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INTRODUCTION

A great amount of papers is dedicated to the orbit theory in AVF
cyclotrons {(see e.g. /1,2/). In these papers more attention is paid to
the study of particle motion about a fixed radius, assuming that the
radius gain per turn during acceleration 1is negligibly small.
Acceleration is either not studied at all, or is treated separately/3{

Recently sevel"'al papers on the general theory of accelerated
orbits have appeared. We shall especially mention the paper by
Hagedoorn and Corsten /4/. In what follows an attempt will be made to
develop a similar formalism for direct application to AVF cyclotrons.

The motion of charged particles in AVF cyclotrons appears to be
one of the most complicated in comparison with the other cyclic
accelerators. Its complete description can be achieved by numerical
integration of Hamilton's equations of motion in the canonical
variables. Fortunately for the accelerator theorists, the role of
different factors influencing the particle trajectory can be usually
put by order of magnitude to some hierarchy. Consequently, taking into
account more and more factors one can get more and more detalled
description of the trajectory order by order. The study of particle
motion “step by step" is usually well suited with experimental data

and is preferahle for its convenient physical meaning.

1. HAMILTONIAN FORMULATION OF THE ORBIT THEORY IN CYCLIC ACCELE-
RATORS

It is well known 75/ that the Lagrangian of a particle with rest
mass m and charge q, moving in electromagnetic field, defined by a
scalar potential ¢ and vector potential A is

Z/CZ)‘V2 + qv.-A. - qp (1.1)

_ 2
L= -m,c (1-v .

where v=dr/dt is the particle’'s velocity and c¢ is the velocity of

light in vacuum. The first step is to define the design orbit of the
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particle-;;(s), where s is the curve length along the design orbit. If
the external field has a symmetry plane (median plane), the design
orbit is a plane curve lying on it. The design orbit is completely
determined by the curvature K and the centre of curvature in every
point.

Define now the natural coordinate system in which the position

- s
vector r(s} is

Tlx,z,s) = T_(s) + xn(s) + zb(s), (1.2)

where x is the deviation from the design orbit in the direction of the
unit normal vector n(s), z - the deviation in the direction of the
unit binormal vector b(s). The triple (nb,T) (7 belng the unit
tangent vector) defines a local coordinate system along the design

orbit, and satisfies the equations
;(s]=d?;/ds H dt/ds=-Kn N dn/ds=K7 + kg ; db/ds=-kn

called the Fresnet formulae, where k(s) is the torsion (k=0 for plane

curves). Using the expressions

Ve=drzdt = v.n + v.b + v _(1+Kx)T
x z s

(1—v2/c2)1/2={1-[v 2+v 2+v 2(1+Kx)2]/c2)1/2
X z <]

V.ASV A+ v A+ (1+Kx)v_A
X X zz s's

and the relation
H= YxPyt VP2t VePg™ L.

where
_ _ 2, 2,~172 3 -
p,= aL/avu— movu(l v /et + un H u=(x, z)

_ - 2, 2 2.-1/?
P= BL/BVS- movs(1+Kx) (1-v/c™) + q(1+Kx)AS



we can write down the Hamiitonian W as
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Equations (1.8) enable us to apply Euler's theorem for homogeneous
terms, supposing that F and G are series of homogeneous polinomials in

x and z, so that

F=128"%% 138 (s 148 Ph .
S S S

G =(1+kxr2)B, e t1/20kx38. Ve (1/30ksar8, B0 |
X X X X
{1.8a)
il
c_=(1+kx/2)B_ O u(1,20kxr318_ Vs (130kwraB_ Pl
z z z z
-1
G = (2G - xG,)(1+Kx) °,
(03 (1} (2} * - .
where B .B B etc. denote homogeneous polinomials in x and z of

orders 0,1,2 etc. Neglecting the beam current, Maxwell's equations for

B are
rot B=0 H divB=0. (1.9)
The first equation (1.9} gives the opportunity to express the field by

a scalar potential ¢ as

B = grad ¢ (1.10)
and the second equation is simply the laplace equation for ¥
ay=0. (1.11)

[f we use the midplane symmetry the scalar potential is odd in z and
3

w=(ao+alx+a2x2/2!+A..)z-(bo+b1x+b2x2/2!+A,.}z'/3!+(c°+c1x4...]zs/S!+

+ L. (1.12)
where the coefficients are functions of s and b’s, c's etc. are
related to a's by equation (1.11) as

b=a "+ Ka,+ a
[} 1

o 2

el
b1=—2Kao -K a '+a, -K al+Ka2+a3 (1.12a)

—ekZa # oo okt kS, ool
b2—6K a, +6KK a, 4Ka1 2K a, +2K d1+32 2K asza3+a

The prime denotes differentiation with respect to s. The coefficients
a's have the following simple meaning

a =(B.) . 5,=(8B /8x) . a.=(8%B sax7) ... (1.12b)
o z 1 z x 2 z *

Z K=2Z=0 =Z=0 =Z=0
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It is easy to see from eqs. {1.10) and (1.12) that the magnetic field
can be computed if BZ evaluated in the median plane is known, so we
can find the functions F and G by (1.8a) and therefore complete the
calculation of ;; using (1.7).

The acceleraling structure in AVF cyclotrons is usually a dee
system where :;=O, and ¢#0. Taking the midplane symmetry into account
we cast the potential ¢ in the form
xtAX /204, (B 4B, x+Bx /20 +. . )2 /21 +(C +Cyxe. . )2 /4.

¢(x.z,s)=Ao+A
(1.13)

1
1f the series (1.13) is substituted in the Laplace equation (1.11) for
¢, the relations between B's C's etc. and A's obtained, are exactly of
the form (1.12a).

Let us introduce a canonical transformation by the generating
function
S, = in+ z$;+ Eo + q fp(x,z,s,0)do,

2
where o=-t is a canonical variable conjugated to H. Then

% = oas,/0p, = z ‘9p_= ;T = 08S/6E =
X = 3 2/apx— X ; z = aszxapz- z ; a = > =0

= 85 /8u = p E ( )d p.-qE H =( ) (1.14)
p,= 85,78u = p -q J (X2, 8,0)de = pu-q u H u=(x, z .

H= asz/au = E + qp(x,2,s,0) = moyc2+q¢(x,z.s,v).

where Eu=—6w/6u ; u=(x,z). The new Hamiltonian is

o 2,2 22 A =~ 2 A -~ 2,172
H=-(1+ /e = - - - - - - - -
(1+Kx){E"/c m ¢ (px qu qux) EPZ qEZ qAOZ) ¥ q(l+Kx)AoS
-q(1+Kx)ES (1.15)
with the notation
- -
E_(x,2,5,0)=[E_(x,2,5,0)dr=-(1+kx) "' op(x, 2, 5,0)/8sdc (1.16)
In the new variables
;u=su/po=8u/(moc) 3 u=(x,z) ; T=co ; 7=E/E°=E/(m°c2) (1.17)
the scaled Hamiltonian reads as
Teh/p = (14Kx) {721~ (F.-qF. qo_)2-(F.-9F -ga_1211725(1+kx)A_ -
o x "x Tox” [z Tz oz ]
—q[1+Kx)ES (1.18)

~ -~ ~
where q=q/po, The terms Ex and Ez are small compared with on and Aoz

and may be omitted. The part of T in (1.18) depending on X; denoted by

~

Hb is
=~ o 2_ - 2,172
Hb—Br(1+KX)( [1 (px EAOX) (pz—erz) 1 —ers}‘ (1.19)

5



where

-~ A
=q/p= s = = : = . 1.20
£=q/p=q/(p B7) P p,=P,/P=P /(P B7) ; u=(x,2) (1.20)
The relative momenta P, and Bz and the deviations x and z are usually

small, so that the square root in (1.19) may be expanded in power

series in x,Bx,z,Ez. After quite tedious calculations one finds/7/
Hb=Hbo+H1+H2+H3+H4+... (1.21)
With
Hbo=_87

i~

H1=Bz(eao—K)x

-~

o —2-2 2 2
Hz-ﬁI(Px +p, )72 + efyl(Ka +a )x"~a z 172

" =ByKx(p, 2+S 2)/2 + epya 'z(zp. ~Xp_)1/3 +
3 X z o X z

+ eBZ[(Ka1+a2/2)x3- (Ka1+a +bo/2)x22]/3 (1.22)

2

T =ar (3 245 %)2 . . - _ = 2 ,2.2,.2. 2
H4—ﬁr(px P, ) /8+eBz(Ka° +3a1 )xz(sz xpz)/12+e Brao 2 (x“+z")/18+

4 2.2 4
+CBT[(K32/2+33/6)X —(Ka2+a3/3+Kbo/2+b1/2)x z +blz /61/4

Let us now briefly review some basic relations from the theory of

AVF cyclotrons. The isochronous field is given by/s/
B. _(R) = B(0)(1-R%/R %) 12 (1.23)
is ©
where
B(0)=(mowo)/q=(A/Z)(mpwo)/e ; R=1/K ; Rm=c/wo (1.24)

and w, is the angular frequency of motion on the design orbit, A ~ the

mass number, Z - the charge state, mp - the proton mass, e ~ the ele-

mentary charge. The curvature K of the design orbit is found from the

relation
- _ -1
K—[qBiS(R)]/pe ,or K—[BeRm) (1.25)
the P and Be being the design momentum and the design relative
velocity of the particle respectively. Furthermore/l/
(Bz)z=°=Bz(R,o)=B(R)[1+F(R,6)], (1.26)
where
- _lfu
B(R) = <BZ(R,0)> = (2n) BZ(R,ﬂ)do (1.27)
L
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F(R.o)=[BZ[R,o)—<BZ(R.a)>1/<nztn,a)>=IBz(R.a)'E(n)}xﬁ(n) (1.28)
and © is the azimuthal angle depending on thc curve length, so that
d¢ = Kds . (1.29)

The function F(R,®) is periodic in ® and may be Fourier analized to
give
F(R,9) = g [An(R)cosnﬂ 4+ Bn(R)sinnﬂ]. {1.30)
Define now the relative change in guiding field for a deviation
from a fixed radius R
w(x,3)=B_(Rex, $)/B(R) ,or  B_(Rex, 9}=B(R)u(x,9) (1.31)
whose expansion in Taylor series in x/R reads

u(x.ﬂ)=1+u’x/R+u”(x/R)2/2!+..4+I [(An+An’x/R+An"(x/R)2/2!+...)cosn0+
n

+(B_+B_‘x/R+B ”(x/R)Z/Z! +...)sinnol, (1.32)
n n n
where
o m = w2, = 2= 2
u’ =(R/B)dB/dR ; u“=(R"/B)d"B/dR etc. (1.33)
G _*=RdG_/dR : G "=R%d%G_/dR® ete. (1.34)
n n n n
and G =(A ,B_). Note that
non’ntt_
G_‘=(R/B)d(BG_)/dR=p’G_+RdG_/dR etc. (1.34a)
n n n n

Usually u'Gn is much smaller than RdGn/dR and therefore eq. (1.34a) is
transformed to eq. (1.34). In the case of N - fold symmetry the
flutter profile F(R,#%) consists of two parts: the structural part
including harmonics of the form n=kN and a nonstructural part (the
remainder of the sum (1.30)) which we shall treat as a perturbation.
The mean field B(R) can be expressed as
B(R) = B, _(R)[1+AB(R)/B, _(R)], (1.35)

where AB(R)} is a small perturbation to the isochronous field due to
imperfections of the cyclotron magnet. Let us for convanience write
down some coefficients a’s from {1.12b}

ao=B(R)u(0.0)=Bis(1*AB/Bih)(1+F)
a =B(R) (9u/0x)__ =KB, (1+AB/B, ) (u'+F’) (1.36)
=B(R) (8%/0x°)___ =KB. (1+AB/B. ){p"+F)
2 X=0 is is 4

where F™) RPN aR",



The entire Hamiltonian is obtained if the term —q[(l+Kx)E ]x 720
is added to Hb in (1.21) and (1.22). We are not interested here in the
focusing effect of the accelerating gap so we have dropped terms of
higher order in %,z that arise from the last term in (1.18). Involving
thin lense approximation for the accelerating gap we get
ERICKOE ), == (2/A) leUy/ (m c) 1 (kN w )7 f (9)cos (N w T/c-g ),
(1.37)
where Ud is the dee voltage, k is the harmonic acceleratiop mode, N0
is the number of dees, (N is the initial phase of RF-field, and f(#)
is a function determining the location of acceleraling gaps, so that
fis)= Z [3 (o~ -0 -2np)-5lo- 5 9 ~2rp)+&(6-9 -2n/N -2np)]). (1.38)
In equatJon (1.38) 8(x) is the Dirac &- funutlon‘ eo is the angle
between the reference point of flutter preofile and the nearest accele-
rating gap and 9u is the dee angle.
Making profit of eqs. (1.12a), (1.17), {1.20), (1.25) and (1.36)
from (1.22) we obtain
ﬁo=—RBz—(2/A)[eUdifmpc)][kNowo)
H1=Bewex(l+hx)—3yx

_lf(ﬁ]coska w T/c-¢ )
o o o

H,=R(5, 245 %)/ (2B )+B 7 (8 -8 2" )/ (2R)
Ho=x(P.2+5.%)/(28y) +[B__/(By) 1 zh_ (25 -xP_)/ (3R)+ (1.39)
3 X z e’e 2 %Py z )
3 2 2
+Beze(g3xx 84, %2 /72)/(3R™)
H = (32+’;5’2)2/18Kﬁ PO T
where

h_ = F + 4B/B.

X is
8, = 1T+ '+ F + F'+ AB/Bis
g2=“+F

h2 = 8F/8% (1.40)
) ngX_T p'+ F'+ (u"+F”)/2

8y, = 37F/897+ K (8K/89) (8F/89) + 3(u’' +u”+F’ +F") |

The Hamiltenian expansion (1.39) describes the motion now in

terms of a new independant variable ¢ instead of s.



2. CALCULATION OF THE DESIGN ORBIT
Let us now perform a canonical transformation with a generating

function
d e o~
F2 = Xp + Zp + (r-re)(1+7e) (2.1)
so that
U= an/apE B pu=aF2/au=pu H u=(x,z) . (2.1a)
T = BFZ/EW = r—re H ¥ = an/ar = 7+7e .

Assuming that the quantities'?, 7 are small compared with Te and T

respectively we obtain
= i - 2 3 -
dTe/dﬂ— R/Be R dwe/dﬂ- [Z/A)[eUd/(mpc )]f(ﬂ)51n(kNowore/c wo) (2.2)
and the transformed Hamiltonian reads as
N a2 3 -1 ~2 _
ho—Rz /(2}3e (AN )+(Z/A)[eU /{m_c ]]kN (ZR ) Tf(8)T cos(kNowore/c wol

p
=R 3 h x - Vx/p

™ e‘e x
T,=R (5,245, 2)/ (2B 3 ) B3 (8, %" -8, 5 )/ (2R)-RF (5, 245,71/ (28 %7 )
-3 ~~2 2
—x(p +p )/(23 7, )+h z(zp —xp )/(3R)+B 7 (g3x "84, %2 /72)/(3R7)

~ . 2~22 33
H4 = (px *p, ) /(BKBe L Yo+ oL (2.3)
The solution of the first equation (2.2) is trivial and we imme-

diately write it down

T =71 _~cl9-9_ )/w_,
e eo oo
Substitute now (2.4) in the second equation (2.2} and note that the

(2.4)

expression f(ﬂ)sin[kNowore/c—wo) is periodic in # with a period 2n/N°.
Therefore
f(6)312[kN°(0—Go)+¢°]=(No/n){ao+z[51nwocospNo(ﬁ—0o]-
-sin(p +kN 9 )cospN (9-8 -5 )]} (2.5)
o ou o o u 1
=-gi D . = 2.5a)
@ 31n(kNoﬂu/2]cos[¢°+kNoau/2) H w =9y kNoreRw . (
It is evident from the above equations that the maximal energy gain is

achieved if kNoﬁu=(Zs+l)n for s=0,1,2,..., that is
= (2s+1)n(N 5 )7} (2.6)
o'u
In this case equation (2.5) becomes
f(0)5in[kN°(6—0°]+;;}=N°n 1smw {l+2{ cos[pN 9 /2)cospN (0—6 -9 /2)}
(2. 7)

and the second equation (2.2) is written in the form

dwe/dﬂ=ho[1+2§ cos(pNoﬂu/Z)cospNo(ﬁ—ﬂo-ﬂu/z)] . (2.8)



where
2 ~
= i . (2.9)

Ao (No/n)(Z/A)[eUd/(mpc )]sxn¢o

Integration of equation (2.8} gives the design energy
= - s i or =9 /S N 8 /2]
7. zeo‘ho(ﬂ 0°]+210§cob(pNoau/2)/(ch)[51npN0(u 0 % 2)+sin{pN_3 I,
(2.10)

In the case of 19u=1!/NO eqs. (2.8} and (2.10) are further simplified to
give
dz /de = A 11+2[ cos2pN (5~ 0, )] 12.8a)
7,57 ,0* o(" o )+ ): (pN,) 1sin2pN°f8-:‘:o). 12.10a)
3. INTRODUCTION OF "QUASIEQUILIBRIUM DRBIT" AND DISPERSION
Firstly we must note that the term "quasiequilibrium orbit"” may
not be the mosi suited and one can argue about it.
Let us now perform @ second canonical transformation with a gene-
rating function
E7 = (%-X )(p +p ]+zp Ty (3.1}

aiming to cancel the term B 7 h X 1n ﬁ The quantity ;; we call the

i
"quasiequilibrium orbit" and po the "quasiequilibrium momentum”. Using

the relations

;=§+;o ; ;=?+Eo (3. 2a)
-~ L _— Ed -~ = —~ =
= : = . = . = .2b
2=z ; P,= P, : T=71 ; 7 = (3.2b)
it is easy to get
2~ 2 -1 ~ ~ ~ ~
7/ == B = Y(ax 7 3.3
d X dg *7, (dre/dﬂ)(dxo/d0)+gxxo Rh, 5 p (Beyexn,( BN do) )
and
H :H _nglﬁe
H = ?x/Be (3.4]

=22 -2 =2 .
Hz—R(px +pz )/(ZBeae)+Be3e(gxx 8,2 Y/ (2R)+. ..
The 1last canonical transformation is given by the generating
function
~ B A z,\_ -1 A2 A WA
G2=px(x rD)+(Bere/R)(dD/d6)xy Beye(ZR) D(dD/dd )}y +Zp+Ty - (3.5)
Noting that

% §+7/D ; p 5 +(B_7 R)(AD/A0Ys T : BB, (3.5a)
‘r—'t+p D-(8,7, /R) (dDydoYa ; =7 (3.5b)

10
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we have
a%psa6+y "1(dy sdp)(dD/d)+g D=R(B 2y )" (3.6)
Te Te g,0miB, 7g

] -
H =H -D(2g )" 152 (3.7)
o] o e
H=R(P.2+D.2) /(28 7 )+B v (g %°-g 321/ (2R)+
x Tz Fele TP 18X T8, T

The quantity D is called the dispersion function of the cyclotron.

4. CALCULATION OF THE "QUASIEQUILIBRIUM ORBIT" AND DISPERS]ON
The quantity Ao in (2.9) is quite small so that [dze/dﬂ)/ze« 1

for a wide range of energies and we can explore the quasistatic appro-
(3.3) and (3.6]) we take

ximation. This means that instead of R in egs.

the mean value of R:

2
<R>—Rol1+nA°(Beo Yoo

37 (4.1)

/
The condition for the gap-crossing resonance 3/

2pN° - mN =% 1,

is
(4.2)

where p and m are some arbitrary integers. It is clear that if the

number of sectors N is even the eq. (4.2) is no longer valid. In such

a way we exclude the gap-crossing resonance and do not consider its
effects here.
Introduce a new independant variable ¢ and a new coordinate Yo

defined by:
x°(0)=w°(0)y°(¢] : ¢ = wo(ﬂ)/vo ' (4.3)
where
- - -13" o
d%w /d0%+g w =w 3 . dg sao=w 2 . w =(2r) ‘fw 2(9)de. (4.4)
o x 0 o [ o o <)

(3.3) is transformed as

2y =-<R>v 2h w 3
[ o xo

With these relations in hand eq.

2 2
dy /de"sv

(4.5)
-(dy /de) (v 2w 3(dw /de)y +v w 3(dy /de¢)3/y
e ©o o o o oo [« e
First of all we must find the solution of the first of eqs. (4.4). 1t
is easy to obtain:

P _w°(0)=1+v91(0)+w°2(0)+..; (4.6)
w°1(0)=g (k“N“-4) (AchoskNﬂ+BkN51nkNﬂ) ; GkN=GkN+GkN (4.6a)
—tur 22y 2T 2.5 2 22 ,.-17 2= 2
WooS {n +AB/BiS 3§[L N™-3) (AkN +BkN )+(1/2)§(k N“-4) (AkN +BkN AL

(4.6b)



N , 2,2 -1= 2= 2
l%q+m+ﬂmasvawummkn 4)(%N+%N)' (4.€c)

k
= ; = 4.0d)
¥, =vD ; or ¢ =98 (4. o
Inserting the formulae (4.6) into equalion (4.5) one can {ind Lha
y /<R>=v l'2}:(k2N2—u Z) [A coskNo+B, | sinkNo]-
o o Iy [} kN

‘[uo -3 ZAB/B +(3/2)}:(k2N2 " (

Turning back to the equatlon (4. 3) we have

AePen BBy I

172 2.~ . ~ -
a - - - < s
x0/<R> v, ?(k N v, ) [AchoskNﬂ+BstlnkNﬂl xoz/\R>' (4.7)
where
~ _ =32 22 -1, = =
x02/<R>—vo AB/B. +(3/2)Z(k N™-4) (AkNAkN+BkNBkN)
(4.8)
172 2,2 2,-1,,2.2 ~1 =
-(u0 /2)Y(k"N"-v ©) " (k"N"-4) (AkN ot kNBkN)

k

The dispersion D is calculated exactly in the same manner,
repeating the above considerations and therefore

=372 2 -1
D/<R>~uo [<ﬁe> <7e>] (1+w01+...]. (4.9)

S. CALCULATION OF THE BETATRON FREQUENCES

The Hamiltonian describing the betatron oscillations may be

"~ A

obtained in the following way. The terms quadratic in ;, Sx’ z, pz
encountered in ﬁs from (2.3), after the substitution §=§+§;. 5;=ﬁ ‘55

are added to H2 from (3. 7) The result is

-1 ~A -1 ~2 . _
Hb- g ((ZBe7e) RF p +Ruupu+(2R) ﬁeyecuu } ; u=(x,2) (5.1)
where
F =1+%X_/R+3(d% /d9)%(2R%)"Y . R =(dX_/do)/R ; G =g 2R g 3
b o [o) ' x o ’ X ©x 3x o
~ ~ 2,02, -1 I -1
F_=1+x /R+(dx /d9)” (2R") . R_=h_x (3R} (5.2)
z o [ z 'z o

-1 ~ -1 o~
GZ—Z(JR) hz(dxo/dﬂ) g, (3R) Ba,%s -
In order to cast the Hamiltonian (5.1) in a canonical form we
introduce a canonical transformation 717 whose generating function is:
FoL {F, pr +(B7, /R]l(4F (dF /d0)-(2F, ) -1

The above canonical transformat1on cancels the cross term R up and

R Ju b ou=(x,2)

the result is:
A —1/2: ~ _1/2.= 2.-1 —],«’2,:‘
=| . =| — F
u=f, u ;op=F, P (B 7 /RII(2F 7) "(dF rdo)-R /F IF, u

(5.3)
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=_ -1 = 2 A, A w2 = n
Hb—§ [(2B,2,) Rp “+(2R) "By g (&)U7] + 8K w=lx,2) (5.4)

where
A -1 22
gu[ﬂ)—(ZFu) (d /d8 )- 3(4F ) (dFudﬂ) Ru +FuGu+
+[R (dF /d9)-F de /d9) J/F {5.5)
u o u u oy u .
= -1 -1 I
AHb—X {2R) Be(dre/dﬁ)[(ZFu) (dFu/dﬂ) Ru]u R {5.6)
Introduce now the action-angle variables (Ju, au) by
=7 (2R) VB ¥ 02w (dw /do)-w tgla +y -u 8)) (5.7)
e’e u u u uu u
=_ 172 -1/2 _
u—(ZRJu] (Beye] wucos(au+¢u uuﬂ)
(5.7a)

= 1/2 _1
=(2 s - = i -
p =(2J B ¥ /R) [(dwu/dﬁ)COa(au+¢u vuﬂ) L SLn(au+wu vuc)]

where [see eqs. (4.4)]
P saoeg w = T3 dg /o= T2 i v =tz M w T2(0)ds. (5.8)
u g%y I =, Popsen v, . .
The new Hamiltonian Hb is written as
Hb = H o+ AH (5.9)
bO Z vu u (5.9a)

o

2 -1
((2F ) (dFu/dﬂ)—Ru)]'

-1
AHb-ve (dye/dﬂ)g Ju([wu(dwu/d0)+wu
(5.9b)

-cosz(au+wu—vu0)—(1/2)sin2(au+wu—vu6)).

The solution of the first of egs. (5.8) with regard of

A ~ -~ "
= i 5.10
B, 1+§ (AchoskN6+BstlnkNo)+gx2 (5.10)

22.22 -2 2
g oM +(5/8)zk N (KN"-1) "2 (A, 4B

-1
-

+B, B )-TkNZ [ (k2NZ-1) (k2N%-a)]

+/ DTN -1 A BN
. (AkNAkN’BkNBkN (5.10a)
QLN52£N+(kZNZ+2)(kZNZ—ll;lAkN/Z D Rt A (5.10b)
R = 2At A" (5.10c)
is found to be
.. (5.11)

wo=1+w  +wW _+
X X1 x2

where
v ,=F (k2N%-2)"1(&  coskNe+B, sinkne) (5.12)
x17L Axn kN
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(181 .k2N2 IO‘(kZNz 4?>2(; 2 5 2, 4 (5. 13)
W= ( - H - +1 . . {95. 1.
%2 g kN kN
Purothe betatran Sraquency o plaer oot e e e U6
S ~ -
. ! ' (DR T . ~ 4
N
B b
, [ vy =
\ N
< '
¥ b YR P i ¥ -
4 . . N
T v P S ' o
oh KN . i
ind )
w YRR R ‘ e
. e
~ ( E = : .
Bt i (1 ‘.}_ ¥ s ThL B . [
4 " <N \
Por e Dotab: Tlodut , . . {
€. CHFE IHASE MCTICN
- - : B ~ . .
The phase motion (i.e cnotn T T e oopeve T

~

bv Hh “rem equaticns (3.7

where ¥, is the momentum compaction factar,

= . Voay Jdn ) = oy i b
Ny = (pcAuP,.AwO d"c' =, uy 6.2
vwhich is equal tc zero lnM=0) {

\ -

M 1~ 2

c——n - N = . .
i = Be xow*(Z/A/[eUd/(mp_ YJ(ZRm

or isochroncus ~yclatrans, we obtaln
- a0
1kN 1T7{8YcontkN w r /ey )

(4] OO0 e O

6. %)

With equations (2.5) and (2.6} in hand the Hamiltenian L given by the
last equation is transformed to give

A i~ A ~ -1 A A2
o= Be x07+loctg¢o(2Rm) kNo{l+Zz cos(pNoﬂu/z)cospNo(ﬂ ﬂo ﬂu/Zl}T .

r
(6.4)
The Hamilton equations following from (6.4 are

_]1-

dt/ds = -8 '% (6.5a)
e [s]
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Gl -~ ’

dy/d0=-A ctgg (kKN /R J{1+2] cos(pN & s2)cospN (-8 -8 /2)}T  (6.5b)
. o o 0 w 7 o u [o] o u
The phase motion is given by the solution of equation (6.5a) in the

form

2 ~ 172 2,1

A 2.2
T_To+(Rw 02/<R>)(ﬂ—0o)—ﬂmvo g [kN(k"N —vo 1] e
-{AkN[snnkNo-S1nkNﬂO]+BkN[CoskNoo-coskNﬂ]). (6.6)

CONCLUDING REMARKS

An attempt is made to apply a fully six-dimensional Hamiitonian
formalism to the analysis of accelerated orbits in AVF cyclotrons. It
should be mentioned (although it is quite obvious) that slight
modifications are needed for the present theory to be applicable to
spiral ridged cyclotrons. In the central region. however, the quantity
Kx is not small, so that equations (1.21) and (1.22) are not valid.
This disadvantage 1is overcome by a reasonable compromise of
simplicity.

We do not discuss here the effects of adiabatic damping and
adiabatic change of betatron frequences [see eq. (5.9)]. All the
nonlinear effects are not studied teco. We intend to treat them in a
future publication.

The author wishes to thank J.B.Vinogradov and G.G.Gulbekjan for

many stimulating discussions and permanent support.
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The theory of accelerated orbits in AVF cyclotrons
through a fully six-dimensional Hamiltonian formalism
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ron motion and the phase motion are calculated in linear
approximation. The '"quasi-equilibrium orbit' and disper-
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