B(Y
S : ssss 0 Sy : ssss A®
§,% : sss8 -B{® §4¥ . spsp AP
S§'9 : sPPS -B® S¢'% : sspp AP
S(y) : $588 0 SG¥ . sPPS AP
S5’ : SPPS 0 §)¥ : PsPS AP
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Table §.3 (iii)

Spin_Summation Integral Spin_Summation Integral
SU? . pPSS AP Sy . psss A
S? . ss88 AP Sy : PPPS ALY
SV : pPSPS -AP S . spss -AY
S{'¥ : PPSS AP S . ssps A
S : spPSP TLAD S9 . psss AY
S : sspp AP SV . pPPS A
S{'¥ . spps AP $3) : spss B
S{ : ssss 0 8o : SSPS -B{Y
S¢¥ . sssS 0 S(J) . psss B2
S's) : SPSS -BY S§'¥ . spss -B(
S . pSsS BY S9) . ssSS A®
S : sssP BY S¢® . sspp AP
S : PSSS B S{'¢ : ssss AP
S($ . spss -AY S8 . sspp AP
S(9 . ssps A
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Captions

Valence diagram for the K- x° transition.
Diagonal TE-bremsstrahlung diagrams for K©-m°.
Diagonal TM-bremsstrahlung diagrams for K°- ®°.

Diagonal VF diagrams for the uu component contributions from
the operator C'? to the K- x® matrix element.

Diagonal VF diagrams for the uu component contributions from
the operators C (", C{, C{'” and C{'® 10 the K°- X° matrix element.

Diagonal VF diagrams for the dd component contributions to the
K°- ®° matrix clement. Diagrams a)-d), e¢)-h) and i)-1)
correspond to the operators C{". C(km and C{'” respectively.

Off diagonal VF-bremsstrahlung diagrams for the uu component
contributions from the operators C{” and C{'¥ to the K°- ®° matrix
clement.

Off diagonal VF-bremsstrahlung diagrams for the dd component
contributions from the operator C:m to the K°- ° matrix clement.

Off diagonal VF-bremsstrahlung diagrams for the dd component
contributions from the operator C:") to the K°- t° matrix element.

Valence diagram for the K*-=®* transition.

Diagonal VF diagrams from the the operator C{'°) for the K*- &+
matrix element,

Diagonal VF diagrams from the operator C{* for the K*-t*matrix
element.

Diagonal VF diagrams from the operator C:'” for the K* - ®+*matrix
clement.

Off diagonal VF-bremsstrahlung diagrams from the operator C,(‘m
for the K*-n* matrix clement. B
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Off diagonal VF-bremsstrahlung diagrams from the operator C:“)

" for the K*-x* matrix clement.

Results for K- x matrix clements (m, ¢=0) for Ng =1 to 10, showing

the various contributions. a) K©- ®° matrix clement, 4°p? b) K+ - n*
matrix element, A*p2.

K- ® ratio, A°/A* (my 4=0) for N3 =1 to 10. The dashed linc

indicates the value of the K- x ratio for the exact Al=-§- rule.

Light quark mass dependence of the N =1 results. a) A°p? and
A*p2. b) K- & ratio.

Light quark mass dependence of the N =6 results. a) A°p? and
A*p2. b) K- & ratio.
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