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ABSTRACT

Unexpected similarities between the superdeforined bands found recently in
many nuclei of the mass A ~ 150 and A ~ 190 regions and the physical sense
of this discovery are discussed. These similarities manifest themselves through
the existence of nearly identical sequences of transitions belonging to two
neighboring nuclei, and by now numerous nuclear pairs manifesting this feature
have been found. The underlying microscopic mechanism is traced back to two
independent effects: a readjustement of nuclear deformation diminishing the
role of alignment of the least bound nucleous, and, the pseudospin symmetry,
responsible for an approximate decoupling of the orbital and the intrinsic
(pseudo) spin-degrees of freedom.

I - INTRODUCTION

When this text is being written there are alltogether 19 superdeformed bands

discovered in the rare earth (^l ~ 150) nuclei; the number of superdeformed bands

discovered in Mercury- and Cesium-regions of A ~ 190 and A ~ 130 mass ranges,

respectively, is growing with an impressive speed. Four years ago only one such a

band has been known [1], yet the experiments aiming at finding the new, extreme

deformations are still considered very difficult.

The progress is fast and important, and as it often happened in the past,

it originates from the very special, interesting features of the underlying nuclear

behavior.
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What are these phenomena which appear so intriguiging that so many labora-

tories have now important programs in the domain of superdeformation?

Here we will give a brief account of several of them, the "strange degeneracy"

pattern underlied in the title of this article being one of the most recently discovered

intriguing effects.

LA Unusual population pattern

It has been found that the intensities of transitions corresponding to the

superdeformed bands behave in a characteristic, distinct manner. They grow very

quickly with decreasing spin and, within a very few transitions, they reach a plateau.

For most of the following transitions the intensities stay practically constant; this

form of behavior is very different from that observed in normal nuclei in which the

discussed intensity grows markedly with the decreasing spin.

LB Unusual de-population pattern

For reasons which are still debated, the intensity of gamma rays in the

superdeformed bands decreases to zero very abruptly within one to two transitions

following the sequence of about 15 transitions in which it stayed practically constant.

Such an abrupt change remains in a significant contrast to the effect of plateau just

mentioned. It appeared fairly unusual to many physicists that a superdeformed

configuration may be so stable over so many spin values and loose the stability

completely at a lower spin value at such an abrupt manner.

LC Unusually regular spiu-vs.-fr^queucy behavior

The great majority of the known normal (this term is being used in contrast to

superdeformed) nuclear configurations produce a characteristic and rather complex

/-VS.-U» dependence (7 denotes spin, u,' - the rotational frequency). This behavior is

often so irregular that it leads to a multivalued character of / = /(u>), giving rise to

the so-called back-bending(s), up-bending(s) and other structures. In full contrast

to that, the /-vs.-u-' for a superdeformed nucleus appears practically structureless,

forming nearly a straight line, and only the derivatives of /(u>) re\~eal (often

extremely interesting) signs of structural rearrangements.



I.D The problem of rigid nuclear rotation

When a sequence of transitions corresponding, at the highest spin limit, to

/ ~ (60 to 70) h was observed, one of the first expectations discussed was that the

pairing correlations will become neglegible and that the behavior of the effective

moment of inertia should resemble a rigid body pattern. Although the spins of

the superdeformed states have not been rigorously established in experiment, a

"reasonable" evidence suggests that the effective moments of inertia are different

from the corresponding rigid body values.

This observation in turn, can be related to one of the fundamental (unsolved)

problems of nuclear structure: the relation of the effective mass of a nucléon in the

nuclear finite medium to its free mass on one hand and to the rigid nuclear rotation

problem, on the other.

LE Unusual degeneracies

Since the present use of the term "degeneracy" may be misleading let us

introduce more precisely the context in which this term is being applied throughout

the article. It has been recently established [2] that there exist many pairs of

superdeformed nuclei, their mass numbers differing usuall}' by one or two nucleonic

masses, in which nearly identical bands have been found. This, in contrast to the

usual meaning of the term "degeneracy", does not imply that the corresponding

nuclear levels are degenerate but rather that the differences between two consecutive

transitions in one nucleus are (nearly) equal to those in a neighbouring nucleus.

So understood degeneracies (also referred to as E-,-degeneracy) which persist over

many, many transitions, are in some cases almost an order of magnitude smaller

than what one should expect by extrapolating our knowledge about normal nuclear

configurations.

The discussion of the problem of "unusual'" degeneracies, what appears to be

a totally unexpected feature, will be the main subject of this article. We will in-

troduce first some analytical considerations, which reveal a microscopic insight into

nuclear readjustements of an even-even superdeformed nucleus being "disturbed''

by the presence of an additional nucléon. Then more realistic considerations will be

presented, based on the Woods-Saxon average field potential. Finally, the impor-

tance of the pseudo-spin symmetry for the problem of "unusual" degeneracies will

be discussed.
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H - CONDITIONS FOR AND CONSEQUENCES OF E^ - DEGENE-
RACIES

Let us consider the high-spin limit of nuclear rotation i.e. the case encountered

in most of the superdeformed bands where the spins vary typically between 25 ft. and

65 h. In such a case the angular momentum can be considered perpendicular to the

main symmetry axis (see below) and in order to fix the notation we will consider

the Ox axis to be parallel (or nearly parallel) to spin /. In such a situation Ix ~ |/|

and we will omit the subscript "x" for simplicity.

Now, consider a situation illustrated schematically in Fig. ILl. A nucleus with

Z protons and N neutrons (N + Z = A) possesses an effective moment of inertia

I/u, (2.1)

where / denotes the total spin and u; the frequency of rotation. Since the superde-

formed bands obey in most of the cases the rotor formula, we find, for the nucleus

A and a neighboring nucleus B:

h2 ti~
EA(I)--— 1(1+1) and EB ( I 1 ) ~— -/'(/' + I ) . (2.2)

2 J A

Within a good occuracy, the corresponding transition energies are:

Nucleus A : Ef (I) = EA(I + 2)- EA (J) = (41 + 6) - (2.3)

and

Nucleus B : E% (/') = EB (/' + 2) - EB (/') = (4/' + 6) -- , (2.4)
* JB

and, without any loss of generality we will chose Z and N as even (/ are integer

numbers). Consider now a nucleus B with the mass number close to that of nucleus

A. In our discussion it will be useful to think about the nearest neighbor, i.e.

a nucleus with the mass number A + 1. In the corresponding energy spectrum

(Eq. (2.4)) /' denote now the (half-integer) spin values.

Let us introduce the difference, AJ. by

JB = JA + AJ . (2.5)
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AJ may in general be positive, negative or zero, but it is expected to be small (with

respect to both JA or JB) for it is known that the measured moments of inertia in

the superdeformed bands considered are close to each other.

Taking a typical mass number (A ~ 150) and the range of spins, (J ~ 40),

characteristic for superdeformed rare earth nuclei and assuming that the dependence

of the rigid body moment of inertia on the mass-number is of the form:

JRIG - A5''3/lQ [h2 MeV'1], (2.6)

we find that at /' ~ / ~ 40 h the shift in the positions of the corresponding nearest

peaks in the spectra is

E* (/') - E* (I) = A.E, ~ lOkeV . (2.7)

This value is an order of magnitude larger than the observed energy shifts which

are often ~ O within the experimental error bars.

The use of expression (2.6) corresponds to a classical situation, where the

nuclear density is supposed to be uniform and the moment of inertia (of an ideal

rigid body) is supposed to grow monotonically with increasing mass number A.

Disagreement of the estimate (2.7) with experiment signifies an important influence

of quantum mechanical effects which, as we shall see, are sensitive to the quantum

numbers of an odd nucléon. It is therefore our purpose to analyse the microscopic

mechanisms which determine the nuclear high-spin response to "adding" such a

nucléon.

ILA Polarisation Caused by an Additional Particle (within the Mean

Field View Point)

Within the mean field formalism one finds at least four leading factors expected

to manifest the nuclear response to rotation when "adding" a nucléon to a rotating

nucleus. These are: the nuclear mass, represented primarily by the particle number

(A); the spatial distribution of the nucléons in the nucleus, represented first of all

by the nuclear shape (3); the nuclear rotation represented by the quasiclassical

frequency u;. and the intensity of the pairing correlations, represented usually by

the average pairing-gap A. There may also be other structural elements involved,

but we limit our considerations to the above mentioned factors.



The dependence of the moment of inertia on the four extensive variables

J = J(.4,/3,A,u;), (2.8)

suggests that the nuclear response to "adding" a nucléon can be represented (in

terms of the moments of inertia) in the following way:

" <2-9'
It has been argued [3], that the influence of the pairing correlations on the moment

of inertia in the superdeformed states can be considered very weak at the high spin

limit which is considered here. For this reason we will limit our discussion below to

the three remaining principal forms of dependence i.e. on A, /3 and a>.

Relations (2.8-9) stress the mean-field formalism point of view involving such

concepts as deformation or the average pairing field.

It will be instructive to express the effect of polarisation of a nucleus in a

way which does not rely to any particular model-formalism and refers only to the

observables accessible experimentally. In the case considered we have two groups of

observables: (E\ ,7) - in nucleus A, and, (E-^ ,/') - in nucleus B. Since

E^(I) ~ E(I + 2) - E(I) ^2 =2w(J) (2.10)
V A/ / A/=2

we can, equivalently, use the notation in terms of frequency, u? (/), rather than the

transition energy, E^(I).

We consider a pair of nuclei in which the "degenerate" bands exist. In such a

case, there exists a pair of spin values / and /', refering to the nuclei A and B,

respectively, such that

(jjA (I) — &B ( I ' ) over many transitions . (2.11)

We have therefore:



Since

l - I-
JB JA + & J JA \ JA) JA JA JA \JA

(where only the terms linear in small quantities (èl, èj) have been retained), we

obtain:

6u=~uA(I) (^) . (2.14)

Dividing the last relation by MA (I) and noticing again that JA U>A (I) = / we get:

_ ; Usr-I, (2.15,
J 1 UÎ

where we have omitted the obvious index A in JA — * J-, IA — * I and UA (I) — *

u>. The above relation indicates that in general, the measured polarisation of

the moments of inertia, bj IJ , has a hyperbolic dependence on spin (note that

T-I= el should be viewed as a constant in function of spin) and that the

relative shift in frequencies, &*>/<*;, can be the only source of fluctuations of fsj I J .

The above observation is interesting, given the fact that with the present day

experimental techniques only the frequency shifts can be measured, while the spins

/ = /o? ^o + 2, /o + 4, . . . and /' = /ô,/ô + 2, /g +4, . . . remain, strictly speaking

unknown. Relation (2.15) will also be convenient when comparing the experimental

and theoretical results in the next sections. The difficulty in extracting directly the

quantity èj / 'J from experiment follows from an uncertainty of the /o and /Q.

11.13 Competition between the Shape and the Alignment Effects (Analy-

tical Results)

Having introduced the problem of degeneracies we will turn now to the analysis

of the underlying mechanisms. We will start with the harmonic oscillator model of

a system of n nucléons what will allow to obtain analytical results. Later on our

consideration will be generalised to the case of a realistic mean field.



Consider the harmonic oscillator hamiltonian

H = t + ±m(u*xx* + *ly* +*2
zz

2). (2.16)

For a given number of particles rc, we may specify each nucleonic state \i >=

\nx(i),ny(i),ns(i) >. It will be convenient to introduce the following auxiliary

quantities:

S1 = E1CMi)+!);
n

S2 = S CMO +1) ; (2.17)

The corresponding total energy, defined as the sum of the single-particle contribu-

tions is

3

'E = JT few.,. Sj- . (2.18)
j=i

In order to follow the shape-adjustements of nucleus A after "adding" a nucléon, we

will minimise the total energy assuming the self-consistency condition [4]. For this

purpose we observe that the equation of the equipotential surface corresponding to

(2.16):

2 2 2

, H -- ̂ - j- + , = const . (2.19)

V^T/ v^/ V^/
defines the semiaxes of the related ellipsoid as: a ~ u;"1; 6 ~ w^"1, c ~ u~l .

The self-consistency requirement, more precisely, will be formulated in terms of

the geometrical correspondence between the shape of the deforming equipotential

surfaces and the corresponding surfaces of the density. Here we will limit ourselves

to the condition that the anisotropies of the density and that of the potential are

equal. The former will be specified, after Réf. [4], by employing the mean square

values

all nucléons = : S1-. (2.20)



Thus the self-consistency condition reads:

= const. , (2.21)
r? > < zi > <

(j_y
V "3 /

or

= (M
\mw3//

which results in the well known relation

= S2W2 = S3W3 . (2.22)

Suppose that a particle has been "added" to an even-even core. Such a particle

will be characterised by its quantum numbers (nx,ns,n-)i what will lead to

modifications of the S1, S2 and S3 :

S1 -» S1 + ̂ S1, S2 -* S2 + £S2, S3 ̂  S3 + £S3 , (2.23)

where we introduced the notation

CY^ __ I ^~_ m ft\^ *n I _• XV* <n _L _ /O *)A \
J --" X fy 7 £, y fy 1 o - «, l ^ " V * /

The selfconsistency condition will imply that in general also the oscillator frequency

must be modfied:

Wj -» Wj + 6w,; z = z,j/,r . (2.25)

The volume conservation condition requires that

O 3 v
W1W2W3 =w = — ; (2.26a)

h
and

- ( W 1 ) 3 = ^-. (2.26b)

We set usually



Increase in the volume resulting from introducing the (A + l)3t particle gives

v' = v + 6v; èv = - — ;

where (as in the following) only the terms linear in "small" quantities (i.e.

are retained. The left-hand side of Eq. (2.26b) gives, within this order:

(2.27)

{ ^Wi 6w2 OW3 I
1 -\ 1 1 > . (2.28)

W1 W2 W3 )

Substituting W1W2Wa from (2.26a) and comparing with Eq. (2.27) gives

i _ I
u>o

(2.29)

Similarly, we will write down the self consistency condition for the nucleus B in the

form:

(W1 (S1 + ^S1) = (w2 + ^w2)(S2 = (w3 + ^w3)(S3 + ££3) . (2.30)

Recall, that with a nucléon placed on a given orbital (nx,ny,n.z), we may treat

{£S,} as known, while the shape modifications {6wj} are still to be determined.

Retaining as before, only the quantities linear in terms of the small increments we

get from Eq. (2.30):

/ 6wi *Si \ „ / «w, ^So \ / ^w31 + — ̂ - + — - - W2S2 1 + — + — - ~ W3S3 1 + — ?• +
\ Wi Ir1 / \ W2 1*2 / \ W3

(2.31)

what, in view of (2.22) gives

"T" T + "̂ ;
W3 Ij3

(2.32)
UJ] ^Ji W2 2j2 W3 2j3

Equations (2.32) (three relations) together with Eq. (2.29) form a system of four

algebraic equations for the unknowns A, ^w1, 6w2 and 6w3. After eliminating the

auxiliary term A we find the solution

(2.33)
*w,
W7

6v
3r

1
1 3 E "1J 11 Q £ \

v (1 'M]')

J=! "'
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In what follows, it will be convenient to introduce the nuclear elongation parameter

a = W2/W3 — W1/W3 . (2.34)

Then, the self-consistency condition implies in particular

W2S2
 = W3S3 ^* owsSo — W3S3 =?• S2 = —S3 . (2.35)

a

Using the fact that for an axially symétrie (e.g. superdeformed) nucleus we have

W1 = W2 = fi ; Sj = S2 H S , (2.36)

and neglecting again all the terms quadratic in our "small quantities" we find that

the effect of the core polarisation induced by the additional particle can be expressed

as follows:

—6v + ~ ^S, - 2*Si + -SE3 (2.37a)
3r 3L a

(2.37b)
3v 3L

(2.37c)

So far we have considered the effect of the shape polarisation expressed in

terms of modifications of the semi-axes which follow from the "additional" particle.

We will now turn to the problem of angular momentum aligment. In order not,

to complicate this discussion we will limit ourselves here to the small rotational

frequencies

u>r0f = w -» O . (2.38)

Under this simplifying condition we may use directly the Inglis form for the

moment of inertia which, according to Eq. (4.116) in Réf. [4], reads:

J / -r> v \ ' _i_ IV x V 1I ' 2 ^3 ' [ /o< ( 2 j 3 - l i 2 ) ~ |-(li3 + ii2) > , (Z.
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where we assume a one-dimensional rotation pattern (with the Ox axis chosen as

the rotation axis). The presence of an additional particle will "polarise" the nuclear

inertia tensor and in particular

J -> J + 6 J . (2.40)

Now we would like to express èj as a function of fiui and ^Sj. For that purpose

we will substitute

u>i -»• Wi + 6ui and Sj -»• Sj + 5S-7- , (2.41)

into Eq. (2.39), and retain, as before, only the terms linear in small quantities. For

an axially symmetric nucleus we may use the relations

(2.42a)

V,3±S2 = S(o±l) , (2.42b)

which gives also:

Q

W2 + WS a

The above relations give, after elementary substitutions

(2.43a)

(2.43b)

^ ^ ( a 2 + !) (2.44)

The above expression shows also the way in which the angular momentum

alignment, A/, is influenced by a polarising particle, since

A/ ~ wSJ . (2.46)
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More precisely, since ££i = (nx + f ), ^S2 = (ny + |) and 6S3 = (nz + |), one

finds directly the sought relation

AI = AI(n.,ny,n,)

in the small-u; limit.

Relation (2.45) can be given an interesting physical interpretation. First let us

observe that the coefficient in front of £Si is always negative what implies that the

stronger the nucleonic oscillation along the axis of rotation, the smaller the moment

of inertia contribution induced by that particle. In contrast, the nucleonic oscillator

quanta along the O2 axis (elongation axis perpendicular to the axis of rotation)

contribute always an increase of the moment of inertia. It is interesting to notice

that this latter contribution becomes neglegible (~ O) only for the strongly oblate

nuclear distortions with a ~ -4?.

Given the fact that the nucleonic oscillations along the Ox and O- axes

contribute in Eq. (2.45) with opposite signs, the decive role is going to be played

by the third (Oy) contribution, which changes sign at Q ~ \/5. This characteristic

change of sign takes place at the elongations corresponding approximately to the

superdeformation, the contribution from £S2 becoming more and more negative

when elongation increases. For the hyperdeformed configuration, for instance (a —

3), the discussed term ~ 2/5(££2).

It becomes therefore clear, that Eq. (2.45) provides a criterion for the E~/-

degeneracy driving odd-ra orbitals: they should have the maximum number of the

x-oscillation quanta and the minimum number in the z-oscillation quanta.

The corresponding competition between the three oscillation modes of a

nucléon in an elongated nucleus, leading to possible cancelations and thus implying

that 8J13 gets close to zero, results in the presented derivation of Eq. (2.45)

from the self-consistency condition. In other words, the deformation adjustements

of the bulk of nucleonic matter follow the character of the quantum oscillations

of an "additional" nucléon. If it oscillates mainly in the direction of the axis of

rotation, its effect of attracting the other nucléons decreases the probability of

finding other nucléons for away from the axis of rotation - thus implying always a

negative contribution to AJ.
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!H - THE AJ7/J POLARISATION IN THE WOODS-SAXON POTEN-
TIAL

In what follows we would like to confront our theoretical considerations with

experiment. This will require a more realistic treatment (as compared to the simple

harmonic oscillator model) of the single particle spectrum.

We are going to use the Woods-Saxon Hamiltonian

= t+ Vws+ V^s+ -(1 + T3)V00UL. • (3.1)

where

yws
1 + ex.p{dist^(^def)/a}

and

s A p).s (3.3)

according to standard definitions and notation (cf. Réf. [5] for details). In Eq. (3.2)

Vo, K and a are the potential parameters, udefn represents all the deformation

parameters, and the symbol dist? represents the distance of a point specified by f

and the nuclear surface S.

Typical spectra of the eigenvalues of the Schrôdinger equation

#V» = e^V (3.4)

are illustrated in figures (III.la-b) and (III.2a-b) for neutrons and protons, respec-

tively. The single particle energies are plotted here in function of the nuclear elon-

gation encompassing a transition from spherical to superdeformed nuclear shapes.

In contrast to a customany representation of such Woods-Saxon diagrams,

the interactions between single-particle states corresponding to the level crossings

presented in Figs. Hl.lb and III.2b have been artificially removed; this way of

representing the spectra is a useful simplification of the illustrations.

The labelling of the single particle states corresponds to the [TV, ra^Ajfi

asymptotic. The labels have been attributed to the corresponding states by taking

14



the corresponding leading term in the expansion in terms of the axially symétrie

harmonic oscillator basis

i WS V" r> n
HO . (ie.\

Vv - 2-. C^Nn1ASVjVnxAS ! I3-5)
Nn1AE

for each z/, the label corresponds to this harmonic oscillator state which produces

the maximum |CV;jVnzAs|2-

In order to benefit from our consideration in the preceding section, a relation

between the axially symétrie basis used here and the more convenient (nx, ny, n,, S)

basis used in Sect. II will be needed.

For the purpose of this discussion we will chose, as a measure of the

polarisation in the Woods-Saxon potential the quantity

? s (3.6)

where /i = (nz,n.,,,TO2,£), v labels the corresponding Woods-Saxon states and

(AJfJ)?0 are given by Eq. (2.45).

The results of the corresponding calculations are illustrated in Figs. (III.3) and

(III.4) for neutrons and protons, respectively. To avoid the complications, which

follow from the level crossings (and which are of less importance here) the crossings

were artificially removed, similarly to what has been mentioned when commenting

Figs. (III.1) and (III.2).

Two important features deserve noticing. First, most of the (&J/J)™'S curves

decrease, with increasing deformation, just rendering the "strange degeneracy"

phenomena more and more likely, when deformation increases. Secondly, for de-

formation close to the superdeformed equilibrium values, there are some of the

(AJ IJ)^S contributions which change sign (passing through zero). This property

illustrates the special role played by the superdeformed configurations. It is only at

those large elongations where rather numerous single particle orbitals bring vani-

shing (AJ /J) contributions and consequently produce the "strange degeneracy"

pattern observed with such an abundance in e.g. rare earth nuclei.

The theoretical predictions of Figs. (III. 3-4) have been confronted with expe-

riment using the results for several pairs of nuclei. Here we will limit ourselves to a

pair represented by:

15



Nucleus A : 150Gd86 ("first excited" band)

and

Nucleus B : 151Tb86 ("first" band).

The important structural difference between the two bands is, according to our

interpretation, that one of the two signature-partner orbitals of the [301)1/2 level

is inoccupied in 150Gd (cf. Fig. (III.4), while both signature partners are occupied

in 151Tb.).

The calculations corresponding to these configurations are presented in Fig.

(III.5). The top part illustrates the comparison between theory and experiment for

the J^ moments of inertia defined as usually by

I • (3.7)

A direct comparison of the AJTU quantities extracted from experiment and

the Woods-Saxon value corresponding to the [301 Jl/2 orbital are given in the

bottom part of the figure and indicate a very good agreement with the theoretical

predictions. Similar agreement has been achieved also for nuclei where the orbitals

with higher w2-values (cf. Eq. (2.45)) are expected to play a role. In those cases

the extracted (A.7 /J] values and those calculated with the Woods-Saxon code

are larger (as componed to the results in Fig. III.5) but confirm the proposed

interpretation.

IV - COMMENT ON THE PSEUDO-SPIN SYMMETRY AND E-,-
DEGENERACIES

The mechanism of the pseudo-spin symmetry in heavy nuclei is illustrated

schematically in Fig. IV. 1.

One of the first, discussions of the pseudo-spin symmetry effects in the super-

deformation context, Réf. [6], has been extended recently, Réf. [7] to the analysis of

the experimental data on the E^- degenarate bands in a few Rare Earth (A ~ 150)

nuclei. The main argument used was based on the extension of the decoupled rotor

formula
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.E(J) = /(/ + !) + o(-l) /+(/+ ) (4.1)
,:./ L ^ j

to a superdeformed configuration. Here

(4.2)

denotes the decoupling parameter.

Although espression (4.1) is in general not applicable at rotational frequencies

as large as those found in the superdeformed configurations one can find arguments

that in the particular case analysed in Réf. [7] it can still be applied.

Expression (4.1) leads to particular symmetries between the spectrum of an

even-even and the corresponding odd-even system (rotor-plus-particle) if |a| = 1.

This symmetry manifests itself by either equality of the type

E f ( I ) = Ef(J'); (4.3)

or

E*(J) = \ (Ef(J1 Hh 2) + Ef(J')) , (4.4)

both types of symmetries actually seen in experiments. It is important to remark

that changing the sign of a, for instance from ( + 1) to (—1) implies exchanging

the roles of the symmetries of the type (4.3) by (4.4) and vice versa. It was thus

interesting to check the microscopic significance of the condition |o| = 1. In the well

known "Nilsson" asymptotic limit

a = (-I)^AO (4-5)

according to standard notation.

However, a comparison with experimental data based on the typical, realistic

single particle scheme led to the observation precisely opposite to the result of

Eq. (4.5).

According to the rules of the pseudo-spin approach, the quantum characteristics

of a state with the Nilsson asymptotic [A" T? -A]Q transform into [A7.7?7, A]O, where

the corresponding numbers in the pseudo-spin representation are

17



J V = J V - I , £r = n - , A = A±1 and fi = ÎÎ . (4.6)

It can further be shown that within the above representation

«->« = (-!)%, (4-7)

what may change the predictions drastically. Since such a change corresponds

well with the present day evidence about some of the .E7-degenerate nuclei, the

suggestion of the pseudo-spin asymptotic being realised in superdeformed nuclei

seemed motivated.

The main problem with the above interpretation is that it is applicable only

if the moments of inertia (cf. Eq. (4.1)) in nucleus A and B, according to notation

in Sect. II, are within a good accuracy identical (JA — JB)- The above relation

is likely to be satisfied only if the n.-quantum number of the odd nucléon is O, as

it has been argued in the preceding sections. Again as a matter of "coincidence",

the case discussed involved [301] 1/2 orbital which actually satisfies all the necessery

criteria i.e. of both the condition JA = JB (n- = O) and a = +1 (= (—1)~).

The above observations close the logi ~1 unit: we have proposed the physical

mechanism in both the criteria for the polarisation in the moments of inertia and

the relation of the latter with the discussion of the decoupled band properties in

the presence of the pseudo-spin symmetry.

Another, more general consequence of the pseudo-spin symmetry has been

discussed recently by Stephens and collaborators, Réf. [8], There, the main idea

presented was that of a (nearly) complete decoupling of the pseudo-spin degrees of

freedom from the orbital motion for many (non-intruder) orbitals. Such a mechanism

may result in the pseudo-spin alignments with the axis of rotation thus producing

the alignments in multiples of 1 /2. There exists a relation between such a mechanism

and the f>J /J polarisation discussed below: the orbital contributions of the ïtJJJ

polarisations would be neglegible for n, ~ O orbitals with the corresponding (small)

contributions originating from pseudo-spins (1/2) which should still be measurable.

18



V - SUMARY AND CONCLUSIONS

We have studied the microscopic conditions for the angular momentum align-

ments and the nuclear deformation changes in the even-even ( "core" ) nucleus caused

by "adding" to it an odd nucléon.

We found out that the 6J[J polarisation depends in a sentive way on

the T? z-quantum number. This observation helps significantly in identifying the

single-particle orbitals in superdeformed nuclei without resorting to the «/-factor

measurements which are very difficult at present.

A systematic comparison with experiment shows a good agreement with the

predictions of the microscopic calculations based on the Woods-Saxon potential.
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Figure Captions

Fig. ILl A schematic illustration of an "unusual" character of jE^-degeneracies

discussed in the text. The (E^ — E^) quantity discussed troughout the article

would be ~ lOkeV at spins ~ 40 ft and even larger at higher spins if not of specific

quantum-mechanical aspects of the motion of the least bound particles.

Fig. III.Ia Single-particle Woods-Saxon spectrum of the neutrons in function of

nuclear elongation represented by both the quadrupole deformation (/?2) explicitly

displayed in the x-axis and by the hexadecapole deformation which changes along

the /?2 axis in such a way that the whole scheme is applicable, on the average, for

many superdeformed nuclei in the A ~ 150 region.

Fig. Ill.lb Similar to Fig. Ill.la, except that now the single-particle level repulsions

have been artificially removed in order to simplify the illustration of the so-called

pseudo-5ï/3 multiplets (marked with the dotted areas). The influence of those

multiplets and the problem of abundance of the superdeformed configurations

throughout the periodic table is discussed in Réf. [5] where some details and

references to the original lifetime may be found.

Fig. III.2a Similar to Ill.la but for the protons.

Fig. III.2b Similar to III.Ib but for the protons.

Fig. IH.Sa The quantities (AJ/J)™"5, cf. Eq. (3.6) and surrounding text, for the

neutron single-particle states in the Woods-Saxon potential. The quantum number

v is replaced in the figure by the asymptotic quantum number labelling in terms

of [Nn,A]î7. The labelling corresponds exactly with the labelling of the curves

in preceding figures. In this representation the line crossings have been artificially

removed to simplify the display (the crossing-removal procedure becomes clear after

inspecting the differences between figures Ill.la and HI.Ib). It is important to

notice, that the labels play only an auxiliary role in these figures; they change

in general when the deformation passes through the crossing-points.

Fig. Ill.Sb Similar to Fig. Ill.Sa but for the protons.
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Fig. III.4 The single-particle routhian diagram illustrating the configurations in-

volved when comparing the superdeformed band structures in 151Tb and 150Gd

nuclei.

Fig. III.5 A comparison between the calculated and observed dynamical moments of

inertia (top) and between the caculated and extracted (Aj7/j7) quantities (bottom)

for the Woods-Saxon results. Several other tests performed on other nuclear couples

show a similar type of agreement.

Fig. IV.l A schematic representation of the role of the spin-orbit interaction leading

to the pseudo-spin symmetry. Plotted on the left is a "model spectrum" of an average

field potential (characteristic e.g. for Woods-Saxon spherical shape) without spin-

orbit term taken into account (only the levels corresponding a large main-shell N

one shown). Introducing the spin-orbit interaction leads to the spin-orbit splitting

represented schematically by the dashed lines. By what appears as a miracle, the

empirical (realistic) strength of the spin-orbit interaction is such, that the double

degeneracy pattern illustrated, corresponds to all the quantum numbers being

common except for the spin (more precisely pseudo-spin) degrees of freedom, see

text.
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Why are the SD-Degeneracies Strange'

Rotor:

E7(I) = (41+6)
2J

Rotor + Particle:

E7(I) = (41+6)
2(J+AJ)

= E7(I) + AE7(I)

Estimate

J(A) Jmc ~ A6/3/70 [ ft2

AJ/J ~ 5/(3A) ~ 0.01 (for A ~ 150)
AE7(I) ~ 10 keV

Figure II. 1
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