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Abstract

Wave reflections from density fluctuations with magnitudes and

frequencies typical of drift waves have been investigated. Both drift waves

and the reflected phase and amplitude depend on the density gradient

scale length, and this common feature implies that both the angular

• deviation of a normally propagating wave and the phase change on

reflection are of order unity. Thus the surface will always appear "rough"

and amplitude variations will always be large. For smaller amplitude

waves numerical solutions of the one dimensional full wave equation for

thee propagation near cutoff frequencies has been used to show how to

interpret reflectometry measurements. For density perturbations with

wavelengths near the density scale length, the external fluctuating phase

can be simply interpreted in terms of a fluctuating density near the cutoff

layer. However, the amplitude of the phase response falls substantially as

the fluctuation wavelength, A, approaches the free space wavelength of the

reflected wave, ko, and the location of the maximum response moves out in

front of the cutoff layer following the wave matching condition kA = 2k =

2rl(x)k o. Similarly, correlation measurements of density fluctuations from

probe waves of different wavelengths are shown to be limited to about

four times the average reflected wavelength.
t
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I. Introduction

In order to measure plasma density fluctuations a number of

researchers have reflected microwaves from a cutoff layer. Changes in the

phase of the incident or probe wave compared to the reflected wave have ,,

been interpreted as fluctuations in the plasma density near the cutoff. _

The situation is complicated by the fact that the total phase change, _, is,

in the WKB approximation, an integral quantity

_i_,.._(1%)ffi2ko_ Tl[l%.n.(x)ldx
. (1)

whose value depends not only on the location of the cutoff, Xco, and its

change with electron density, ne, but also on the integral over the plasma

index, rl, over the path of the probe wave. Here Xo=2rr/ko=C/COo is the free

space wavelength. The correct evaluation of the phase variation must be

found by solving the full time independent wave equation and finding the

phase change which results from a test density perturbation. In this paper
numerical solutions will be found for several model situations in order to "

show how the magnitude of the phase changes as the location and the

dominant wavelength of the perturbation are varied.

The effect of drift waves, which are thought to significantly affect the

confinement in tokamaks, will be examined in some detail, but the analysis

will apply equally well to any fluctuation whose frequency is much less

than the probe wave. There is a relationship between reflectometry

measurements and drift waves that originates in their common

dependence on the de.nsity gradient scale length. This relationship puts a

limit on what can be expected from such measurements: probe waves

with wavelengths which are short compared to the dominant fluctuation

wavelengths perpendicular to the propagation direction will be scattered

at large angles and probe waves which are short compared to the

dominant wavelength along the direction of propagation will have a phase

change of order unity. That is, long wavelength drift waves near the cutoff .

layer will make the surface appear "rough" and the concept of a simple,



mirror-like, reflection will break down.

In the case where the fluctuation amplitude perpendicular to the

. probe wave is sufficiently low or when the probe wavelength is

sufficiently large compared to the plasma waves, a one dimensional model

can be used. In this model the ratio of the phase to density fluctuations is

strongly dependent on the perturbation wavelength. When the wavelength

of the probe is near or less than the wavelength of the plasma wave, this

ratio approaches zero and the fluctuations most responsible for the phase

change occur well away from the reflection point. In the opposite limit,

when the plasma wavelength is much longer than the probe wavelength,

the change in phase depends primarily on changes in the location of the

cutoff layer, and a simple formula can be given for the ratio. Both

extraordinary waves and ordinary waves will be treated and found to give

essentially similar results except for obvious differences in the cutoff

wavelength and the parametric dependence of the cutoff location. The

exact form of the density profile is never an important issue in the

interpretation of fluctuations as long as the probe wavelength is much

smaller than the density gradient scale length. However, the most

significant parameter in determining the magnitude of the phase change is

" the density gradient scale length near cutoff.

Using the same one dimensional full wave model, limitations on

correlation measurements are also examined. Correlations in probe waves

with different wavelengths which reflect from different cutoff locations in

the plasma can give information on the radial correlation length of density

fluctuations. Model calculations show that correlation lengths inferred from

phase measurements can never be less than about four times the free

space wavelength of the probe wave. Any reflectometry measurements

which infer correlation lengths which are as small as the probe wavelength
must be influenced by features outside this model such as the two

dimensional "rough" surface effect where amplitude and phase variations

are large and where measurements of the spatial pattern of reflected

• intensity will be as important as the measurement of phase in

reconstructing the structure of local density fluctuations.
w



II. Reflection from drift waves

First, several estimates will be made of the type of phase change

expected for drift waves. Drift waves typically have a frequency which is

low compared to the characteristic electron cutoffs and resonances, and
V

have a characteristic level of density fluctuations and dominant scale

lengths which mark a natural division between reflectometry which is

simple (that is, has phase changes less than unity and which is primarily a

one dimensional problem) from the more complex situation where changes

the angle of the reflecting surface significantly alters the direction of the

reflected ray. We will only consider propagation approximately

perpendicular to B and to the density gradient. Two simple situations will

be discussed: 1) fluctuations perpendicular to the propagation direction,

and 2) fluctuations parallel to the propagation direction.

Drift waves are driven by density -gradients and for laboratory

plasmas have characteristic frequencies much smaller than the probe wave

frequency, coo, the electron plasma frequency, cope, or the electron cyclotron
frequency, COte. These waves consist of der_sity perturbations propagating

in the electron diamagnetic drift direction, VnxB, with a dispersion
relation 2

CoDe*= k0VDe/( 1 +k0219s 2) (2)

where O_e* is called the electron diamagnetic drift frequency, the

diamagnetic drift velocity is given by VDe = vTeZ/c0ce/Ln where VTe =

(Te/me) 1/2, L n is the density scale length, ne/(dne/dr), Ps = Cs/_ci, Cs =

(Te/ mi)l/2, and 0_ci is the ion cyclotron frequency. In toroidal coordinates

the density gradient is radial (r) while the primary wave direction is

poloidal (0). For large tokamaks like JET, TFTR, or JT-60 these estimates

give 5ne/n e =0.1 to 1.0% and O_e*/2rc= 20 to 100 kHz in the interior of the

plasma.

In a sheared system like the tokamak these waves grow in the r-0

plane where the fluctuation spectrum tends to become symmetric. Wave

growth is limited when the wave amplitude starts to flatten the density

gradient, that is, when



8ne/n e - 1/<ko, r.-_n (3)

The value of <ko> has been estimated from several saturation models to

., give Ps<k0> = 0.2 to 1.0. This level has been observed experimentally in
tokamaks where T e = T i = 5 keV, D+ Ps = Pi - 0.2 cm. Toroidally, the

correlation length is expected to be of order qR = 10 m.
These estimates can be used to make a very rough prediction of the

characteristics expected from measurements of the magnitude of the phase

of a wave reflected from a cutoff layer. Assume that the wave is ordinary,

i.e. E II B, where the cutoff density is determined by the condition o o = Ope.

For long wavelength perturbations one has

8n e/ne -- 8r / Ln (4)

where 8r is the change in the location of the cutoff as a result of the

perturbation 8n e, and ne and L n are evaluated at the cutoff. The phase

change outside the plasma, 80, due to this movement is of order

• 50 -- 2 koSr. ( 5 )

One can estimate the phase change for a drift wave by substituting Eq. (3)

and (4) into Eq. (5) to get

80 =ako/<l%,r>=2ko0,. (6)

Thus, for probe wavelengths shorter than the fluctuation wavelength, one

expects to have phase changes greater than unity.

Similarly, one can estimate the angular deflection, 5_g, in a test wave

traveling approximately in the r direction produced by a poloidal
-

disturbance characterized by k0"

8_ = k08r. (7)

From Eq. (4) for the ordinary wave and Eq. (3) for drift waves one has



8_g - O(1). (8)
P

This means that for probe wavelengths short compared to the wavelength

of drift wave the surface is always "rough" and reflects or scatters the o

incident ray through a large angles.
The size of the beam incident on the reflecting region is determined

by diffraction. In free space the spot diameter, s, is determined by the

wavelength and the aperture diameter, D, of the window through which
the beam is focused over a distance f onto the cutoff layer.

s -- f(Z.o/D) (9)

The changing plasma index will defocus the beam and degrade this

estimate, but it provides some guidance about the resolution of the waves

in the transverse (0, _) directions. If Z,0/2 < s, then the phase will measure

something about the wave amplitude, but in the opposite limit many

different phases will contribute to the reflected wave and the

corresponding average phase which arrives outside the plasma will be
much smaller. Thus the size of the reflected spot puts an upper limit on

the range of k0 which contribute to the fluctuation spectrum.

III. Time independent, full wave equations

Waves with frequencies near the electron plasma and cyclotron

frequencies traveling in a cold inhomogeneous magnetized plasma are well
approximated 3 by linearizing the MHD fluid equations assuming me/mi<<l,

quasineutrality, and considering frequencies which are high compared to
collision frequencies

4x-_-= _E-c0ceJ ( 10)

it,

and Maxwell's equations



_)2E _ 4n_---Jc2Vx(VxE) + _t 2 = ( I I )

_B
cVxE = ---

_t (12)
"O

where COpe= 4nnee2/m e and COee= eBJ meC are the plasma and electron
gyrofrequencies, respectively. Here E, B, and J are the second order

electric and magnetic fields and currents respectively associated with the

wave, and Bo is the unperturbed magnetic field. This set of equations

describes wave propagation in the vicinity of characteristic cutoff regions

determined by the relation of the dominant wave frequency, coo, to COpeand

_ce" If the temporal changes in E and J are fast compared to n e or B o then
one can assume a time dependence of the form ei°o t and write

Vx(VxE) - o_/c2e:E = 0 ( 13 )

where

• S -iD 0 1

)_= iD S 0

0 0 P (14)

t,0 o/
S=I O2o---_c2eD=- P=I .and ' _COo,o_,2'--_,2o-_ " -_o ( 15)

Equations (13), (14) and (15) describe the full three dimensional wave
propagation of E alone.

For perturbations typical of a tokamak system and reflectometer

geometry, n e = <ne>+6ne(r,0) and k o. Bo= 0, Mazzucato and Nazikian' have

given a scattering analysis in the Born approximation for the amplitude of
the scattered phase. Here we will concentrate on an "exact" numerical
solution of the one dimensional problem with _Sne(r) and the relationship

" between the observed phase change external to the plasma to local

perturbation in the density. For one dimensional propagation
i



perpendicular to a shearless magnetic field 5 and for variations in S, D, and
P which depend only on x, this set can be reduced to equations which have
the form of the time independent Schrodinger wave equation for the

ordinary and extraordinary modes of propagation:

Ordinary mode -

(02
O2Ez(x) + '°rl2(x)Ez(x) = 0

Ox2 c2' (16)

where E=Ez(x)i z, B =Boi z,rlo 2 = P = 1 -(0pe2/O)o 2 and the wave becomes
2

evanescent at the boundary defined by rlo2 = 0 or (002= COpe.

Extraordinary mode -

_2Ey(x) c-_TI_x 2 + 2(x)Ey(x) = 0 (17)

where E = Ex(x)i x +Ey(x)iy, B = Boi z, iEx/Ey = D/S, fix2 = ($2-D2)/S, and i is
the unit vector. The wave becomes evanescent at the boundary defined by

2 0 (the + and - signs refers to the left and rightfix2 = 0 or (002+ (0ce(0o- COpe=
hand cutoffs respectively, and "right" means that the electric field rotates

in the direction of the electron rotation in the magnetic field).

The propagation equations for the ordinary and extraord:nary waves

are very similar. As in the case of propagation in a uniform media where

the substitution E-> Ee ik'x gives V×(V×E)->-k×(k×E), the differences are

in the wave cutoff conditions and the polarization. A CMA diagram

showing the ordinary and extraordinary boundary regions (rlx.o = 0, rlx->Oo)

versus o_ea/o)02 and COce/coo is shown in Fig. 1. The same boundaries versus
frequency and radius for tokamak magnetic field and density distributions

[B = BoR/(R+r); ne = no(l-r2/a2) 2 with TFTR parameters" Bo= 5.0 T, R = 2.60

m, a = 0.90 m, and no = 5.0x1019 m3] are shown in Fig. 2.

For TFTR parameters one can use a lower frequency at the ordinary

mode cutoff or a higher frequency at the right hand extraordinary mode

cutoff where coo>coce. In our example the ordinary mode at COo/2n =50 GHz



(_o--6 mm) and the extraordinary mode at COo/2r_ = 140 GHz (_'o-- 2.14
mm) are cut off in approximately the same location, 41.6 cm and 39.7 cm

, respectively. However, the higher frequency may have some technical

advantages because of its better focusing properties (or smaller la.unchers),

e its shorter skin depth, and because a significant region of the plasma is

accessible from the large major radius side of the torus.

IV. Particular solutions and approximations

The solution of Eqs. (16) and (17) have a number of common

features. In the propagating region where aq2>0 the solutions are

oscillatory. Away from the cutoff location, the field can be estimated by
the WKB approximation"

LEwra(x)_ Eo sin[Ow_.(x)] " Owr_(x) = 1% rl(x')dx'
. (18)

where the phase has been chosen to be zero at the cutoff to make the field

amplitude there zero as weil.

In the cutoff region where ri2<0 the solutions are approximately

exponentially damped as

t

E_, _-Eoe- (x,,- x)/5 ( 1 9 )

P

where E varies from its value at cutoff, E o (which, in the exact solution, is

not zero) in the characteristic distance

5o x _o " 2 I-1/3= Orl°,xI
' lc2 3x Ix=x,. (20)

For the ordinary and extraordinary modes respectively
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= I.,nx=x,,' 8x = + e ix=_ (21 )

where + refers to the right hand cutoff and Ln,B are the characteri.stic scale
lengths of the density and magnetic field evaluated at the cutoff. In the

example of TFTR given previously these lengths are 80 = 0.70 cm and 8x+=

0.23 cm, in this example, nearly the same as the free space wavelengths.

When the density profile is linear for x < a such that rlo = 0 at x = Xco

and rlo = 1 for x _>a, Eq. (16) can be solved in terms of Airy functions, Ai. 6

For a > x > Xco

Ez(x) = EoAi(_) --->Eo/[_l/4_;lt2]sin[_3/z-_4] when _>> 1 (2 2 )

and for x < Xco

Ez(x) = EoAi(-_) --o0 when _<<- 1 (2 3 ) ,

where _ = (x-Xco)/8 o. These solutions have the property that the field

maximum occurs at _ = 1 or X-Xeo =6 o and Emax/Eco = Ai(1)/Ai(0)= 1_508.

When _ >> 1, the ratio of the field maximum to the field amplitude for x > a

is given by

Emax (x-Xeo--_o)/E(x>a) = "f_'Ai (1)[(a-xeo)/5o] TM ( 2 4 )

-=0.949[(a-x_o)/ao] TM= 0.94_-_ Ln]'/6 . (2 5)
I|

Finally, since

3[ ao J = rlodx (26)
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the phase between the incident and reflected waves, as seen well away
from the cutoff, is just rr/4 larger for exact solution than for the geometric

. optic (or WKB) solution.
Solutions for density profiles which do not change rapidly on a length

scale 5 but are not linear will still have an approximately linear region near
the cutoff. Thus, the the exact linear solution provides a model for

significant features of the field variation near cutoff, while the WKB

solution gives a good approximation to phase and amplitude variation

away from cutoff. The estimate given for Emax/Eco will be good for any

profil*s for which [5]co <<[Ln]co, but Emax/Ex>aiS not a local quantity and the
linear formula cannot be generalized for arbitrary profiles. Nevertheless,

for many cases of practical interest one has a-Xeo = 6(L n) and the linear

formula [Eq. (25)] with L n _ [Lh]co provides an estimate of the ordinary

mode amplitude.

For long wavelength disturbapces the response of the phase

measured outside the plasma can be esamated from the change in location

of the cutoff. The ordinary mode case has been given in Eqs. (4) and (5).
" 2 - 0 tueFor the right hand extraordinary mode cutoff, O_o2-C0cef,0o-_pe - '

cutoff position at x is determined by

O_o2_ (e/mec)B(x)oa o- (4he2/me)ne(X ) = 0 (27)

and the cutoff location, x', due to a disturbances _Sne and 5B at x' is

determined by

C0o2- (e/m e c)[B(x') + 6B]o_o- (4r_e2/me)[ne(X') + _Sne] = 0. (28)

Expanding around _Sx= x - x" gives Bo(x')-_ Bo(X) + (3Bo/_X)6X and ne(X') --

ne(X) + (3ne/_x)_Sx.

5ne/ ne + (COceCOo/O._pe2)SB/B+ [(COceCOJCOpe2)/L B + 1/Ln]_Sx = 0 (29)

where COceCOo/ 0_pe2 >1. The phase change is given by 6_ = 2koSX. The phase
" of the extraordinary mode reflection wave will have some sensitivity to

fluctuations in the magnitude of the magnetic field. In tokamaks 5B/B<<
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_Sne/n e and the field term is generally negligible. Experimentally, 7 the
range of field fluctuations associated with MHD or incoherent magnetic

activity gives 5B/B = 1 0.4 to 10"6; however there may be special
circumstances in which the field term influences the phase.

These estimates do not deal with the question of how long the •

perturbation wavelength must be nor with what happens when the

perturbation wavelength approaches the probe wavelength. In order to

investigate this Eqs (16) and (17) will be solved numerically. The estimates

given above will be found to be valid only when the perturbation

wavelength approaches Ln.

V. Numerical Solutions of the Time Independent Wave Equation

A numerical solution of the ordinary mode of Eq. (16) for the

previous TFTR example in the vicinity of the cutoff is shown Fig. 3 along

with the approximate WKB (x > Xeo) and exponential solutions (x < xco). The

field is chosen to be unity at cutoff and the WKB amplitude is matched to
the exact solution at x = a. The WKB and exact solatiens are out of phase at B

the plasma boundary within 0.2% of _/4 and the ratio of the maximum

field to the external field is the same as that estimated by the linear

density solution within 0.1%. A similar extraordinary mode example, for

which the cutoff location is approximately the same, is shown in Fig. 4. No

attempt is made here to treat the tunneling problem. It is assumed that

the resonance layer is sufficiently far from the cutoff that the wave goes

asymptotically to zero beyond the cutoff. Although the details of the

extraordinary index variation near cutoff are somewhat different, the

phase differs from the WKB estimate of n/4 at the boundary by only 0.4%
and the ratio of the maximum to the external field is similar to the

ordinary case but not well approximated by the linear estimate. These

features of the exact and WKB solution ar_ typical for any situation in

which 5 <<Ln, a-Xco.

Using the zero order solution found above, the response of the phase
lr

of the electric field at x=a to a model perturbation can be calculated. The

phase response is related primarily to the spatial period of the
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perturbation and to its location. We choose a perturbation of the form of a

wave packet located at xo with a magnitude 5n o, a spatial period, A,

- extending over a region characterized by a width A:

• 5he(X) = 5noe-(X-X°)2/A2sin[2rt(X-Xo)/A] . (30)

Figs. 5 a, b, and c show the response of the phase change, ilO, in the

ordinary wave of Fig. 3 at the plasma boundary as the perturbation center,

xo, is moved across the cutoff region. The three examples ha',e A/Xo= 4.0,
2.0, and 1.0, respectively with A = 2.0 cm, k o = 0.6 cre, and _Sno = 1.0xl0 "3

which is small enough that there is no densit/ inversion, that is, 6n/n <

2rtLn/A. Two features may be noted. First, the magnitude of the phase

change is much less than the estimate of Eqs. (,_) and (5), and, second, the

location of the maximum response moves away from the cutoff location as

A---> _'o. The location of maximum response corresponds closely to the

wave matching condition kA --2rlo(x)ko in agreement with the scattering
. formalism of Mazzucato. The WKB solution has approximately the same

magnitude as the full wave solution but gives an incorrect location of the

• maximum response near the cutoff.

When the wavelength of the perturbation is half the probe

wavelength, the matching condition is satisfied only at the plasma edge,

and the phase response becomes vanishingly small. The change in

response and the location of maximum response as the perturbation

wavelength approaches the wave matching limit is shown in Fig. 6. The

maximum phase change relative to the long wavelength response,

_I;_max/_l)A..__, and the location of the maximum response, Xmax-Xco, as a
function of A for the ordinary mode described in Figs 3 and 6 are shown.

In this case _A--,**-" 0.26. For the longer wavelength perturbations the
width of the envelope has been correspondingly increased so that the

maximum perturbation amplitude is constant.

The wave matching condition can be approximated near cutoff where
,w

an expansion for _.o/ 2A << 1 gives

" Xmax_ Xc° _- (_o/ 2A)2IL n Ico. (3 1)
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Similarly, an expansion of the WKB phase for a small amplitude

disturbance and k./ILnl << 1 gives
,c.

3.23/211I. ¢oJ (32) "

The two curves are shown as the solid lines in Fig. 6.

The extraordinary wave reflection has a very similar character, but

the details of the shape of the phase perturbation and the location of the

maximum response versus perturbation wavelength change consistent

with the shape of rlx(x) [determined by ne(x) and B(x)]. For example, for the

extraordinary case shown in Fig. 4, a perturbation of the same magnitude

and for which A/Z.o = 2 gives _gl:_max]_A---_ = 0.070 which is similar to the

ordinary mode case, i.e. 5_max/_A..._ = 0.075 for the same ratio. As with

the ordinary mode, the location of the maximum response follows the

matching condition, kA= 2k -- 2rlxko . Approximately,

Xmax- Xco -- (_.o/ 2A)2/12/[En]co +(COcCOo/o_p2)2/[LB]co[ (3 3 )

near cutoff. The shape of the rollover region in Fig. 6, therefore, depends

primarily on the details of the index shape near the cutoff.

In summary, long wavelength features in radial density fluctuations

in the vicinity of the cutoff dominate the radial phase fluctuation observed

external to the plasma. However, the phase can be significantly influenced

by waves well away from the cutoff layer whose wavelength is similar to

or larger than the wavelength of the probe wave and whose amplitude is

sufficiently large.

VI. Correlation Measurements

Several different correlation measurements are possible with

reflectometry. One could reflect from the same cutoff layer with a poloidal

or toroidal separation. If the beam spot size [see Eq. (9)] on the cutoff

layer, is smaller than the poloidal or toroidal correlation length of the
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fluctuations, one could imagine measuring the correlation between the two

reflected phases as a function separation and thereby determine the

- correlation scale length. Alternatively, the correlation in phase between

two reflectometer beams with slightly different wavelengths could, be used

to estimate the radial correlation length. The latter has been used by

several groups to find such radial correlation lengths. 8 These radial
correlation measurements will be examined in this section.

Probes waves made up of different wavelengths corresponding to

cutoffs at different positions in the plasma will be modeled. In order to

find the spatial coherence of the fluctuating density we consider measuring

the coherence of the fluctuating phase. One measures the time history of

each fluctuating phase and calculates the normalized cross correlation

function for various reflected wave frequencies (corresponding to various

spatial separations of their respective cutoff positions). This kind of

experiment can be modeled using the same sort of numerical solution to

the time independent wave equation considered in Sec. V. The time

. sampling of the real problem is simulated by making an ensemble average

of randomly generated density fluctuation functions 8nej(X ) each with

predetermined spatial coherence properties. This simulation is analogous

to a technique originally developed for the turbulence imaging diagnostics

a extended for this application. 9'1° The density perturbation is modeled as

a test wave on the interval (-a, a) where

a

5nej(X) - _Sno h(x-x')Fj(x')dx'
a (34)

h(x) is a point spread function which determines the spatial correlation

properties of 5nej(X ), and each function Fj(x) takes on random values
between +1 at each value of x on the interval (-a, a). Each of the j

functions, Fj, is chosen independently, so that both the average of Fj's at a.
given value of x or the average of each function Fj over x is zero. For a

sufficiently large number, N, of functions, Fj(x), the density autocorrelation
function is then
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<Sne(x 1)Sne(x2)> =lim 5nej(Xl)Snej(x2)
N-_,*

(35)

<_Sne(Xl)Sne(x2)> =_--_° I h(X-Xl)h(x-x2)dx .
_J., (36)

The correlation properties of h also specify the k-spectrum of the density
fluctuations. If the correlation properties are translation invariant, that is,

<_Snej(Xl)_inej(X2)>= P(Xl-X2), then the Fourier transform spectrum is given
. by

f 5n 2 .
<an2(k)> - p(x)eikXdx =--Tlh(k_/

(37)

If one takes a particular point spread function, H, as

B

h(x) = [ 2 /l/2e "2x2/'_"a

_Ae',r'ffl ( 38 ) .

[Sno2] (x,-x2)2/a_
<Sne(xl)Sne(x2)> = L 3 J e"then (39)

as long as x 1 and X 2 are sufficiently far from the ends of the interval. This

density autocorrelation function is characterized by a correlation length Ac.

This choice also implies a k-spectrum given from Eq. (37) by

<Sn2(k)> = e" Ac/

L 3 J " (40)

This spectrum falls off rapidly with increasing k and is roughly consistent
with theoretical drift wave models and with microwave scattering
measurements of the density fluctuation spectra in tokamak plasmas. 1_

The phase autocorrelation function analogous to the density
autocorrelation function is
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<5_j(xl)5_j(x2)> = lim 5_j(x )5_j(Xz)
" N_ N 1 (41)

where x 1 and X 2 are taken to be the cutoff locations corresponding to the

probe waves k 1 and k2and the presumption is made that the unperturbed

density profile is known with sufficient accuracy that this correspondence
can be established.

From the information obtained previously on the response of the

phase to a localized test wave, we expect that the phase and density
autocorrelation functions will be similar for long wavelength correlations,

but somewhat garbled as the coherence length approaches the probe

wavelength. Because the model fluctuation function has been constructed

to be spatially homogeneous, no information on localization will be found.

The questions to be asked are these: What is the relationship between the

functions <_nej(Xl)Snej(X2)> and <5Oj(Xl)_tl)j(X2)>? What is the smallest
correlation length which can be resolved by measurements of this type?

Fig. 7 shows the results of a calculation of normalized autocorrelation

• functions, <_Snej(Xl)Sne (x2)>/[<Snej2(Xl)>l/2<_Snej2(x2) >1/2] a n d

,T_j(xl)&I_j(x2)>/[<&I)j2(x 1)>a/z_j2(x2)>l/z], versus x 1- xz for an ordinary mode
example where ne(X) = 1.0x1013[1-(x/a)2] 2and ko = 1.30 to 1.55 cm (which

for a=90 cm corresponds to cutoffs at 39.0 and 75.4 cm) and correlation

lengths Ac = 2.0, 4.0, 8.0 and 16.0 cre. The constant 5n o has been chosen to
make the rms density the same as the maximum of the wave packet used

in the example of Fig. 5, that is, <_Snej2(x)>1/2 =0.5x10 "3. The correlation
length associated with the phase autocorrelation is always longer than the
actual value and is never less than about 8.0 cre. The density

autocorrelation is calculated with the same statistical sample as the phase

autocorrelation and, because of the limited statistical set (N = 50) used in

this computation, is an imperfect representation of the parent
. autocorrelation shown in dotted lines. Nevertheless, the conclusion is that

the resolution of correlation lengths less than about four times the mean

, probing wavelength is not possible. The situation for the extraordinary
mode is similar, but, of course, smaller probing wavelengths can be used

for a given location in the plasma. The same conclusion would be reached
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by taking the autocorrelation of the WKB solution since no localization of
the fluctuations is used in the above calculation. Based on the localization

determined from the test wave calculation correlation results showing four

to eight times the probe wavelengths would be localized to this _degree at

the position of the mean cutoff position, v

VII. Conclusion

A time independent, one dimensional, full wave calculation has been

used to investigate the interpretation of phase fluctuations measurements

in reflectometry and how they relate to localized density fluctuations in a

situation typical of tokamak experiments, lt is found that density

perturbations with wavelengths near the free space wavelength of the

probing beam are not resolved. As the wavelength of the perturbation is

i,creased, the location of the region which primarily contributes to the

phase fluctuation is given by the location of the scattering matching

condition k A = 2k = 2rl(x)k o. For the ordinary mode this means that when

the wavelength of the fluctuations is approximately (Z,oZLn/4)f/3, the •
maximum phase change occurs one fluctuation wavelength in front of the

cutoff. For wavelength fluctuations whose wavelength is approximately L n

the phase response is _:_ = 2koLn(Sne/ne), but falls by over a factor of ten at
the short wavelength limit given above.

Similarly, density correlation length estimates based on the

correlation of phases of probe waves of different frequencies cannot, in

this model, produce correlation lengths less than four to eight times the

probe beam wavelength. Nevertheless, if one chooses the right hand

extraordinary mode cutoff where the probe wavelength can be somewhat

smaller for a given cutoff location, one can substantially improve the
resolution of the measurement. This means that radial autocorrelation

measurements of the order of one centimeter should be possible in a large

tokamak. Better spatial resolution is obtained at the highest toroidal field,

that is, the highest value of C0ce.

A major limitation on such measurements on tokamaks is associated

with an inherent property of drift waves which leads to significant angular
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scattering of the reflected beam caused by poloidally propagating waves.

On simple reflectometer systems which use well collimated antenna

• patterns to minimize the reflection spot size, this can lead rapid amplitude

changes in the reflected beam and difficulty in tracking the phase. Phase

,,, tracking problems probably related to this phenomena have been
12

encountered in most tokamak reflectometer systems.
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Figure Captions

Fig. 1 A CMA diagram of the cutoffs (1"i=0) and resonances (rl->oo) for the •

cold plasma electron waves. Ext and Ord signify extraordinary and

ordinary waves, respectively. RH and LH refer to the right and left hand ,,

cutoffs and UH to the upper hybrid resonance. Cutoff regions are
crosshatched.

Fig. 2 The same cutoffs and resonances shown in Fig. 1 are illustrated in

a tokamak field configuration where B = BoR/(R+r) and n e = no[1-(r/a)2]2

with a = 90 cre, R O = 260 crn, Bo = 5 T, no = 5.0xl013cm "3 (typical TFTR

parameters). The ordinary mode cutoff at 50 GHz (Xo = 0.6 cm) and the

extraordinary cutoff at 140 GHz (_.o = 0.214 cm) are shown.

Fig. 3 The electric field, Ez°rd, and index, T1°rd, is shown of an ordinary

wave with _'o = 0.6 cm reflecting from a cutoff at Xco = 41.6 cm in the field

and density configuration of Fig. 2. The solid line is the exact numerical
solution and the dashed line for x > x is the WKB solution. The dashedCO

line for X<Xco shows the approximate exponential cutoff in the evanescent

region.

Fig. 4 The electric field, Ez TM, and index, rlTM, is shown of an

extraordinary wave with _-o = 0.214 cm reflecting from a cutoff at Xco =

39.7 cm in the field and density configuration of Fig. 2.

Fig. 5 The response of the phase, 50, measured at x=a of the ordinary

wave of Fig. 3 to a test perturbation in the density of the form 5noexp[-(x-

x0)2/A2]sin[2n(X-Xo)/A] with A = 2.0 cm and A/_ o = 4.0 (a), 2.0 (b) and 1.0

(c). The location of the perturbation, xo, is varied in the vicinity of the
cutoff.

v

Fig. 6 The maximum response of the phase, 5(I_ma x, normalized to the

long wavelength phase response, 8_A___, and the location of the maximum

response, Xmax-Xco, is shown as a function of the perturbation wavelength,

A, for the ordinary mode situation of Fig. 5. The solid curve for Xmax-Xco
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corresponds to the matching condition kh = 2rloko and the solid curve for

_>(I)max/_;l)A._+** represents 'the approximation of Eq. (32).

Fig. 7 The normalized density correlation function, <Snej(Xl)Snej(X2)> N =-

.. <_Snej(Xl)Snej(X2)>/[<Snej2(Xl)>l/2<_Snej2(x2)>l/2], and phase correlation function,

<f)(I)j(Xl)_)j(x2)> N = <fi_j(x1)5(I)j(x2)>/[<4_(Dj2(x1):>I/2,z_(Dj2(x2)>I/2], are shown
versus the cutoff separation, xl-x 2, for parent correlation functions (dashed

lines) described by correlation lengths 2.0, 4.0, 8.0, and 16.0 cm.
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