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QCD-based analysis of the low energy electroweak properties of light pseudo-
scalars is studied using an approximate bilocal bosonization technique. Particular 
attention is given to the problem of maintaining electroweak gauge invariance, 
and a bilocal Wilson-line technique is introduced to address this problem. The 
decay constants / \- and Fr and the JT* charge radius are discussed in detail. 
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I. INTRODUCTION 

Bilocal fields 1 _ M have been used in recent years to address the difficult problem 
of extracting quantitative low-energy hadron properties from the fundamental QCD 
dynamics of quarks and gluons. A broad aim of this field is to bridge analytically 
the gulf which separates QCD from the low-energy phenomenological principles of 
the 1960's and provide detailed analysis of the spontaneous breaking of the (approx­
imate) chiral symmetry. Simplified models such as Nambu-Jona-Lasinio four-Fermi 
interaction 1 7 - 1 9 (NJL) and cloudy bag model TO exhibit some of the qualitative low-
energy features of the strong interaction, but have only a loose connection with QCD. 
Analytical models based on systematic truncations of QCD can claim to be closer to 
the exact QCD dynamics than the models discussed above. 

Such a model has been developed by Cahill, Roberts and Praschifka 6 _ M using an 
auxiliary field approach U bilocal bosonization. They show how QCD may be formally 
transformed from the quark-gluon description into a nonlocal meson-diquark form 
and subsequently partially re-summed into a theory of mesons and baryons. With 
the aid of a simplifying truncation of QCD called the Global Color Model (GCM), 
they are able to discuss in detail the spontaneous breaking of chiral symmetry and 
the almost-Nambu-Goldstone (NG) bosons (w, K). Lowest order calculations indicate 
that PCAC results and GMOR mass relations 6 - 8 - 1 4 1 5 emerge naturally in the GCM. 

It is this successful detailed treatment of the light NG bosons which we wish to 
exploit here to examine some electroweak properties of pions and kaons. The GCM is 
a non-local model, which complicates the calculation of electroweak effects compared 
with local NJL models. After reviewing the definition of the GCM in the next section, 
we will discuss two methods by which electroweak (EW) effects may be calculated: 
one EW gauge covariant but computationally difficult; the other computationally 
simpler but non-EW gauge covariant. Both methods will be employed to investigate 
in particular the decay constants Fr and FK and the i: charge radius. 

II. BILOCAL BOSONIZATION AND THE GCM 

Cahill, Roberts and Praschifka start with the generating functional of Euclidean 
QCD, which with quark sources 77,77 may be w r i t t e n " - 1 3 

Z M ] = eWl V'^^M J DqDqc-^+Iw (1) 
where 

S \q,q] = J q(P + m)q 

+ J fxfy^Diix -y;M*h*jq(*)i(iri^q(y) (2) 
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and 

Wi\j\=£ /rf,x,...rf«xmi ^: ,

I::::(x,...xn;on^:*(i.) (3) 
D°| °" is the full (reducible) n-point function for pure QCD (without quarks), m is 
the quark current mass matrix and £ is the gauge parameter. 

If the gauge group were U(l), D,u, would be the free photon propagator and we 
would have W\ = 0, since all the pure QED (n > 2)-point functions are zero. While 
Wi / 0 for QCD as a result of gluon-gluon coupling, the truncation of (1) by setting 
VV, = 0 (and consequently S[<?,<7] becoming the full action) is not as severe as neglect­
ing all gluon-gluon interactions since such effects are already present in the confining 
pure QCD 2-point function D°*. Fig. 1 shows examples of three qq scattering dia­
grams which are part of the perturbation expansion of QCD. Fig. 1(c) is excluded by 
setting Wx = 0, whereas 1(a) and 1(b) are still included. This can be compared with 
the 'quenched approximation' 2 2 popular in lattice QCD which would instead exclude 
all diagrams containing quark loops, such as 1(b). It would be controversial to claim 
that truncating to W\ = 0 is a true approximation of QCD (valid to a known accu­
racy in well-defined physical circumstances), and such a truncation may be criticized 
on the basis that the local S£/(3) color symmetry is reduced to global 5(/(3). How­
ever, at the very least S[q, q\ is an interesting cousin of QCD which retains many of 
the important properties of the full gauge-invariant theory: dynamical quarks, global 
color, confinement (at least for mesons), Lorentz invariance (or 50(4) invariance in 
Euclidean space) and chiral symmetry in the limit m —» 0. We will henceforth refer 
to the system whose full action is given by 5 as the Global Color Model (GCM). For 
the sake of completeness we present here a summary of the steps by which Cahill 
et.al. transform the GCM into a nonlocal theory of mesons and diquarks. 

Since the form of the full pure QCD 2-point function is known only at high energies, 
which is insufficient for low-energy hadron properties, Cahill et.a!. use the ansatz 

92Da> ~ V) = K^ahD(x - y); D(x - y) = / J ^ ^ e * • < * - » > (4) 

containing in the functional form of the running coupling ct(q2) both strong peaking 
at low q2 due to confinement and at high q2 the standard logarithmic form derived 
from the renormalization group equations". The Euclidean GCM action may now 
be written 

S= J q(fl+m)q 
1 r A" A° 

+ oJ D^x ~ y)9(x)7wy«/(^)<7lJ')7>i y*7(y) ( 5 ) 
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The bilocal four quark term is then manipulated into a form containing bilocal 
arrangements appropriate for mesons {q(x)Mq{y)) and diquarks (qT(x)Mq(y)) by-
means of the following Fierz transformations: 

Dirac: 

Color: 

Flavor: 

(7.M7„)<« = K^Kl = (K'C')rt(CTK') 

where {Ka} = {l,t75,-7=7M>-/=7,.7s} 

and C is the charge conjugation matrix 
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for 2 or 3 flavors (6) 

This Fierz transformation is unique if one requires the non-existence of objects sucl as 
color octet mesons or color sextet diquarks which are believed not to be dynamically 
favoured. The transformed action is then 

S[q,q] = Jq(? + m)q 

-I lq(*)Kq(y)D(x-y)q(y)Me

m<i(z) 
JIV 

L 
llyO 

l-q(x)M^CTqT(y)D(x - y)qT(y)CTM9

nq(x) (7) 
liy O 

where \l*m = %KAF° and M* = yJlKA(„Fc. 
The quartir. quark terms are then converted into quadratic form by introducing 

bilocal fields B8(x, y), V°(x, y) and T>*(x, y). For example, the meson-channel identity 
is 

crp { - J l-q(x)U'mq(y)D(x - y)q(y)M°mq(x)} 

= Aj DBe.xp{- j ^ -^L—^Be(x,y)B$(y.r) + 7 ( r ) ^ ( y ) B ' ( * ^ ) } (8) 

A is an unimportant constant and the meson bilocal field is defined to be Hcrmitian 
(B"{x,y)' = Be(y,x)) since the anti-Hermitian part is non-interacting. The quarks 
may now be integrated out and the system expressed as a path integral over B, T> 
and V. The action is then expanded about a stationary point obeying 
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The non-trivial stationary point" is assumed to be dynamically preferred to the trivial 
one B = T> = T> = 0 since the former spontaneously breaks chiral symmetry in the 
chiral limit. The non-trivial solution is parametrized by 

G-^x.y) = (0 + mU + l-MlBi(x -y) = jrfV ^ G " ' * ? ) 

where G _ , ( 9 ) = i ^A(q2) + m + B{q7) 

(10) 

A(q2) and B(q2) (plotted in Fig. 2) are independent of m for small m and will be 
further discussed below. 

The quantum fluctuations of B and V are interpreted as mesons and diquarks. Since 
in this paper we are interested only in the pseudoscalar NG bosons, we will assume 
that the diquark fluctuations may be ignored and set X> = f> = 0. The meson action 
may then be written, after performing the redefinition B —* B + Bd 

SIBH-JVMG-' + IJO) ' ) 

The full trace over spacetime and internal indices is denoted Tr. That G plays the 
role of a nonperturbative quark propagator may be seen by reconverting the TT In 
with effective quark fields Q via 

exp [Tr ln(G-> + l-M8

mB6)} = J DQDQexp [-QiC* + l-M9

mBe)Q) (12) 

in an obvious matrix notation. It is a consequence of expanding B6 about the station­
ary point that terms linear in B6 (tadpoles) arising from the expansion of the Tr Ln 
are exactly cancelled by the linear part of the second term in equation (11). 

With the use of a complete set of structure functions T6

A the bilocal field may then 
be expressed in terms of local fields <j>8

A carrying meson quantum numbers : 

*W) = £rVx-y,^)^(^) (13) 

The VA are fixed by requiring diagonalization of the induced kinetic and mass terms 
for the <f>°A contained within S. In momentum space 

5 



S«> = *****/*P*AIP)+'A(-P)XW) ( 1 4 ) 

The eigenvalues of the diagonalization are A^(p2). On mass shell this process is equiv­
alent to solving the Bcthe-Salpetcr equation for the bound state structure functions 
r in the ladder approximation 2 I The meson mass M is given by the zeros (if any) 
of A(—Ai2) = 0, since if A has such a zero we may then write 

A(P2) = / ( P 2 ) V + A4 2) (15) 

In our analysis we will absorb the normalization constant / by a momentum depen­
dent rescaling of the meson field 

<f>(p) - t(p)f(p2) (16) 

which not only furnishes the fields <f> with the appropriate dimensionality but also 
produces a point-like kinetic term so that all the effects of compositeness are manifest 
in the interaction vertices. 

For the NG family, ( for which A/£ ~ 1751"') the diagonalization in the chiral limit 
yields M = 0 and 

r . = r , ( x -y) = jd,

qe">iz-^B(q2) (17) 

on the mass shell p 2 = 0 with B(q2) defined in (10). The kinetic and mass terms 
involved in the diagonalization are schematically illustrated in Fig. 3. 3(a) comes 
from the second term of (11) and being a contact term contributes only to the mass. 
The quark propagator is drawn in this diagram since 

— - 1 - = trG(T,y) ( IS) 
2D(x-y) 

where tr is a trace over internal indices only. Fig. 3(b) is the quadratic term in the 
expansion of the Tr In via 

Tr In {a~l + x) = Tr In n _ 1 + Tr (ax)- 7Tr (axax) + ... (10) 

and contributes both mass and kinetic terms. The massless NG character of the pseu-
doscalar family emerges from an exact cancellation between the mass contributions 
from Figs. 3(a) and 3(b), the cancellation depending on the result (17). 

By assuming that the quark current mass m constitutes a small perturbation about 
the chiral limit, and that (17) holds away from p2 = 0, Cahill et.al. reproduce 6 the 
PCAC formula 
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Ml = j^(qq) (20) 

where m is an Sif(3)-based current mass average for the particular meson. The 
GMOR mass relations also emerge 1 5 . 

Although a full treatment of the NG bosons would involve finding explicitly the full 
form of TI(p,q), in the absence of such an effort we will also assume in this paper 
that 

r , ( p , f ) = Btf) up to p 2 = -M2

K (21) 

and hence for $ such that Af̂  ~ if^T1 make the following substitution in equa­
tion (11): 

l-M'mB'{x,y) = i^r'Bix - y ) * ' ( ^ ) (22) 

Consistent with (22) is the assumption that the form of f*(p2) may be obtained by 
computing the p 2 behaviour of Fig. 3(b). 

In ref. M an alternative definition was made for the NG bosons using the expansion 

l-Me

mB9 = B(x - *)[«p{*fc*'(x)T'} - 1] (23) 

which keeps the chiral symmetry manifest and leads to an effective non-linear chiral 
lagrangian in terms of the field e x p | i j r / ( i ) r / | at low energies. However since we 
will not be concerning ourselves here with EW process^ involving more than two NG 
bosons, our results are easier to obtain with the use of the simpler substitution (22). In 
the processes we consider the low energy electroweflk properties of the pion will follow 
exactly the predictions of chiral symmetry. The use of (23) enabling direct connect ion 
with the phenomenology of chiral perturbation theory would be an interesting subject 
of further study. 

In this paper we will consider only tree level process in the meson sector. The 
composite meson propagators given by (14) of course suffer corrections in the effec­
tive action (obtained by introducing meson and diquark sources and performing a 
Legendre transformation) due to meson and diquark loops. Examples of such cor­
rections to the effective meson propagator {4>6A.{^L)4>6A'{L^L)) a r e shown in Fig. 4. 
The loop corrections affect the effective theory not only by necessitating a renor-
malization of the fields <f>, but also by introducing both off-diagonal elements in the 
propagator and <f> tadpoles, shown in Fig. 5. The off-diagonal corrections reflect the 
difference between the ladder approximation to the Bethe-Salpeter structure func­
tions and the full effective (QQ4>) vertex, and the tadpoles reflect the inexact, nature 
of the ladder approximation vacuum characterised by B6

cl{x - y). Since the structure 

7 



functions T provide short-distance cutoffs at the compositeness scale, these effects are 
finite but may constitute a substantial correction to the tree level results. This is a 
long-standing problem with low-energy phenomenoiogical actions and in this model 
accurate estimation of such corrections is a formidable task, requiring even at one 
loop level a complete knowledge of the meson and diquark (ladder approximation) 
structure functions. 

A and B satisfy integral equations which are related to the Schwinger-Dyson equa­
tion for the quark propagator G in the ladder approximation 2 , f i . A careful analysis 
shows however that the equations differ from the ladder approximation by a factor 
which varies depending on the particular color Fierz transformation used 2 1, a differ­
ence which only concerns effects in the diquark sector at tree level. This phenomenon 
has recently been resolved by Lutz and Praschifka23. 

In this paper we use the numerical solution for A and B11,12, plotted in Fig. 2. These 
solutions were scaled essentially so as to produce the correct chiral-invariant mass 
which is the dominant contibution to all hadrons except the NG bosons. The functions 
.4 and B arc obtained from the stationary solutions of a Euclidean action, and we make 
the standard assumption that the effective meson actions which we derive from the 
theory may be rotated back into Minkowski space In the current context, singularities 
have been shown to exist in the effective Euclidean quark propagator which might 
prevent the Wick rotation of the effective meson theory. I 6 This is a situation which 
also arises in similar analyses of QED 2*. The issue of whether or not the Wick 
rotation can be justified in a non-perturbative analysis is in general unresolved and 
also of course afTects the validity of lattice computations. 

III. INCLUSION OF ELECTROWEAK EFFECTS 

A. Formalism 

The inclusion of electroweak fields, generically labelled //„, modifies (5) at. low 
energies to 

*\h D(x ~ y ^ T ^ " T q { z ) ^ y ) l " Y q { y ) + 5* , B 1 / / 1 ' ( 2 1 ) 

where //„ is in general a flavor matrix and the subscript ' / / indicates a left-handed 
projection operator Pi, = i ( l —75) where appropriate. Since we are only interested 
in effects well below the energy level of EW spontaneous symmetry breaking, in the 
case of the weak interactions the IV-boson 'kinetic' term is approximated by 

Skm\W] = Jm2

wW*W- (25) 
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which immediately integrates in the path integral to produce the Fermi current-
current interaction. Rather than use the equivalent Fermi form, we present the low 
energy theory with the use of the W* (or equivalently the isovector W^) since the 
gauge-invariant interaction term helps to clarify the discussion of current conservation 
issues in the following sections. 

B. Bare vertex method 

The most straightforward way to carry out the bosonization procedure in the pres­
ence of H„ is to simply perform the identical steps already described for //„ = 0. 
Explicitly, we perform the same Fierz transformation as given in (6) and expand 
about 

^ | = 0 at H„ = 0 (26) 

which yields after integrating out the quarks 

5(5, H] = -Tr /n(G-' + ig„ ftL + \M'„B*) 

+ Ji9 2 D ( l - y ) { B ' + B ' d ) x > { B ' + B>a)*z + Sk*{H] ( 2 7 ) 

Expansion of the Tr In produces EW interactions with the mesons <p where the 
HQQ vertex is given by its bare value. Momentum space details of diagrams relevant 
to JT4 charge and charge radius, x* decay constant and anomalous x° —• 77 decay are 
shown in Fig. 6. Use of the bare vertices (in different models) has been considered 
recently by McKay and Munczek * and also Gogokhiac et. a l s . 

Ideally one would like the tree-level interaction terms to reflect known symmetry-
dependent low-energy properties, in particular 

• the charge of the jr* is exactly ±c: 

• in the chiral limit F-, = fT, where F, is the pion decay constant, and / - is the 
normalization constant of the pion field, as predicted by the gauged nonlinear 
a -model; 

• in the chiral limit the x°77 term has the form and strength predicted by chiral 
symmetry quantum consistency arguments 2 8 . 

At lowest order in the EW coupling strength gn, all these properties are essentially 
a result of the global symmetries SU(N)A 0 SU(N)v ® fl(i)v which give rise to 
electromagnetic and weak current conservation, and will only remain manifest at. tree 
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level if the QQHm vertices in Fig. 6 obey the appropriate Ward Identities. The bare 
vertices fail this test as a result of the momentum dependence of the functions A(q2) 
and B(q7) appearing in the nonperturbativc effective quark propagator G(q). F->r 
example, to guarantee the correct pion charge from diagram 6(b) would require the 
replacement of 7„ with a vertex Vm(q, k) such that 

Vm{q,Q) = -idmG-l{q) (28) 

where /t„ is the momentum carried by the photon. Such a problem does not appear 
in constituent quark models or the point-like Nambu-Jona-Lasinio models which use 
effective quark propagators of the form l / ( i ^+Af) with M the (constant) constituent 
mass. 

While the bare vertex method is thus flawed in failing the Ward identities at each 
order in the 'meson loop' expansion, it has the advantage of computational simplicity 
and moreover it is important to find out the size of the discrepancy which it produces 
in the relevant processes. Before developing an improved bosonization, we provide in 
what follows the ultra-low energy limit of the processes shewn in Fig. 6. 

1. TC —W interaction 

In position-space the x — W coupling is given by 

SsW = cos$etr J ^ K'{^±y)ilsT'B^GTZi^lllPLrJW^z)Gz, (29) 

where 0C is the Cabbibo angle and we have used an index notation for compactness. 
The momentum space form is ( r"ig. 6(a) ) 

S,w=c<*0ejd,pJ,q*'ip)W;{-p) 

tr to*r'f^yC(9 - \P)^PLrJG(q + \p)} (:«»') 

In (29). BR(x,y) is the position space equivalent cf the rescal«"d pion structure func­
tion B(q7)/fx(p2) in momentum space. 

To lowest order in p„ this reduces to 

where 
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lrw = ^ j H ds sB(s)[2s(X'Y - XV) + AXY] (32) 

A' and V* are defined in terms of A and B via G{q) = —i jX(q2) + Y(q2). 
The pion normalization is obtained from the process shown in Fig. 3 which gives 

S „ = | / < J V V r { i 7 s T ' * ' ( - p ) i ? ( , 2 ) G ( , - tp) 

i 7 5 r-'x- ' (p)B(, 2 )G( 9 + |p)} + A . (33) 

where A m is the cancelling mass contribution from Fig. 3(a). Taking the low p 2 limit, 
/ . (0) = fr is given by 

1 1 = l o ^ JT * 5 f i 2 ( 5 ) l A"+5*x'2+5V"2 

-2sXX' - s2XX" - 2YY' - sYY"] (V.) 

with the chirai limit result fw — 70 MeV. It is not the comparison of fx or Fx with 
the experimental value of 93 Mev which is important to the current discussion, rather 
the desired relation 

F. = / , » / / , = / , . (35) 

The formula (32) gives Fw = 0.49/*. Thus in this case the bare vertex method gives 
a large discrepancy at zeroth order. It will be shown later that the discrepancy of 
a factor of approximately 2 is related to the fact that A(q2) is slowly varying and 
approximately equal to 2 at low q2. 

2. ir-K-f interaction 

Yi«. 6(b) yields 

Sr-A = - fd*P?k?q 

tr { ll^{p)r'!pflG(q - \p)n^J{-p - k)rJ 

JAP2) 

x "Ito+W^Gi + i + k)UQlHA„{k)G{q + iP)} (36) 
JAP2) 

" ( V ! ) -Q — I 3 , I is the quark charge matrix 

To lowest order in p and k this reduces to 

S„A = h'e.Jfpd'k xPu<u\l{p)~J{-p - k)AJk) 

= —iKr. I A„(du-'' - '()„*'*) (37) 
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where x = (TT1 — iir2)/i/2 and 

K=id*/* r d s d B * x $ s x 2 +**> . w 
K = 0.78 instead of the integral-charge value 1. If we use instead of the bare vertex 
the Ward-identity-preserving vertex 

iQl» -» Qd,G~l(q) (39) 

then (37) becomes at k = 0 

S„A = & / WpPk tIJ\\p)*J{-p- k)A»(k)T„(p,0) (40) 
Jir •* 

where, using Gdy.G~xG — —d^G, 

T„(p, 0) = t J ?qB{q2)HTD{lsG{q - \p)l^G{q + |p)} 

= i£- [ d*qB(q2)2trD{lsG(q - ±p)<y5G(q + ip)} 
dp 

... -i^[^+°(/)]-> < 4 I > 
The / ' factors cancel and K = 1 results. In the next section a gauge covariant 
bosonizetion will be developed which produces both this result and F x = fv. 

3. 7T77 interaction 

As shown in Fig. 6(c) this interaction, which is responsible for the anomalous 
7 1 - 0 —* 77 decay is given by 

SrAA = - (d*ld4md4q tr{G(q - i / ^ rV ' ( - / - m ) ^ r 
J JAP) 

G(q + \m + il)icQ%A„(m)G{q - $m + \l)u:Q^vAv{l)} . (12) 

This reduces in lowest order of / and in to 

r- • 2 'if A A [ ,4 O r r 

where TT0 = TT ; F ^ = t^apFap 
f°° 

id / M 4 = / rf^(a)(yX2 + sY2X' - aY'X7) (43) 
Jo 

anc 

with the value / = 0.068. Wess and Zumino have argued that / = 1/6 ~ 0.17 
(agreeing well with experiment) on the basis S*AA must be part of a gauged anomalous 
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Wess-Zumino (WZ) term 2 8 . In the absence of EW fields, the WZ term with the 
appropriate strength has also been shown to emerge from either parametrization (22) 
or (23) in the GCM 8 - 1 4 . The discrepancy using the bare vertex method may be 
approximately understood in terms of an accumulation of the charge discrepancy for 
the photon vertices: 

0068 * ( ^ ) 2 = 0 .11. (44) 

C. Wilson line method 

1. Formalism 

Given the level of the charge-type discrepancies which appear in the zeroth order 
terms of the bare vertex method, it is important to indicate how the bosonization 
procedure may be modified so as to achieve exact low-energy results at tree level. 
As already discussed, the problem is essentially that Ward Identities connected with 
chiral and electromagnetic current conservation are not preserved at each order in the 
meson loop expansion, which can further be traced to the inappropriate EW gauge 
transformation properties of nonlocal structures such as q{x)M^q(y) which are used 
in the bosonization. Such structures may be cured by joining the two points x and y 
by a Wilson line. This has previously been considered in the context of Bag models 2 5 . 

We introduce a Wilson line in the original GCM action (5) before the Fierz trans­
formation is performed. First note that the following identity holds: 

A a A° 
9 » j 7 , ? ( i ) = qr(x; P)—-i„qr{x\ P) 

where qr{x\ P) = "Pexp{z / gnHi • ds}q(x) 

and qr{x;P) = q(x)Ve\p{i / gnHRds) (45) 
Jr\x,p\ 

I[x, P\ denotes an arbitrary path from x to P, T[P, x] denotes the same path from P 
to .T. and V denotes path ordering. If P is a smooth function of x and y such that 

P- P(x,y)=P(y,x) • P{x,x) = x (46) 

then the first term of (24) can also be expressed in terms of the qp as 

[q(^ + m + igHflL)q= I qr{x\P{x,y)){$ + m)iyqr{y\P{x,y)) . (47) 
J Jly 
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The Fierz transformation on the internal indices may then be performed as before, 
the Wilson lines becoming cross-linked as shown in Fig. 7. After bosonization, 

S[B] = -TrlnM 

+ l*D&P + *'W + "<>- ( 4 8 > 
where 

Mxy = Vexp{i l g„HR • ds} IG~1 + \Me

mB9} Vexp{i / g„HL • ds} 

(49) 

and the diquarks V,f> have again been omitted. To first order in gR, 

+i9H ( / 9HHR • dsG~xl + °ry S 9HHL - ds) 
\Jr[x,P(X,y)] V V MP{x,y),y) J 

+igH { I 9HHR - ds±Me

mB8

xy + iM'B'y [ 9H-HL • ds) (50) 

The different terms in M contibute respectively to <f>QQ, HQQ and <f>HQQ vertices 
in the expansion of — Tr ln[l + (GM — 1)]. For the NG bosons, the local field 
substitutio.i (22) is again employed. 

In order to generate local interactions with the meson fields ^(^y 2 ) we choose the 
point P to be the midpoint: P(x,y) = ^ . Expanding the line integrals about P, 

/ / /„<fs M =J(y-*)„/ / , , (——-) + ci(y - x)„(y - x)vd„H„(-——) 
J\'[P,y] I I 

x -\- y 
+c2(y - x)„(y - x)„(y - x)0dadjlfl(-^—) + ... (51) 

and for the reverse path r [ i , P] the coefficients c, are replaced by ( — 1 )'<:,-. The c, 
depend on the trajectory of the path T and for a straight, line the first three are 

Ci = h C 2 = h C 3 = Wf (52) 

In momentum space the (y - x)„ terms become internal loop momentum derivatives 
-idjdq» and 5„ / / M ( £ | J £ ) becomes ipuH„(-p) 

An understanding of the Wilson line approach may be gained by examining the 
form of the term in Miy which is linearly dependent only on / / M . For the case of 
electromagnetism, and for zero photon momentum kfl this term becomes ir.QdllG~i(q) 
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independently of the Wilson line trajectory. This form is the k^ = 0 solution to the 
Schwinger-Dyson equation for the photon vertex in the ladder approximation. At non­
zero fcM, a kp dependence will appear in this term which is dependent on the Wilson 
line trajectory. Using a straight Wilson line chooses a particular k,, dependence which 
we assume is roughly similar to the ladder approximation vertex for non-zero k^. This 
choice may be viewed as the classical approximation of straight-line effective-quark 
propagation within the interaction vertex. Dependence of the physics on the Wilson 
line trajectory would only be expected to diasappear in the exact limit, when all 
orders in the loop expansion have been considered. 

2. K — W interaction 

Denning N = (GM - 1), in the expansion of - T r /n(l + N) both the -Tr N 
and \TT N2 terms contribute to the low energy form f d^ir'W^, as depicted in Fig. 
8. Each term is dependent on the Wilson line trajectory (i.e. c,-dependent) but the 
—TrN term exactly cancels the trajectory-dependence of the \Tr N2 term thanks 
to the NG character of the pion expressed in the structure function relation Tv — B. 
This result is analogous to the cancellation between the two diagrams in Fig. 3 which 
leads to-a massless pion in the chiral limit. The remaining part of the \TrN2 term 
in momentum space is 

xffq *^TtTlBtf)G(q-\p}i£\TJid,(Tsi f(A(q

2))G(q + |p)} . (53) 

Comparison with the bare vertex result (30) indicates that 7^75 has been replaced 
with d^(^A)-ys . This supplies the missing factor of approximately 2 and yields exactly 
the result (35) at lowest order in p„ expected from chiral symmetry. Contributions 
to SrW from higher orders in p^ will be discussed in the next section. 

3. 7T7T7 and W77 

The only part of S contributing to the 7^7 interaction comes from the — |7VyV-J 

term. As anticipated the effective vertex becomes ieQd^G'* and an integral charge 
results, which, in contrast to the irW coupling does not depend on NG result Tff = B. 
This is to be expected since the electric charge of the pion is independent of its NG 
status, whereas the interaction d^'W1 is specific to the non-linear realization of 
chiral (and hence EW) symmetry implicit in (for example) the gauged <7-model action 
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Calculation of the anomalous T77 interaction with the Wilson line method is very 
complex. We speculate that it also assumes the chiral value. 

IV. APPLICATION TO 'FK/FW 

In the chiral 5(7(3) limit MK = M* = 0 and FK = F* . The experimental result 
is FKIFi, = 1.25 and in what follows we analyse the GCM predictions using where 
practicable both the bare vertex and Wilson line methods. 

Since Cabibbo angle $c dependence is factored out of the definition of F*, it suf­
fices to examine the behaviour of F* as the d-quark mass increases to the s-quark 
mass in order to predict FK/F*. A non-zero quark mass affects Fp (where P is the 
pseudoscalar) in two ways: through direct dependence on the current quark mass and 
indirectly through being measured on the pseudoscalar mass shell p 2 = —M2. i.e. 

t = 0 

where m is the average quark mass (m u + n*)/2 . We define an analogous expansion 
for the field normalization fp. In order to calculate the fp{m) we assume the values 

mu = md= 10 Mev m, = 100 MeV (55) 

and adjust the value of fp {ih) so as to produce the experimental value of M-k- We 
cannot use the PCAC formula (20) as a result of the logarithmic divergence which 
infects the ladder approximation value of (<jq) 9 ' 2 9 . This behaviour can be regularized 
by modifying the asymptotic high-p2 behaviour of B(p2) or equivalently of a (p 2 ) , but 
this introduces a further arbitrary parameter and does not serve to fix the current 
masses. The values we use are representative of those found in an investigation of the 
non-NG sector in the GCM H ' 1 5

i which is not sensitive to the very-high p 2 form of 
the structure functions. Performing a Taylor series about pfi = 0 in (33) yields 

/ p

2 (0.p 2 ) = [0.496 - 0.407p2 + 0.473// + 0(p6)} x 10~2 GeV 2 

fl(™>u.p2) = (0-537 - 0.418p2 + 0.393// + 0(pe)) x 10~2 Gev 2 (56) 

and therefore for the field normalization 

In the bare vertex method, expansion of the Fig. 8 contributions gives 

//.,v(0.p 2) = [0.211 - 0.381 p 2 + 0.51p4 - 0.18p6 + 0{p*)) x 1 0 - 2 GeV 2 

h>w(ihsu,p2) = [0.233 - 0.333p2 + 0.437// - 0.15ps + 0(p 8 ) ] x 1 0 - 2 Gev 2 (58) 

and 
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\FK W m „ , - A 4 2

K ) X A L2Q ( 5 9 ) 

If.J^^x lpw(0,0) /K 
In the Wilson line method, expansion of the terms in Fig. 8 to order (p 2) and using 
a straight line yields 

' p # 5 o n ( 0 , p 2 ) = [0496 + (-0.767 - 0.461 + 0.095)p2 + 0(p 4 ) ] x 10~2 GeV 2 

Ipwsm{m3U,p2) = [0.476 + (-0.662 - 0.391 + 0.098)p2 + 0{p4)] x 10~2 Gev 2 (60) 

and hence to order (p 2) 

/ ^ ( m , , . , -M2

K) = 0.709 . (61) 

Therefore 

\FK « 1.24 + A . (62) 
Wilson LJvJ 

A is in principle calculable but of a rather complicated form. On the basis of the 
behaviour of the higher order bare vertex contributions, we estimate A « 0.06. 

Both the Wilson and bare vertex estimates are acceptably close to the experimental 
value of-1.25. Use of the EW gauge-invariant Wilson 1'ne differs from the bare vertex 
result by about 10 per cent. If the function A{p2) were more steeply varying, the 
results would differ by a greater amount. 

A prediction of this analysis is that at p2 = 0, FK/F* « 1.03. The p 2 dependence 
may be tested in A'/3 decays. 

V. APPLICATION TO TT* CHARGE RADIUS 

On the basis of vector dominance 2 6 one would expect the k2 dependence of diagrams 
such as Fig. 6(b) to be much too small to account for the experimentally observed 
pion charge radius, since the tree level contribution of Fig. 9 would be expected to 
dominate. In the Wilson line method, the VA coupling (where V is a vector meson 
and A is the photon) is gauge-invariant and contributes only to the pion charge 
radius and not at all to the charge - this is the result of a cancellation similar to 
those already discussed which produces a zero coupling at k„ = 0 . In the bare vertex 
method, the VA coupling contributes to both charge and charge radius with a non-
gauge invariant part which survives at k^ = 0 of the form / V^A^. Calculation of 
the vector meson couplings, which would enable a computation of the vector meson 
contribution, is beyond the scope of this paper, requiring accurate knowledge of the 
p,, and LJ„ structure functions on and off shell. 

For reasons of computational ease we look at the k2 dependence of the bare vertex 
form of Fig. 6(b) to get a rough estimate of the contribution of the 'direct' diagram. 
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We find that the direct contribution to the charge radius is 1.2 GeV~ , compared 
with the experimental charge radius 

(rU) » j ^ « 10 GeV" 2 . (63) 

As expected the direct contribution is very small, consistent with vector dominance. 
Ebert and Volkov 1 7 have shown how vector dominance may be derived from a 

Namb-Jona-Lasinio lagrangian using (local) bosonization. The EW gauge fields are 
completely removed from the Tr Ln by absorbing them into the definition of the 
(composite,local) vector and axial vector mesons, reappearing outside the Tr In as 
interaction terms with these fields of the familiar vector dominance form p^A^. (not 
to be confused with the spurious contibution of this form in the bare vertex method 
above). Hence by a shift of the composite fields the EW fields are shown to interact 
effectively with all hadrons only via the vector and axial vector mesons. That such 
a result is achieved depends on the vector and axial vector mesons having the same 
(minimal) 7 M coupling with the effective quarks as the EW gauge fields. In the more 
detailed GCM, and assuming that a gauge invariant scheme such as the Wilson line 
method should be used, the EW gauge fields cannot in general be removed from 
tl.e IT In in (48) by a simple shift of the p,u>... components of M^B9(x,y): the 
structure functions at low transfer momentum A; would have to coincide with those of 
the EW fields. For the case of electromagnetism the vector meson structure function 
(a solution of the homogenous Bethe-Salpeter equation) is very likely not of the 
photon-vertex form dllG~1{q), where q is the effective quark momentum. One would 
expect the required shift in B to involve other resonances which would then interact, 
directly with photons /4„ along with the />„ and w^ and their radial excitations through 
the second term of (48). 

VI. CONCLUSION 

Any QCD-inspired study of the low-energy behaviour of hadrons must involve effec­
tive quark propagators with momentum-dependent propogators, which complicates 
the gauge-invariant calculation of EW properties of hadrons. In the context of tin; 
Global Color Model, which can be derived as a truncation of QCD, we have discussed 
how such predictions can be extracted, and we have introduced a modified bosoniza­
tion involving Wilson lines which maintains chiral and electromagnetic current, con­
servation at tree level. A computation of FK\F* in the GCM accounts satisfactorily 
for the experimental value of 1.25, and a GCM prediction is that, at, p2 = 0, P\-/Fr 

is very close to the chiral SU(3) value of 1. Analysis of the Tr* charge radius gives 
qualitative support for vector dominance; however a 'proof of vector dominance pre 
viously given for an NJL model does not survive the additional complications of the 
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GCM. A convincing account of the role played by vector dominance would need to 
involve knowledge of the off-shell behaviour of vector meson structure functions and 
the contribution of scalar and other mesons. 
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FIG. 1. Classes of diagrams in a perturbation expansion of QCD. The grey circles with 
n gluons emerging are full (reducible) n-point functions for QCD without quarks. 

FIG. 2. Plot of the numerical solution of the quark propagator A and B functions. 

FIG. 3. Terms contributing at tree level to the generation of meson kinetic and mass 
terms in position space. The grey circles are the 'ladder' approximation structure functions. 

FIG- 4. One-loop corrections to meson propagation 

FlG. 5. One-loop tadpole signalling a vacuum shift 

FIG- 6- Terms in the expansion of the TrLn in momentum space for the bare vertex 
method for the processes (a) x* decay constant Fx; (b) i * charge; (c) anomalous TT° -+ 77 
decav 

FIG. 7. Routing of Wilson lines (a) before and (b) after the Fierz transformation 

FIG. 8. The terms contributinf to F* in the Wilson line method. The striped ovals 
denote Wilson-line dependent vertices. 

FIG. 9. Tree level vector meson contribution to the charge radius 
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