
GRAPHICAL DEBUGGING OF COMBINATORIAL GEOMETRY*

CONP-920431—8

Thomas J. Burns and Mark S. Smith DE92 006415
Engineering Physics and Mathematics Division

Oak Ridge National Laboratory**

Paper to be Presented at the
American Nuclear Society

Topical Conference on
New Horizons in Radiaiton

Protection and Shielding
April 26-30, 1992

Pasco, Washington

*Th« submiTTKl manuacnpi haa baarr
authors^ ov • contrKtor of Mia U S
Govarnmant undef comrict No Of
AC05-84OR214OO Accwdmgty. th» U.S.
Gavarnmam ratairrt * nanmxcluvv*
'ovaltY-frae 'K«n» ro Doodah or raproduca
ina ouHianad form o< tfiia comntiurion. a
••low oitiars to. do to. It* U.S. Govarnmant
purpatm,"

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

MASTER
•Research sponsored by the Defense Nuclear Agency
••Managed by Martin Marietta Energy Systems, Inc. under Contract No. DE-AC05-84OR21400 for
the U. S. Department, of Energy

GRAPHICAL DEBUGGING OF COMBINATIONAL GEOMETRY

Thomas J. Burns and Mark S. Smith
Oak Ridge National Laboratory

P. O. Box 2008, MS
Oak Ridge, Tennessee 37831-6363

Phone (615) 574-6101

ABSTRACT

A graphical debugger for combinatorial geometry being
developed at Oak Ridge National Laboratory is described.
The prototype debugger consists of two parts: a FQRTRAN-
based "view" generator and a Microsoft Windows application
for displaying the geometry. Options and features of both
modules arc discussed. Examples illustrating the various
options available are presented. The potential for utilizing the
images produced using the debugger as a visualization tool for
the output of the radiation transport codes is discussed as is
the future direction of the development.

I. INTRODUCTION

A recurring diP"<culty in shielding and transport
applications is the verification that the geometric model (and
associated material assignments) accurately represent the
physical configuration. Exacerbating this difficulty is the fact
that for some problems, the number of objects (zones, regions,
bodies etc.) used to describe the physical configuration can
easily number in the hundreds or thousands. Additionally, the
geometric descriptions in the stochastic codes are complicated
by the Boolean operators AND, OR, and NOT used to
combine the fundamental objects. Both these facts tend to
mitigate against the successful verification and debugging of
the geometric models directly from the input stream of the
radiation transport codes. A clear need exists for a means of
analyzing and debugging geometric models before consuming
hours of CPU time on a supercomputer. Such a tool, a
graphical debugger for combinatorial geometry, is currently
being developed at Oak Ridge National Laboratory.

IL IMPLEMENTATION

The ultimate objective of this effort is the
development of a XWindows application which can be
executed on a high-end workstation. This application should
be capable of accepting geometric input in a variety of formats
(such as those currently used for the radiation transport codes
as well as those generated by CAD/CAM packages): It is
anticipated that the application will be capable of real-time
generation of images representative of the combinatorial
geometry input suitable: for validating (and correcting if
necessary) the model. Some of the proposed features of the

final application are the capability of rotating the displayed
object(s) arbitrarily, the capability to zoom in order to examine
details of the object, and capacity far selective invisibility (i.e.,
to remove specified zones, regions, or materials from the
image).

To facilitate initial development andl testing, the
prototype of the graphical debugger was constructed as two
modules. The first half of the debugging system is a "view"
generator designed to be executed on the same computer used
to run the transport code.1. In order for the debugger to be
truly useful, one of the principal design crileria used was that
image produced by the "view* generator accurately represent
the geometry as processed by the transport codes. That is, the
view generator should "see" the model exactly as; the transport
codes do. To this end, the ray-tracing routines utilized in the
Monte Carlo codes, MORSE1 and MASH-GIFT3 form the
basis of the view generator.

An input processor was written to handle input data
streams formatted for MORSE, MASH-GIFT,, and TORT*
and is being extended to handle the IGES (Interim Graphics
Exchange Specification)5 format. Options permit the user to
select an arbitrary viewpoint in space, and the choice of either
an isometric or perspective view af the geometry. The code
also permits the user to select the degree of aggregation to
be displayed in a particular view. The options include a single
body, a single zone (Boolean combination), a single region (a
group of Boolean combinations with the same region
identifier), all zones comprised of a particular material, or the
entire model. Two mechanisms for examining interior details
of complex models have been implemented so far. The code
permits selective invisibility, i.e., any combination of zones,
materials, or regions can be flagged as invisible or transparent
to the view generator. Alternatively, an arbitrary body (i.e.,
any body which can be described using MORSE or GIFT
geometry) can be "cut away" from the geometry to facilitate
debugging internal details. Both of these options can be
employed simultaneously. Additional options to the view
generator permit the selection of an appropriate aspect ratio
for the view, as well as the specification of the desired
resolution for the final output. The view generator is
designed to produce a metafile, which consists of a
compressed version of the "view" itself, which serves as input
into the second half of the system.

The second part of the CG debugging system consists
of a Microsoft Windows application, ORGBUG*, that executes
an an IBM compatible personal computer, which accepts the
metafiles, produced by CGVDEW. The choice of Microsoft
Windows as the graphical user interface (GUI) for the
prototype debugger was made primarily as a function of
convenience and expediency. The use of Microsoft Windows
tends ta minimize hardware dependencies since it supports a
variety of display and output devices. Additionally, the basic
design philosophy of Windows and Xwindows is similar (they
are both event-driven) which will simplify the eventual porting
to the workstation.

l a addition to reading the metafiles generated by
CGVTEW, ORGBUG is structured to display the image
contained in the file. As a Windows application it permits (via
scroll bats) the image to be larger (in terms of resolution)
than the window itself. As a consequence of the decision to
split the debugger into two modules however, the image
displayed is a fixed one, i.e., no rotation or zoom functions are
implemented. Ether a monochrome (wireframe) or color
image can be selected. If a color representation is selected,
"colorization* can be done on a zone, material, or region basis
using either a default palette or user-assigned colors.

As a consequence of being linked to the metafile
(which contains the zone, body, and surface identifiers for
each pixel). ORGBUG implements a identification option.
Using a pointing device, the user can request the identifiers
for any visible pixel. This feature has proved to be invaluable
for debugging complicated geometries.

Eventually hardcopy output will be possible via devices
supported by Microsoft Windows including dot matrix printers,
laser printers, and film recorders. However, at this point the
development, ORGBUG has only limited output options. The
debugger can perform file output to either the Windows
bitmap format (BMP) or the PCX format Additionally, the
debugger supports the Windows Clipboard. This latter feature
permits the transfer of the image to other Windows
applications which have hardcopy output features. Similarly
the BMP and PCX Gle output options permit image transfer
to other PC programs for modification and/or output

IU. ILLUSTRATIONS

The best way to depict the utility of the geometry
debugger a to show the output produced. Views produced
using three different combinatorial models are discussed in this
section- As noted above, the system can produce color
output. This is particular useful if the various colors are
mapped to the model materials. However, due to publication
limitatknc, the various figures used in this section were
generated using the wireframe option (black wires on a white
background).

To illustrate some of the capabilities of the graphical
debugging system, Figures la-Id were generated based on a
geometric model formatted far the MORSE Monte Carlo
radiation transport code. The geometric model itself was
originally created as part of a shielding and neutronic analysis
for the TFTR (Tokamak Fusion Test Reactor)7. Figures la-Id
were generated by selecting only those objects which were
assigned the same material identification, corresponding to the
toroidal Geld coils, the poloidal field coils, the torus itself, and
the support structure. Although the default scaling option of
the geometry debugger is to scale the selected objects to fill
the viewing frame, this particular option was disabled so that
the four figures would be scaled identically. This allows the
relative positions and sizes of the various objects to be
maintained across multiple frames. It should be noted that, at
the time this model was created, MORSE did not have a
toroidal body. Hence, the torus depicted in Figure 1c is
modeled as a set of short cylindrical annuli ORed together.
Note that, in this particular model, one of the annuli is
missing.

Figure 2 represents an isometric view of the entire
geometry of the TFTR, Le., the aggregation of the pieces
depicted in Figures la-Id. Additionally, the view was
generated by specifying that a 90 degree wedge was to be "cut
away" from the geometry. Use of this option is one way of
maintaining a perspective relative to the entire geometry,
while simultaneously permitting the analyst to examine internal
structures of relatively complex groups of objects.

Although discrete ordinates codes typically do not
employ combinatorial geometry, the fact that TORT uses
RPPs (Le^ a MORSE rectangular parallelepiped) to define
regions, and then overlays those regions onto a space mesh
allows the geometry debugger to be employed. The overlay
scheme utilized implies a set of Boolean operations which the
geometry debugger constructs. Figure 3 illustrates the use of
the geometry debugger based on a TORT input deck. The
model is thatof the Chinzei school which was part of previous
radiation transport study*. Figure 3a depicts a perspective
view of the building with the right front quarter removed in
order to expose the interior structures such as floors, walls,
and ceilings.

By judicious selection of options, certain extremely
useful graphical descriptions of a particular model can be
produced. For example, Figure 4 is the result of requesting an
isometric view of the Chinzei school model, setting the
viewpoint to be directly overhead, and cutting away a half
space. The result is a depiction of the first floor plan of the
building.

A second mechanism for displaying the internal details
of a complex set of objects is to use the selective invisibility
feature of the geometry debugger. Figure 5 depicts an
isometric of a Soviet BMP (armored personnel carrier)*. The
model is described in GIFT* geometry for use with MASH

Figure la. TFTR Toroidal Field Coils. Figure lb. TFTR Poloidal Field Coils.

Figure Ic. TFTR Torus. Figure Id. TFTR Support: Structure.

Figure Z TFTR Model with Cutaway.

Figure 3. Chinzei School Building with Cutaway.

•1 U.

r t n n

3 C

I

LJ U. LJ

n n rt r"

L

n

Figure 4. Chinzei School Building - First Floor Plan.

code. By selectively flagging specific zones regions, and
materials as invisible, Figure 5 can be converted to Figure 6,
L&, the gun turret and top armor can be removed to show
the internal details of the raodeL Using the selective

; invisibility feature for multiple views permits views such at
Figure 7 to be constructed. The invisibility flags utilized in
Figure 6 were reversed for a second view using the sane
viewpoint and scaling parameters. The second view was then
overlaid (and displaced slightly) on Figure 6. The result is an
•exploded" view of the Soviet BMP.

IV. VISUALIZATION

Although the initial purpose of the geometry debugger
was to permit the analyst to valkiate and correct the INPUT
for the radiatiba transport codes, it readily became apparent
that the images produced could also play a significant role in
displaying the output of the radiation transport codes as well.
Both the discrete ordinates codes (TORT) and the stochastic
codes (MORSE and MASH) can producesignificant quantities
of output data. The images which can be generated via the

Figure5. Soviet BMP ModeL

Figure 6. Soviet BMP Modd - Turret and Top Armor Removed.

Figure 7. Soviet BMP Model - Exploded View.

geometry debugger can provide a mechanism for visualizing
what can be an enormous amount of data. For example,
combining views such as Figure 4 with existing output
manipulation codes like the DOGS™ system would permit the
overlay of flux contours directly on the floor plan of the
building. Moreover, it should also be possible to map color
coded response values on view such as Figure 3, in effect,
mapping the response values onto the exterior of the building
as weD as ontw the floors, walls, and ceilings of modeL In a
similar vein, the output of MASH (typically a leakage flux as
a function of energy and position) could be color coded and
mapped onto an image such as Figure 5 to display the

' geometry vulnerability to radiation effects.

8. W. A. RHOADES, R. I- CHILDS and D. T.
INGERSOLL, "Radiation Exposure Inside Concrete Buildings
at Nagasaki", ORNL /TM-10S69. Oak Ridge National
Laboratory, (May 1989).

9. C M. WARD, Personal Communication, Foreign Science
and Technology Center, November t5,I989.

10. D. T. INGERSOLL and C O. SLATER, "DOGS - A
Collection of Graphics for Support of Discrete Ordinates
Codes*, ORNL/TM-718S. Oak Ridge National Laboratory,
(March 1960).

V. FUTURE DIRECTION

The ultimate goal of this project is to combine the two
parts into a single Xwmdows application running on a
workstation This will permit real-time display and debugging
of the geometric models used in radiation transport
applications.

VL REFERENCES

1. T. J. BURNS, "CGVIEW - A Program to Generate
Isometric and Perspective View of Combinatorial Geometries",
ORNL/TM-12019. Oak Ridge National Laboratory, (To be
published}.

2. M. B. EMMETT, T h e MORSE Monte Carlo Radiation
Transport Code System," ORNL-4972 (1975, ORNL-4972/R1
(1983), ORNL-4972/R2 (1984), Oak Ridge National
Laboratoty.

3. J. O. JOHNSON et aL, "A User's Manual for MASH 1.0 -
A Monte Carlo Adjoint Shielding Code System,"

ORNL/TM-11778. Oak Ridge National Laboratory, (to be
published 1991).

4. W. A. RHOADES and R. L. CHILDS, The TORT Three-
Dimeasional Discrete Ordinates Neutron/Photon Transport
Code," ORNL/TM-6268. Oak Ridge National Laboratory,
(November 1987).

5. BRADFORD SMITH et aL, "Initial Graphics Exchange
Specification (IGES), Version 4.0," SP-767, Society of
Automotive Enpneers.dune 1988).

«L T. J. BURNS, "ORGBUG - A Windows-based
Combinatorial Geometry Debugger*, ORNL/TM-12020. Oak
Ridge National Laboratory, (To be published).

7. R. T. SANTORO et aL, "Comparisons of Calculated and
Measured Spectral Distributions From a 14-MeV Neutron
Source Inside the Tokamak Fusion Test Reactor*, ORNL,
/TM-9888. Oak Ridge National Laboratory, (December 1985).

