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1 Introduction 

It is expected that a large fraction of the total cost of the proposed Superconducting 

Supercollider will be spent on magnets, and, as Leon Lederman has remarked (on page 

181 of reference [S]), “most of the cost of making a magnet is in the ends.” Among the 

mechanical problems to be solved there is the construction of an end-configuration for the 

superconducting cables which will minimize their strain energy. The purpose of this paper is 

to promote the use of differential geometry in this minimization. The use will be illustrated 

by a specific application to the winding of dipole ends. The cables are assumed to be clamped 

so firmly that their strain is not altered by Lorentz stresses. 

A reasonable mathematical model of the cables can be obtained from the well-known 

Euler-Kirchhoff theory of thin rods described, for example, in Chapters 18 and 19 of [lo]. 

To find the equilibrium configuration of a cable according to this theory, a system of three 

coupled, first order, ordinary differential equations must be solved subject to given initial and 

final conditions and, in our case, subject also to the condition that the cable be constrained 

to lie against a cylindrical surface coaxial with the bore of the magnet. There is no provision 

for shearing or extensibility. The elastic properties of the rod are completely characterized by 

one torsional and two flexural coefficients of rigidity expressing the Bernoulli-Euler relations 

connecting stress-couples with curvature and twist (see equation (12) on page 388 of [lo]). 

Because an unstressed cable more resembles a long flat rectangle than it does a rod, 

one of its flexural rigidities is much larger than the other. It is much easier to bend the 

cable about a fold line in the rectangle than about a line perpendicular to the plane of the 

rectangle. Therefore, as a preliminary approximation to be relaxed later, we take one of the 

two flexural rigidities to be infinite. This is implied by what is called the “constant perimeter 

condition” by practitioners of the art of magnet winding [14]. Then the cable can be modeled 

purely geometrically as a two-dimensional strip to be bent into three-dimensional space so 

that the length of every arc in the strip is left unchanged. (By Maxwell’s definition (page 81 

of [II]) “The operation of bending is a continuous change of the form of a surface, without 

extension or contraction of any part of it”, and the definition has become part of modern 

terminology [12].) The bent strip is part of a developable surface (see the bottom of page 

303 in [4], or top of page 44 in volume I of [15]). Straight lines in the unstrained (planar) 

strip become geodesics in the bent strip. Less obviously, any smooth curve in space uniquely 

determines, except possibly where its curvature is zero, a developable surface in which the 
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curve is a geodesic. This surface is called the rectifying developable of the curve (see page 

47 of [15]). In particular, the entire configuration of the bent strip is uniquely determined 

by that of (either) one of its edges. Instead of solving for the configuration of the strip in 

space, with an edge constrained to lie on the given cylindrical surface, we need only solve 

for that of a curve already in the surface. As in reference [14] we will call this curve the base 

cute of the strip. The system of three, coupled, ordinary differential equations is thereby 

reduced to one, second order, ordinary differential equation, unconstrained except by initial 

and final conditions. The method to be described in this paper will be based on the rectifying 

developable. 

There is a deviation from adherence to the constant perimeter condition that this 

rectifying developable method, or any other method, must necessarily adapt to. As the 

cable comes down the long straight section of a (for example) dipole magnet it will lie along 

a straight line, a line of zero curvature. This is the singular situation mentioned above. The 

rectifying developable is not uniquely determined. Any plane containing the straight line will 

trivially be a developable surface containing it as a geodesic. The angle of inclination of the 

cable along the straight section of the dipole will select a particular one of these planes but, 

having been chosen for other reasons, it will not in general have the same angle of inclination 

as that of the rectifying developable containing the bent strip at the end section of the magnet 

where the two sections meet. The bent strip must be twisted to bring it into coincidence 

with the straight strip at this junction. The constant perimeter condition must be violated. 

No method can avoid this violation. Our aim will be to take into account the finiteness of 

the flexural rigidity temporarily assumed infinite, and describe a computationally feasible 

algorithm for determining the configuration of the strip by minimizing the total strain energy 

while satisfying the initial condition that it meet the straight section smoothly. The angle 

of twist of the strip away from the rectifying developable will be assumed small but the 

method, as implemented, and in skilled hands, seems also to work for large twists. 

The minimization will be effected by an iterative procedure, a direct method (see 

Chapter IV, 52 in [5]) from the calculus of variations designed to take advantage of the 

special structure of our particular problem. The procedure contains two steps: 

Step 1: Minimize the strain energy by varying the base curve (within the cylindrical surface) 

while holding the other edge of the strip, the free edge, fixed relative to a certain family 

of coordinate systems attached to the base curve. 
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Step 2: Minimize the strain energy by varying the free edge of the strip while holding the 

base curve fixed. 

These two steps are repeated alternately. In the finite difference approximation de- 

scribed in this paper, with physically justifiable conditions on the strain energy functional, 

the functional will be approximable in a neighborhood of its minimum by a quadratic form. 

We construct an initial guess within this neighborhood by using the special geometric struc- 

ture of our problem. Then the alternating-step iteration procedure, with suboptimization in 

each step in two orthogonal subspaces spanning the entire space of independent variables, will 

converge. An unconstrained optimization technique can be used because the independent 

variables will be chosen so that the constraints are automatically satisfied. 

There is no iteration within Step 1, and the number of iterations within Step 2 can be 

abbreviated early in the procedure when complete convergence within Step 2 is not necessary. 

And because we have an adequate guess at the general shape of the optimal free edge, it can 

be reparameterized in such a way as to greatly decrease the number of independent variables 

whose values are adjusted in Step 2. This splitting of the set of independent variables into 

two disjoint subsets in Steps 1 and 2, and then the reduction of their number in Step 2, is 

done in a physically meaningful way facilitating interactive monitoring and even intervention 

into the convergence process. 

Section 2 of this paper describes Step 1. Section 3 describes the rectifying developable. 

Section 4 describes the necessary twisting of the strip away from developability in Step 2. 

Section 5 describes the implementation of the algorithms in FORTRAN and the results of 

some experience with the method. 

All of the theory of curves and surfaces that we will need was put into its final form 

by the 19th century differential geometers. We will use that theory in an intuitive way, in 

the spirit of 19th century geometry, without going into details of mathematical rigor which 

can be found in standard 20th century books on the subject. Reference [15], and Chapters 

III and VIII in [4] are good introductions. 

2 Base Curves 

Denote the base curve by the vector-valued function z(s) of its arc length measured 

from s = 0 at the end of the straight section where the end winding begins. In the Euler- 

3 



Kirchhoff theory the strain energy density along the strip, per unit of s, is given by 

; (w+)2 + w%(s)” + a,,(,)~) (1) 

where al and az are the flexural rigidities of the strip about axes perpendicular to < and 

tangent and perpendicular to the strip respectively (see page 269 in [7]), and as is the tor- 

sional rigidity of the strip about 2 (see page 270 in [7]). ~(8) and Q(S) are the components 

of curvature of 2 at s perpendicular and tangent to the strip respectively, and ~(8) is the 

twist of the strip about R’ at s. 

The curvature PC(S) of R’ at s equals ,/m. Define ‘p by COSI+Y(S) = 

~(s)/n(s) with the sign of p(s) left indeterminate until Section 4 after more geometry 

has been set up. Then the strain energy density becomes 

; (~lK(S,~ cd P(S) + wb(s)2 + a,+,*) . 

It will be seen in Section 4 that p(s) is th e angle of twist of the strip at s away from 

the rectifying developable. By the constant perimeter condition, ~(3) must be kept small 

for all s so the method assumes that 1p is small and that cot? y, zz 1 (it equals 1 to within 

second order in 9) and that the energy density can be adequately approximated by 

+ wQ(s)2 + .s+,2) s 

(a2 is large so the second term should not be neglected.) 

By equations (5) and (6) on page 284 of [4], 

7 = tcsiniP, (2) 

k = tccos+, (3) 

where 7 and k are the geodesic and normal curvatures of the base curve in the cylindrical 

surface, and @ is the angle at R(a) between the osculating plane to I? and the tangent 

plane to the cylinder, with sign given by the right-hand rule with respect to the direction of 

increasing s. Therefore 

K’ = -ya + k2 (4) 
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and the energy density can be written 

; (ww + alk(s)' t w~(s)~ t .,,(.q) . 

The integral of this function of s between 0 and s flnol is the total strain energy. By Dirichlet’s 

Principle the desired base curve can be obtained by minimizing it as a functional of R’. 

If az and as were equal to zero, the minimizing curve would instead be the equilibrium 

configuration of a thin elastic wire of circular cross section, straight in its unstressed state but 

constrained to lie in the cylindrical surface and subject to torques about axes perpendicular 

to the surface and at the endpoints of the wire only. If the cylindrical surface were a 

flat plane then the normal curvature k would be zero and our problem would just be the 

classical Bernoulli-Euler problem of the “elastica”. Then the solution would be contained in 

standard works on the subject, of which the prize-winning habilitation dissertation of Max 

Born [2] is one of the best. For us the surface is not flat and a2 and as are not zero but the 

curvature of the surface is easily taken into account and the last two terms can be regarded 

as given functions, predetermined in the other step, Step 2 of the overall iterative process. 

In this step, Step 1, we do not get a closed-form solution in terms of elliptic integrals as 

in the classical case, but Born’s method can be modified to give us a solution by only one 

numerical quadrature. 

The curve will be contained entirely within the top half of the cylindrical surface so 

first we set up there a conveniently placed two-dimensional coordinate system. Because the 

surface is developable we can coordinatize it as a (u, u)-plane. Let the u-axis be perpendicular 

and the v-axis be parallel to the rulings of the cylinder. The direction of increasing u is to 

be such that the right-hand rule from u to v indicates a normal to the surface oriented so as 

to point radially away from the axis of the cylinder. The origin of the (u,v)-coordinates is 

to be placed at the beginning of the base curve where it is tangent to the ruling followed by 

the cable along the straight section of the dipole. As arc length s increases from s = 0 at 

its beginning, the base curve proceeds in the direction of increasing ZI, bending over in the 

direction of decreasing u until at its endpoint, s = afin.,, it is perpendicular to the ruling 

along the top of the cylinder at u = --a where a is the half-width of the total 180”-bend made 

by the cable at the end of the dipole before it starts back down the long straight section. By 

symmetry we need only find half of that curve. 

Let #(s) be the angle made with the u-axis by the tangent to the base curve at s. 

5 



Then 

7 = $J’ (6) 

and, from the second fundamental form for the surface (equation (11) on page 290 of [4]) we 

get 

k = k. cos’11, (7) 

by means of equation (12) on page 288 of [4], where k, is the reciprocal of the radius of the 

cylinder. 

The last two terms in expression (5) above are presumed given from Step 2. All of 

the terms except the first can be lumped together into one functional h of $ (containing 

derivatives of $). After dividing through by the constant al, the functional of R to be 

minimized is 

Jyi^“’ ( ~wb,,2 + (w)(4) da 
subject to the initial conditions u(O) = 0, v(0) = 0, $(O) = a/2, and the value of $‘(O), 

which is at our disposal; and also subject to the final conditions U(SfiM1) = --a, V(8fin.l) = b 

and lo(sfi,,t) = r. 

In (s,+,u,v)-space we want to join the two points (0,~/2,0,0) and (SfimlyXy-u,b) 

by a minimizing curve, where a and b are input by the user and stiMl will be determined by 

the terminal condition on $J. 

Define the Lagrangian function 

L = :($J’)’ + h(7)) + X(cos$ -7~‘) + p(sin$ - u’) 

to replace the minimization problem by a minimax problem. Then the five Euler-Lagrange 

equations for the five unknown functions 4, u, IJ, X, and II, of s, are 

$J”-h’($)+Asin$-pcos$ = 0, 

A’ = 0, 

p’ = 0, 

cosli,-u’ = 0, 

sin+-v’ = 0, 
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where h’ is the functional derivative of h (see Ch. IV, 58.1 of [5]). 

The second and third equations show that the Lagrange multipliers X and p are 

constants to be determined by the other conditions to be satisfied. Re-express them in 

terms of two other constants, TO and $0, by X = TO cos & and p = TV sin+,. Then 

$” - h’($) + TO sin(+ - &) = 0. 

By symmetry about the vertical midplane along the axis of the cylinder, $” and h’(+) 

will equal 0 at Sfinal, so $0 must equal either 0 or r. This choice only changes the sign of 

~0, so it can be absorbed into that parameter and we can arbitrarily choose +o = r. 

To get a first integral of the first of the Euler-Lagrange differential equations, multiply 

both sides by $’ (as in the classical solution to the equation of motion of a pendulum, page 

115 in [7], which is closely related to our own problem): 

V4’ = h’($)$ + fg sin($)#. 

Then, by integration, 

; (g(s) - ?f(O)‘) = p+q~‘ds - [To cos(~)]~ = H(3) - To cos(~(s)). 

Therefore $’ = f(#) SC 2(H(a) -QCOS$(~)) ++(O)*. Now we can solve for s as a 

function of $ by one numerical quadrature: 

* W 
s = */a f(#)’ /- 

where the monotonicity of $, from Step 2, permits us to invert it, s = SS+,~(+), and express 

H as a known function of $. 

To get u and 21, remember that dx/dli, = (d+/ds)(ds/d+) = cos$/f($), and then 

integrate the fourth and fifth Euler-Lagrange equations numerically: 

I 
+ cos* 

u = r/z f($) -4 

and 
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/ 
+ s;nddll. 

v = -/a f(#) 
The u(r) and u(r) thus obtained are functions of two constants of integration, TO 

and $‘(O). We want to find the values of these two parameters which make u(w) = --a 

and u(w) = b. There is a large and sophisticated literature on the solution of N nonlinear 

equations in N unknowns but in our case N is only equal to 2 so we employ an unsophisticated 

algorithm, easy to code, guaranteed to work, and fast enough for interactive use: Vary T,, by 

regula f&a (see page 248 in 1131) until u(r) = - a, and surround this inner loop on ro by an 

outer loop in which $‘(O) is varied, also by regula f&a, until u(r) = b. 

3 The Rectifying Developable 

A developable surface is the envelope of a one-parameter family of planes. If the 

bent rectangular strip is contained in a developable surface then it is the union of a family 

of straight line segments in one-to-one correspondence with the value of the parameter s for 

which each segment contains the corresponding point RG) on the base curve. These segments 

are the points of intersection of the enveloping planes with the strip. They are the rulings of 

the developable surface (see page 314, 3142 of [4]). If no two of the segments intersect then 

each point in the strip lies on one and only one ruling. The points are equally distributed 

along the rulings at the same distances from the base curve that they were distributed from 

the edge of the planar rectangle along the straight line segments they formed there so, given 

the base curve, the position of the strip in space wilI be completely determined once we have 

found its rulings. 

In the case of the rectifying developable the rulings are known (see top of page 47 in 

[IS]) to be parallel to the Darboux vector 

(equation (5) on page 93 of [4]). r is the torsion and n the curvature of the curve, and T’ 
d 

and B are two of the three mutually orthogonal vectors of unit length making up the moving 

trihedral associated with any smooth curve in space: 

T’ is tangent to the curve in the direction of increasing arc length s, 
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$ points in the direction of the principal normal to the curve, and, 

B’ = T’ x z is the binormal to the curve. 

These vectors are related to each other by the famous Frenet Formulas of classical 

differential geometry 

dfi 
-= 
ds 

-nF + TIT, 

(equations (4) on page 93 of [4]), and they can all be constructed from values of variables 

available during construction of the base curve. 

The Frenet vectors form the basis for a family of three-dimensional coordinate systems 

attached to the cables in a natural and useful way. They also enable us to construct a two- 

dimensional coordinate system intrinsic in the strip so that the coordinates of points iI: the 

strip are unchanged by the bending transformation. Then it is easy to find the point in 

the planar strip that corresponds to each point in the bent strip. We know not only the 

configuration of the strip in space but also the length-preserving transformation (isometry) 

that put it there. Later, when the strip is twisted to match the condition at s = 0, or 

otherwise deformed nonisometrically to incorporate empirical information obtained from 

coil winding experience, we can still keep track of each point and therefore the local strains. 

There is an additional need for the Frenet basis in the computer program where more 

detail is put into the internal geometry of the cables. They are given a trapezoidal cross 

section, not the zero thickness of the strip, and they are packed together tightly into groups 

with no interstices inside each group anywhere along the winding. The resulting structure 

is too intricate to be specified in one fixed coordinate system. 

To get T’in a Cartesian coordinate system (z,y,t) with z-axis parallel to the axis of 

the cylinder, let C be the angle made with the z-axis, measured towards the y-axis, of the 

projection of z(s) upon the (z, y)-plane. Then 

T’ = (- cos+sin C,cos$ cos [,sin?i)). 
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To get the principal normal @, note that the geodesic curvature (see equation (2) 

above) is 7 = d$(s)/ds where ds = d$/f($), so 7 = f(+). The normal curvature (see 

equation (3)) is k = +?. dn’/ds by (8) on page 284 of [4] where n’ is the unit normal to the 

cylinder pointing away from its axis.The +-sign occurs here because n’ is on the opposite 

side of the surface from I?. The second fundamental form (equation (11) on page 290 of [4]) 

is simplified for a cylinder, 

because dfi/du, the derivative along a ruling of the cylinder, is equal to 0’. Therefore 

dii dii 

- = kccos% da 

and, as before, k = k.cos*$, where l/k. is the radius of the cylinder. So we know the 

curvature n = Jm by equations (2) and (3). Therefore we know the angle 4 between 

I? and n’ (see figure 130 on page 283 of [4]) b ecause R - 4 = arcsin(7/n) by equation (2) 

where we have chosen that branch of arcsin corresponding again to the fact that ii and ti 

are on opposite sides of the surface. So we know $. 

We can get g directly from its definition, B’ = T’ x I?. 

Finally, to get 6’ = T? + al? we need only find T. But by equation (4) on page 284 

of [4], r = t - #, where the geodesic torsion t = -(Z x 5?) . dri/ds by equation (8) on that 

page. So t = -kc cos $J COS($J + r/2) = k, cos 11, sin $. To finish the evaluation of T we find 4 

by performing the differentiation 

qs’ = -&-q5) 

d = - - arcsin 1 
ds n 

= k’r - k-i’ 
r2 + kz ’ 

where 

7’ = V = h’($) + TV sin+, 
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and 

k’ = -2k,-y cm # sin $I. 

So the values of all the variables determining $‘, and hence T, and hence the Darboux vector 

and the developable strip, are known. 

4 Twisting the Rectifying Developable 

The base curve determines the rectifying developable. Hence it determines the in- 

clination of the strip at s = 0 where the conductor leaves the long straight section of the 

dipole and enters the bend at its end. But along the straight section the strip is modeled 

by a planar rectangle whose inclination may be different from that determined by the base 

curve. It may be necessary to twist the developable strip in order to make a smooth transi- 

tion with the straight section even though developability will then be lost. Early experience 

encourages us to believe that for SSC dipole magnets this can be done with an acceptably 

small increase in strain energy. 

To show that the rectifying developable at s = 0 must be perpendicular to the surface 

of the cylinder, we show that the osculating plane of the base curve must be tangent to the 

cylinder there. By equation (3) above it will be sufficient to prove that k(a)/&(s) + 0 

as s 1 0. Therefore by equations (6), (7), and (4) it will be sufficient to prove that 

cos* 4/d- -+ 0. But this expression is dominated by sins E/E’ where E(S) = $(8)-a/2. 

We keep E smooth so that it has an expansion of the form E(S) = ks”+ k+rP+’ +. . . where, 

by the initial condition $(O) = n/2 on $, n > 0. Therefore the numerator of the dominating 

expression is of order 2n in s whereas its denominator is only of order n - 1, so it must go 

to zero, completing the proof that the rectifying developable is perpendicular to the cylinder 

at .9 = 0. 

In general@(O) # 0, so K(O) # 0 and, because r(O) = 0 by continuity from r(s) = 0 for 

.s < 0 along the straight section, the ruling of the rectifying developable will, by equation (8), 

exist and be perpendicular to the cylinder at s = 0. By symmetry, r(sfiml) = 0, so the ruling 

will be perpendicular to the base curve at s = Sfinol. In the twisting operation, the first 

ruling is rotated about the base curve until the twisted strip joins smoothly with the strip 

as given along the straight section of the dipole. The twist is distributed smoothly along the 

interval 0 5 s 5 stiMl until it reaches the second ruling, which is left fixed, although the 

11 



computer program also provides an opportunity to twist the second ruling, for example to 

avoid excessive curvature of the free edge of the strip at the nose of the winding. 

The angle of twist of the strip away from the rectifying developable is the v(s) defined 

in Section 2 above. We now define its sign to be positive if the direction of rotation through 

an acute angle from N(s) to the vector radius of curvature corresponding to n,(a) is right- 

handed about the tangent to I? at s. Otherwise take the sign of p(s) to be negative. 

The Frenet vector s(s) is perpendicular to the rectifying developable at i(s). f(s) 

and g(s) are tangent to it there. If we rotate this triple of vectors about F(S), 

P)(s) = f(s), 

Gf9)(s) = + cosp(8)J?(s) + sin~(s)Z(s), 

i(vp’(s) = - sin(o(s)G(s) + cos~(s)&s), 

then we get a new triple of vectors such that <t+‘)(s) is perpendicular to, and ?(+‘)(a) and 

L?(q)(s) are tangent to, the twisted strip at g(s). 

The strip is twisted by rotating its rulings about T’. The point X$(s) + g(s) on the 

ruling through z(s) is rotated to the point Xsf+‘l(s) + i(s) on the corresponding ruling of 

the twisted strip where i(s) is a Darboux vector (8) and a’)(s) = ~(s)?(s) + n(s)zt”l(s). 

From the Frenet Formulas, 

#p(8) = dy) . $(vI(,) 

= K(S)K+) . dw(8) 

= s(s) cos p(s) 

/&$) = dB;;(s) . &qs) 

= lsincp(s)n(s)l 

+q,) = /y;(d) . j$‘)(s) 

= T(S) + v’(s). 
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For Step 2, insert these values into expression (1) and minimize the integral as in 

Step 1, but this time as a functional of (o with R’ fixed. 

The science of numerical optimization has reached a level of development where it 

can do the minimization we need. The most reliable algorithms are those for unconstrained 

independent variables. Fortunately our independent variables are unconstrained. Quasi- 

Newton methods (see 510.7 of [13]) h ave a good reputation in this domain. They possess 

good convergence properties in general and in our case have the particular advantage that 

upon each entry into Step 2 the approximation to the inverse Hessian can be restarted at 

the point where it was left upon the last exit from Step 2. To the extent that the functional 

we have chosen to minimize does represent the physical problem, a quasi-Newton method 

can solve the problem. 

5 Application 

The method described above has been implemented in the computer program BEND, 

currently being used by a design team headed by Rodger Bossert at Fermi National Labora- 

tory. Some applications were discussed at the Breckenridge Workshop, August 14-24, 1989 

[31. 

BEND is written in strictly standard ANSI FORTRAN 77, liberslly supplied with 

comment cards containing very detailed references to the mathematical literature. It inter- 

faces with Structural Dynamics Research Corporation (SDRC) drafting system I-DEAS, and 

the Manufacturing and Consulting Services (MCS) numerically-controlled machining system 

ANVIL-5000, by means of files designed by Greg Lee. His program AutoEnd [9] integrates 

the software together into one system. In I-DEAS the files are read by a program written 

in the I-DEAS Language [6] by Leo A. Thiel of SDRC. In ANVIL the files are read by a 

program written in FORTRAN and the ANVIL language GRAPL [I] by Bob Andree. 

Superconducting cables have complicated elastic properties about which much is 

known but much more is not. Therefore the loop from Step 2 back to Step 1 at present con- 

tains a knowledgeable human operator-knowledgeable in the art of cable winding though 

not necessarily in the mechanics of running the program. The prompts have proven to be 

largely self-explanatory. BEND needs interactive input based on cable-winding expertise. 

The theory with which its design was started has served primarily as a strong framework for 
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the support of pragmatic adaptations to reality. 

The classical, quadratic, total strain energy given by expression (1) above is based on 

a simple linear Hooke’s Law. It can be improved upon as a figure of merit. More appropriate 

than a quadratic norm is a p-norm, one in which the p’h root of the weighted integral of the 

p = 2 power of the flexure and torsion is replaced by an integral with p >> 2. Then it is 

an approximation to the supremum norm p = co which expresses on the one hand our lack 

of concern about the strain of the cable below its damage threshold and, on the other, our 

primary concern that the threshold not be exceeded. A value p < 03 is preferred because 

then the norm is a differentiable function of the cable configuration for minimization. It is 

not differentiable for p = 00. 

The cable has a built-in tendency to twist about T‘ more readily in one direction than 

another, inducing a slight asymmetry about the vertical midplane of a dipole that may be 

noticeable at the nose of the coil. A norm can not conveniently express this tendency. Instead 

the asymmetry is put into the strip by an ad hoc, slightly skewed, affine transformation of 

the data just before output from BEND. 

The stress-strain relations should be anisotropic and nonlinear but we do not have 

the experimental data. However we do have good estimates of the flexure and torsion limits 

beyond which there is danger of damage, so that is the criterion monitored most closely. 

The curvature of the free edge of the strip at the nose of the winding sometimes 

becomes dangerously large. The rulings of the rectifying developable may tend towards a 

common focus there. The Euler-Kirchhoff model assumes that the width of the strip is too 

small for this to happen. When it does, the program provides for another ad hoc remedy in 

which the curvature is decreased while attempting to minimize the accompanying increase 

in deviation from developability. 

The most serious complication is caused by the fact that the cable is not a strip of 

zero thickness. Its transverse cross section is not even rectangular. It is slightly trapezoidal 

(“keystoning”) with slightly rounded corners. These shapes must be held precisely against 

each other and against the cylindrical bore in groups of up to ten or fifteen cables. As 

they twist their way around the end of the magnet, the relative positions of the cable cross 

sections shift within the group cross section, causing the latter to vary. This varying cross 

section is determined by a lengthy program segment fulI of high school trigonometry and 

undergraduate vector analysis. In the process there occurs a deterioration of our attempt to 
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be mathematically precise about minimizing strain. The zero-thickness strip produced by 

the mathematical theory is used only as a guide for the group of positive-thickness cables. 

The strip is placed between two cables somewhere in the group, interactively by the operator. 

The rest of the cables are packed alongside. The farther they are from the guiding strip the 

farther they are outside the domain of relevance of the analysis that optimized the strip. 

Selected information about strains in all of the cables is presented to the operator to provide 

assistance in the trial-and-error process of optimal placement of the strip in the group. 

The original assumption of small ‘p has been violated in some applications but the re- 

sulting cable configuration has looked reasonable. Damaging flexure and torsion was avoided 

but we do not know how close the strain energy was to its minimum. 

The separation of the iteration into two steps, on two disjoint subsets of the indepen- 

dent variables, has an advantage of allowing a natural insertion point for expertise that has 

not yet been formalized. We still expect to automate the procedure after more experience 

has been gained. 

Fifty points along the base curve were quite enough to give an accurate numerical 

solution of the Euler-Lagrange equation in Step 1 and a smooth curve for the CADCAM 

programs to work on. The equal spacing in +, rather than in arc length s, gave a better 

approximation in regions of large curvature where it is needed. 

Numerical integration of the equation with fifty points takes a negligible amount of 

CPU time on a VAX 8650. Quasi-Newton with fifty points in Step 2 is feasible but the 

computation time is not negligible so ‘p has been reparameterized to depend on only six 

parameters, physically meaningful for interactive use. The linear term in a perturbation 

expansion about ‘p = 0 of the solution of the nonlinear equations for the twist of a planar 

strip, is a cubic spline. We assume that the solution to our problem can be represented with 

sufficient accuracy by the six-parameter family of deformations of such a spline. 

Financial and professional support for this work has come from Fermilab where I have 

been on loan from Argonne National Laboratory. I depend on Bossert’s group for information 

about the mechanics of real coil winding. I am also indebted to the management of my home 

project, the Advanced Photon Source at Argonne, for a far-seeing attitude towards research 

and development not directly relevant to their immediate needs. 
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