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This paper begins with an exposition of a systematic technique for generating 

orthonormal polynomials in two independent variables by application of the Gram-

Schmidt orthogonaiisation procedure of linear algebra. It is then demonstrated how 

a linear least squares approximation for experimental data or an arbitrary func­

tion can be generated from these polynomials. The least squares coefficients are 

computed without recourse to matrix arithmetic, which ensures both numerical sta­

bility and simplicity of implementation as a self contained numerical algorithm. The 

Gram-Schmidt procedure is then utilised to generate a complete set of orthogonal 

polynomials of fourth degree. A theory for the transformation of the polynomial 

representation from an arbitrary basis into the familiar sum of products form is 

presented, together with a specific implementation for fourth degree polynomials. 

Finally, the computational integrity of this algorithm is verified by reconstructing 

arbitrary fourth degree polynomials from their values at randomly chosen points in 

their domain. 
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I. INTRODUCTION 

A recurrent theme in the calibration of experimental apparatus and interpreta­

tion of experimental results is the approximation of discrete experimental data by a 

continuous analytic function. Typically, an experiment measures a 'dependent' vari­

able with some statistical uncertainty or systematic perturbation. It is conjectured 

that this dependent variable is influenced only by a finite number of 'independent' 

variables, each of which is known with essentially zero error. Furthermore, only a fi­

nite number of measurements are undertaken, thereby sampling the relation between 

independent and dependent variables at discrete locations in the vector space formed 

by the independent variables. 

To maximise the utility of the experimental results one often wishes to know 

the relation between the dependent variable and independent variables at arbitrary 

values of the independent variables. In situations where physical intuition suggests 

a smoothly varying relation, ore also requires the rapid variations that are artifacts 

of statistical uncertainty in the measurement pvocess to be eliminated. These two 

criteria identify the present problem as a prime candidate for the application of the 

general technique of function approximation, in which a continuous function with a 

finite number of arbitrary parameters has its parameter values chosen to conform 

most closely to the experimental data, without having sufficient freedom to duplicate 

the erratic variations in the experimental data. 

Function approximation of experimental data is most frequently applied in the 

context of only one independent variable, which is both conceptually and computa­

tionally the simplest case, as well as being the one of greatest algorithmic maturity. 

However, some experimentally measured parameters are manifestly dependent on 

two (or more) independent variables, thus necessitating the development of workable 

function approximation techniques for several independent variables. 
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To demonstrate the applicability of such techniques to scientific experiments, a 

description of the actual experimental situation that motivated the development of 

the algorithm that is the primary subject of this paper will be presented in Sec. II. 

II. MOTIVATION 

The ESM Centre at Flinders University has recently developed a coincidence elec­

tron spectrometer for studying (e,2e) reactions within condensed matter specimens. 

(e,2e) reactions are kinematically complete electron impact ionisation collisions, both 

the energies and momentum vectors of each of the incident, scattered and ejected elec­

trons being measured [1,2]. Specifically, one requires a measurement of the energy 

and angles (relative to some coordinate system) of both of the outgoing electrons. 

Electrons of different energy are dispersed by a static electric field that is not parallel 

to the original electron trajectory, therefore electrons with either different energies or 

emission angles follow different trajectories in space subsequent to dispersion. The 

Flinders spectrometer is configured to detect outgoing electrons that have definite 

valups for their polar angles, but a broad range of azimuthal angle values. 

Each outgoing electron ends its trajectory by impinging on a 2-dimensional posi­

tion sensitive detector consisting of a microchannei plate electron multiplier followed 

by a resistive anode position encoder [3,4]. The (x,y) position coordinates of any 

incident electron are obtained directly from the position encoder signals. It is re­

quired to separately map the position coordinates to an energy (E) value and an 

azimuthal angle (4>) value, that is, it is required to determine the continuous func­

tions of two variables E(x,y) and <p(x,y). 

A calibration procedure, whereby electrons of known energy and azimuthal angle 

have their (x,y) coordinates observed provides one with discrete and 'noisy' samples 

of E(x,y) and 4>(x,y). One now requires a procedure for using these samples to 
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converge upon an analytic approximation for the actual continuous functions, thus 

motivating the theory developed in the fallowing sections. 

An often desirable property of any algorithm that is developed is that it be self-

contained, without recourse to the use of (often unavailable) sophisticated mathemat­

ical program libraries (such as matrix algebra). Also, the numerical procedure should 

be inherently stable (numerical errors not growing exponentially as the computation 

proceeds), a property not necessarily ensured by an algorithm that uses matrix alge­

bra. Consequently, the algorithm developed in this paper is devoid of matrix algebra. 

Such a congenial situation results from setting the analytic approximating function 

equal to a linear combination of mutually orthogonal functions of two variables. A 

convenient choice of orthogonal functions is polynomials, because the systematic gen­

eration of orthogonal polynomials in two variables is an entirely tractable problem, 

as will now be demonstrated. 

III. GENERATION OF ORTHOGONAL POLYNOMIALS 

IN TWO INDEPENDENT VARIABLES 

A. Vector space concepts 

It is instructive to elucidate the content of the theory developed in this paper by 

the use of vector space concepts from linear algebra [5]. Let there be N samples to 

which the funaion is to be fitted, that is, 

for independent variables (ii,yi) there corresponds the dependent variable 

Zi, where i = 1,2,... ,N . 

One can consider (z\,z%,... , ZN) as a vector in the Af-dimensional real vector space 

1lN. The basis that is implied by this representation, which will be denoted by 5/v, 

is the set of vectors for which the jth basis vector is a function that has the value 0 

at all points (z,,y,), except for {xj,y}) where it has the value l. 
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Define the Euclidean scalar (or inner) product of the two members of a family of 

real valued functions p,,{x,y) and pu{x,y) by 

N 

{Pi„Pki) = (iJ\M) a Y. Py(I».V»)P«(I»»y») • C1) 
n=i 

Define the weighted scalar product of the same two functions Pij(x,y) and pw(x,y) 

with respect to the real weight function h(x,y) by 

N 
(Po,ApH) = (ij\h\kl) = £><>(*», y«)M*»,y»)PM(*»>y») - (2) 

n=l 

Note that 

(ij\kl) = (kl\ij) and (y|n|M) = <«I*W) • (3) 

An orthonormal set of functions pjj, t, j = 0,1,2, . . . has the property 

(ij\kl) = 6^, Vi,j,k,l , (4) 

where 6mn is the Kronecker delta. 

Note that 5/v is a perfectly good orthonormal basis for HN, but it is unsuitable 

for constructing continuous approximating functions, because the natural extension 

of the basis functions to the (x,y) continuum is Dirac delta functions, which are 

certainly not *well behaved'. An orthonormal basis for %N (or a subspace of KN), 

which extends to the (x,y) continuum in a well behaved manner must be sought. The 

basis vectors will be orthonormal polynomials in x and y (more precisely, samples of 

polynomials at the points (x„ yi) , : = 1,2, . . . , iV , at which the continuous function 

is to be fitted, where the orthonormality conditions of Eq. (4) hold). 

A polynomial of degree K in two independent variables x and y will be defined as 

follows, 

K 3 
P(*iy) = ]C£ d (> -0* x °""V » dij = constant. (5) 
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The Gram-Schmidt orthogonalisation procedure for vector spaces [5] will be applied 

to generate a set of orthonormal basis polynomials in (x,y) for a subspace of KN, 

following the general technique elucidated by Courant am* Hilbert [6, p. 50-51] and 

elaborated upon by Cadwell and Williams [7] and Hayes [8]. 

B. Dimension of the subspace spanned by the orthonormal basis 

Suppose that one decides to seek a set of L (< N) orthonormal polynomials to 

form a basis, denoted by OL, which span: a subspace of H'* of anticipated dimension 

L, to be denoted VL- Assume that there exists a 'conventional7 basis for VL, denoted 

by CL, that consists of L product terms (x'y1) taken individually. These two sets 

of L vectors span the same subspace, and if it can be shown that one set of vectors 

is linearly dependent, it follows that the subspace has dimension less than L, which 

implies that the other set of vectors is linearly dependent. 

One can determine whf-her CL is a linearly independent set of vectors by (at 

least) two methods. The first method consists of forming the L x N matrix whose 

rows are simply the individual members of CL evaluated at the N sample points 

(x,,y t), t = 1,2,...,JV. The rank [5, sec. 4.6] of this matrix is the dimension of the 

subspace spanned by CL (this subspace being VL); only if the rank of this matrix is L 

is CL a linearly independent set of vectors. Alternatively, one can compute the Gram 

determinant [6. p. 34-36] of the members of CL', if CL is a linearly independent set 

of vectors then the Gram determinant is definitely positive, a zero value indicating 

linear dependence. The Gram determinant does not directly yield the dimension of 

VL. 

If CL is linearly independent then all L members of OL can be constructed by 

the Gram-Schmidt procedure to be non-zero vectors, reflecting the fact that VL has 

dimension L. If CL is linearly dependent then the Gram-Schmidt procedure will 
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yield zero vectors for one or more members of OL, reflecting the fact that VL has 

dimension less than L. Although these members of OL are not identically zero when 

one progresses to the continuum in (x,y), it will be revealed in Sec. IV that the 

coefficient of a basis function in the total approximating function is a scalar product 

of the corresponding vector in TlN (zero vector in this case) with another vector (see 

Eo(. (20)), which certainly is zero. Therefore, the members of OL that are zero vectors 

in KN will be absent from the approximating function in the continuum. Since VL 

has dimension less than L, it is expected that there will be a larger approximation 

error than if th»-* sample points had been chosen differently (different positions or more 

of them) to give VL dimension L. This situation is most unlikely to occur in practice 

and ii any case is not catastrophic, therefore the test for whether VL has dimension L 

(and if not, proceeding io choose more or different sample points to obtain a subspace 

VL with dimension L) can be omitted with considerable practical justification. 

C. Gram-Schmidt orthogonalisation procedure 

The essence of the Gram-Schmidt orthogonalisation procedure is as follows. One 

constructs orthonormal polynomials one at a time. Each time a new orthonormal 

polynomial is required, it is constructed so that it is orthogonal to all previously con­

structed polynomials (and is normalised). In this way, at all stages, each polynomial 

is orthogonal to every other, as well as being normalised. 

Members of the orthonormal set of polynomials are denoted Pij(x,y) where the 

subscripts indicate that Pij(x, y) is the first polynomial to be constructed that includes 

the product term x'y1. The order in which the Pij(x,y) are constructed is indicated 

by the sequence 

{ {P(n- ; ) ) } j»0 , l ,3 n- l ,n }n«0,l ,2 K~\.K • ( 6 ) 

Any polynomial of degree K, as defined by Eq. (5), can be expressed as a linear 
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combination of only these p,;(x,y). 

Instead of choosing the non-orthonormal basis polynomials that are the "input' 

to the Gram-Schmidt procedure to be the members of C&, one extends the method 

developed by Forsythe [9] for polynomials of one variable to polynomials of two vari­

ables. In this method the non-orthonormal basis, which still spans the same subspace 

Vi, is constructed as the Gram-Schmidt procedure progresses by multiplying a judi­

ciously chosen, previously determined member of OL by either z or y. Specifically, 

the Gram-Schmidt procedure constructs a new orthonormal polynomial from previous 

orthonormal polynomials in one of two ways, using either of the two Gram-Schmidt 

equations, 
i+J-l k 

*.jP.j(**y) •= *P(<-i)j(*,y)- 5D H ,JC(k-/)iP(k-/)i(-r.y)-
fc=0 1=0 

J - l 

Y, %+j-D'P('+j-')'(I'J') , for i ^ 0 , (7) 

}-i k 

<*ojPo,(x,y) = ypo<,-i)(*,y)-£]L0 j«(*-/)jP(k-!)i(*.y)-
k-0 1=0 

J-l 

Y, \}-i)iP(j-i)i(x, y) , for i = 0 , (8) 
(=0 

where A,; and ,}emn are constant coefficients to be determined from the orthonormality 

conditions (4) by taking the scalar product of Eq. (7) or (8) with nmn(x,y), one 

of the orthonormal polynomials that have been generated prior to the current one, 

immediately obtaining the relations 

(mn\x\(i - l)j) , f o r i ^ O , ( 9 ) 

(mn\y\Q(j - 1)) , for i = 0 , (10) 

(^P,],KJPiJ)l,i , for a l l . . ( 11 ) 

With the calculation of ail the orthogonalisation coefficients (,}emn) and normal-
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isation coefficients (K}) the generation of orthonormal polynomials is complete. In 

Sec. V a basis of orthonormal polynomials will be explicitly constructed, but prior 

to that, a derivation of the optimal approximating function that can be expressed in 

terms of this basis will be undertaken in Sec. IV. 

IV. LEAST SQUARES APPROXIMATION 

The optimal i nalytic approximating function that will be sought will be a linear 

combination of the vectors of OL generalised to the continuum in (x,y), in which 

case they emerge as the polynomials Pi}(x, y) of Sec. Ill C. Without loss of generality, 

choose an appropriate set of pl} to form a complete set of functions for polynomials 

in two variables of degree K as defined by Eq. (5); this is precisely the set of pt] that 

is identified in Eq. (6). Consequently, the analytic approximating function p\x,y) is 

K n 

P(*.y) = L Lc(»-jbP(—ili(*.») » ( 1 2 ) 
f»=0j=0 

where the c,} are variation parameters to be chosen to maximise the fidelity of the 

analytic approximation. 

The linear least squares method [6, p. 52] of optimising the approximating func­

tion will be adopted in this paper. Define the mean square error in the approximation 

of the sample values z, by the analytic function values p{x,,y,) for t = 1,2,. . . ,N by 

e 2 = £(*,-p(x„y,)) J- (13) 

According to Eq. (1) (generalised beyond functions of only a specific family) the mean 

square error can be expressed as the Euclidean scalar product of a vector in "RN with 

itself (ie. the square of the norm of the vector), 

e7 = ((z-p),{z-p)). (14) 

Using a property of the scalar product, Eq. (14) can be expanded to give 
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C

J = (z,z) + (p ,p) -2 (z ,p) . (15) 

By making reference to the scalar product definition (Eq. (1)), the orthonormality of 

the pij (Eq. (4)) and the definition of p (Eq. (12); one can easily derive the following 

identities, 

(*.*)=IX-. ( 1 6) 
1=1 

K n 

(«'p) = HlIc (n-b(*'P(«-j)i)' ( 1 8 ) 
n=0 j=0 

and substituting these identities into Eq. (15) gives (on adding and subtracting extra 

terms) 

«' = £*? + !; £><»-,),-(*,p<»-,),))2- E D ^ - A ) 2 . (is) 
t=l n=Oj=0 n=0 )=(j 

In Eq. (19) the first and third terms on the right side are constant with respect to 

variations of the approximating function. Only the second term on the right depends 

on the approximating function through the appearance of the variation parameters of 

p, that is Cij. Since the second term makes a non-negative contribution to the mean 

square error, the mean square error is minimised when this term is zero, a condition 

that is satisfied only if the variation parameters have the specific values 

«v = (2<Pu) V ' J • ( 2°) 

Equation (12) with the specific variation parameter values given by Eq. (20) is the 

least squares approximating polynomial of degree K, in which case the c,} are denoted 

as least squares coefficients. Substituting Eq. (20) into Eq. (19) yields the minimum 

mean square error corresponding to the least squares approximation, 

? = £ > ^ i : £><»-,>, • (2i> 
i = l o = 0 j = 0 
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The root mean souare error of the least squares approximant is best defined as 

e~ = ylejx . (22) 

Anton [5, p. 268-270] reveals an intuitive geometrical interpretation of the least 

squares solution, which in the current context can be stated as follows : 

The least squares approximation to the vector z = (zi, zj,..., *(jv-i), *jv) 

in R* by the subspace VL is the orthogonal projection of z on VL, given 

bythevector ((r.poo), (*>Pio),-•-. (2»Pi(K-i)). (*.flo*c)) with respect to 

the basis OL. and the residual mean square error is the square of the norm 

of the component of z orthogonal to VL-

A theory for constructing a basis of functions that can be linearly combined 

to give an approximation to samples of an arbitrary function has been developed 

in Sec. III. and a theory for chcosing the coefficients of the linear combination to 

maximise the fidelity of the approximation has been developed in the present section. 

Within the next section these results will be applied to explicitly generate a finite 

basis of p,j(x, y), in the process fully exploiting all redundancies to provide a general 

numerical algorithm that involves the minimum amount of computation. 

V. BASIS OF ORTHONORMAL POLYNOMIALS 

OF DEGREE 0, 1,2,3 AND 4 

The theoretical foundations developed in the two previous sections will now be 

applied to the case of the approximation function being a polynomial in two variables 

of degree 4 (ie. K = 4). In this case Eq. (6) identifies 15 orthonormal polynomials p, ; 

that are to be constructed if possible (see Sec. Ill B for reasons why possibly only less 

than 15 such polynomials are significant). Subspace VL will therefore ha"e dimension 

15 (possibly Iras). 
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The following orthonormal polynomials are generated by the Gram-Schmidt or-

thogonalisation procedure of Sec. Ill C; in particular, a new orthonormal polynomial 

is expressed in terms of all previously constructed orthonormal polynomials by either 

of the Gram-Schmidt equ-t.ions (Eqs. (7) and (8)), and the arbitrary parameters in 

this equation are evaluated (Eqs. (9) and (10) for orthogonalisation coefficients (,jemn) 

and Eq. (11) for normalisation coefficients (A,j)). Least squares coefficients (ctJ) are 

as derived in Sec. IV, and expressed in Eq. (20), and can be evaluated progressively 

as each orthonormal polynomial is constructed, to completely determine the least 

squares approximation polynomial of degree 4. 

The Gram-Schmidt equations defining the orthonormal polynomials are stated in 

this section in a form that fully exploits redundancies in the orthogonalisation and 

normalisation coefficients, by not explicitly including coefficients that are identically 

zero and by calculating degenerate coefficients only once. Degenerate coefficients are 

subject to the following policy. On the first occasion that a memeber of a set of 

degenerate coefficients arises in the Gram-Schmidt procedure (this coefficient will be 

referred to as the 'initial' member of the set), the coefficient is stated in the equation 

in which it arose without modification. On subsequent occasions that members of the 

same set of degenerate coefficients arise ('subsequent' members), the coefficients are 

replaced by the initial memeber of the same set in the statement of the Gram-Schmidt 

equations in which the subsequent members occur. In summary, this section states 

the Gram-Schmidt equations in a form which omits coefficients that are identically 

zero, and all the non-zero coefficients that are present are either non-degenerate (in 

which case they appear only once), or initial members of a degenerate set (in which 

case they appear a number of times equal to the multiplicity of the degenerate set). 

Perusing the following equations indicates that degeneracies between orthogonal­

isation and normalisation coefficients can occur. Polynomials and coefficients must 
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be evaluated in the indicated order, since succeeding polynomials make reference to 

preceding polynomials and coefficients. 

The Gram-Schmidt equations for the generation of orthonormal polynomials of 

degree 0, 1, 2, 3 and 4 are as follows, 

AooPoo = 1 , (23) 

AioPio = *Poo — cooPoo , (24) 

AoiPoi = 1/Poo — cooPoo - CioPio , (25) 

A20P20 = *Pio - Ajopoo - c 1 0 p i 0 - C01P01 , (26) 

AnPn = xpoi - 2 C01P10 - "coiPoi - "CJOPJO , (27) 

A02P02 = yPoi - Aoipoo — C10P10 — eoiPoi - tioPia — e n P i i , (28) 

A30P30 = XP20 — AJOPIO — CJOPOI — cjoPao — c n P n — e<>2Po2 , (29) 

A21P21 = xpn — A11P01 — C11P20 — cnPii — C02P02 — e3oP3o , (30) 

A12P12 = *P02 — £o2P20 _ 'C02P11 - ' C02PO2 — "eaoPao — * «2lP21 » ( 3 1 ) 

Ao3Po3 = yP02 — CloPlO - A02POI — «20P2O - Cl lPl l — C02P02 — 

"knPn-^iPn-^uPii , (32) 

A40P40 = xpx — A30P20 — eaoPii — l eaopo2 — CMPSO — ejipji — 

40Ci2Pi2 - 40eo3Po3 , (33) 

A * 12 40 31 31 
31?31 = XPll ~ A21P11 - e 2 lP02 - C 2 ,p3o - e 2 i P 2 i - e 1 2 p i 2 -

31co3po3 - 3 ,e«P<o , (34) 

\ \ 40 31 22 22 
A22P22 = x p n — M2P02 - enPM - C12P21 - C12P12 — e<»Po3 — 

11 11 /nr\ 
e4op40 - e 3 i p 3 i , ( 3 5 ) 

<M3Pl3 = IP03 — C03P30 - C03P21 ~ «03P« _ «03P03 — C40P4O ~ 

C31P31 - e 22P22 ) 

(36) 
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•VMPM = ypra — eioPio - cjoPw — enPn ~ \aP02 - extPx — 
04 04 04 04 04 04 

C21P21 — CuPiJ — C03PO3 — C40P«0 ~ C31P31 — e 2 2Pi2 — 

M e 1 3 P l 3 • (37) 

The results of Sees. Ill C and IV are amenable to automatic and progressive 

computation of orthogonalisation, normalisation and least squares coemcients, for 

an arbitrarily large basis of orthonormal polynomials. Although this approach is 

simple and flexible from a programming viewpoint, direct application of this technique 

does not exploit the considerable redundancy in the orthogonalisation coefficients 

(vanishing and degenerate coefficients) that becomes apparent only under explicit 

analysis such as that elucidated in this section. Therefore, this 'mechanical' approach 

is significantly more computationally intensive than the analysis and reduction of the 

general equations arising from the Gram-Schmidt procedure, as has been implemented 

in this section for a complete set of orthonormal polynomials of degree 4. Nevertheless, 

the mechanical approach has been used in similar contexts by other researchers [10, 

and references therein]. 

In this section, the least squares approximating polynomial of degree 4 has been 

derived as a linear combination of orthonormal polynomials. The least squares poly­

nomial is expressed in a more familiar form that is evaluated with much less compu­

tational effort in the next section. 

VI. TRANSFORMATION FROM THE ORTHONORMAL BASIS OL 

TO THE CONVENTIONAL BASIS CL 

A. Preliminary considerations 

The least squares approximating polynomial p(x,y) (Eq. (12)) has been derived 

as a superposition of orthonormal polynomials p,}(x,y) with coefficients given by 
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Eq. (20). In principle the Pij(x,y) can be expanded as a sum of monomials (terms of 

the form di3x'y', where di} is a constant), thereby allowing p(x, y) to be expressed as 

a sum of monomials (that is, sum of products), as in Eq. (5). 

This transformation is equivalent to a change of basis for the subspace VL from 

the orthonormal basis OL (basis vectors being p,}) to the conventional basis CL (ba­

sis vectors being x'y') (see Sec. IIIB). Although the conventional basis is neither 

normalised nor orthogonal, there are distinct benefits in the transition to the (x, y) 

continuum associated with the use of CL rather than OL- These benefits include : 

• much lower computational effort required to evaluate a typical x'y' term than a 

typical p,} ; 

• algebraic simplicity, compactness and familiarity in the expression of the least 

squares polynomial as a sum of products, as opposed to a sum of orthonormal 

polynomials which themselves have to be defined ; 

• algebraic invariance in the (x,y) continuum of x'y3, but not pij, with respect to 

different vector spaces %N established by different sets of {xi,yi) samples, since 

different sample values lead to different orthonormal polynomials, whereas there 

is no freedom to alter the x-y dependence of a monomial. 

The change of basis problem in subspace VL, from the old basis OL to the new 

basis CL, has a formal solution [5, sec. 4.10]. If VL has dimension L, then the tran­

sition matrix from OL to CL has as its elements the coefficients of the p^ vectors 

in OL expressed as linear combinations of the x'y' vectors in CL- Elements of the 

transition matrix are too multitudinous (L3 in number), and individually too cum­

bersome (being complicated products, quotients, sums and differences of the A^ and 
, J e m „ coefficients), to even contemplate symbolically expressing the basis transforma­

tion equations, however the transition matrix elements are amenable to algorithmic 
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evaluation by a computer program, if desired. If VL has dimension less than L, then 

both OL and CL contain less than L vectors, and it is necessary to determine a linearly 

independent set of monomials that span VL (some monomials will be absent from this 

set) to be the basis CL- The comments made above for VL having dimension L will 

then be directly applicable to VL having dimension less than L . 

B. General theory of the transformation 

The transformation proposed in the previous section encompassed a change of 

basis for subspace VL of %N from OL to CL, followed by the extension of CL to the 

(x,y) continuum. These two operations may be transposed; first the basis OL of 

subspace VL is extended to the (x, y) continuum, then the specific p(x, y) is expressed 

as a linear combination of x'y3 terms, as required. This transformation is not as 

general as the determination of the transition matrix for the change of basis, but is 

endowed with the advantages of complete expressibility of the transformation equa­

tions concisely in symbolic form, and absence of the need for special consideration of 

subspaces VL with dimension less than L (as explained in the previous section). The 

theoretical foundation of the latter transformation of the representation of p(x, y) will 

be developed in this section. 

The least squares polynomial p(x,y) of degree K will be defined to have the 

following specific sum of products form, 

p(*,y) = £i:<*(,-.).* ('-V , (38) 
;=0.=0 

where the monomial coefficients d{j-i)i are to be determined. 

Polynomials of degree K in the (x,y) continuum span a subspace of infinite di­

mensional Hilbert space [6, p. 55] that has dimension L given by 

I = E 0 + 1) = i(K + l)(ff + 2) • (39) 
i=o 
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The first equality in Eq. (39) follows directly f m enumerating the linearly inde­

pendent terms in either Eq. (5) or Eq. (6), while the second equality can be proven 

by mathematical induction. This L dimensional subspace of Hilbert space will be 

denoted by KL-

Introduce another L dimensional subspace of Hilbert space as the subspace 

spanned by the L Dirac delta functions, 

6(x-Xi,y-Yl),l = l,...,L, (40) 

for distinct, arbitrary points (Xi, Y{) in the (x, y) continuum. This subspace is denoted 

by T>i. Note that the L Dirac delta functions of Eq. (40) constitute an orthonormal 

basis for subspace VL-

Subspace KL is invariant, being precisely that subspace that is spanned by all 

polynomials of degree K, but flexibility in the choice of subspace VL may be exercised 

by choosing the points (Xi, V)). Assume that VL is chosen such that the orthogonal 

projection of subsp^ce KL onto subspace VL spans VL. Equivalently, the orthogonal 

projection of any basis of KL onto VL produces a basis of VL- Denote the orthogonal 

projection of an arbitrary vector v in Hilbert space (that is an arbitrary function 

v(x,y)) onto subspace VL by "Projpt(v)". 

p{x,y) is a specific vector in subspace KL, by virtue of the fact that it is a 

polynomial of degree K. That the orthogonal projection of p onto subspace T>L has 

the coordinates 

(Proj P l (p)), = p(XhY,),l = l,...,L, (41) 

relative to the Dirac delta function basis of VL (Eq. (40)) follows directly from the 

following property of Dirac delta functions [11, p. 58-61], 

P(X,,Y,) = l^r°°p(x,y)6(x- Xuy-Yfidxdy . (42) 
J-oo J-oo 



kJtuA*^ 

Similarly, monomial functions x'y} considered as vectors in Hilbert space, have the 

following coordinates relative to the Dirac delta function basis of t>i for their orthog­

onal projections onto subspace T>L, 

(Pioj„ t (xV)) , = X'Y> , I = 1 , . . . , I . (43) 

Note that the monomials appearing in Eq. (38), that is x'y1, i + j < K , constitute 

a basis for AC/,, and as a consequence of the assumption of the previous paragraph, 

the orthogonal projections onto subspace T>i of Eq. (43) for i + j < K , constitute 

another basis for T>L (as distinct from the Dirac delta function basis of Eq. (40)). 

Taking the orthogonal projection of Eq. (38) onto subspace T>L, and substituting 

Eqs. (41) and (43) for the orthogonal projections, gives the following equations for 

the coordinates relative to the Dirac delta function basis of T>i, 

j=0 i=0 

These equations, expressed in matrix form, can be interpreted as a change of basis 

equation for subspace T>L- The 'old' basis is the set of vectors Proj P t (xV) , i+j < K, 

relative to which the coordinates of the vector Proj I, t(p(i,y)) are dy , i + j < K ; 

these coordinates are collected into the I x l coordinate matrix d. The 'new' basis 

is the Dirac delta function basis of Eq. (40), relative to which the coordinates of the 

vector Projp t(p(x,y)) are p{Xi,Yi) , / = 1,. . . ,L (Eq. (41)); these coordinates are 

collected into the I x 1 coordinate matrix p. The transition matrix transforming 

the coordinate matrix from the old basis to the new basis is the L x L matrix, to 

be denoted M, whose columns are the coordinate matr.ces of the old basis vectors 

relative to the new basis, that is, the coordinate matrices of Projp^x'y'), i + j < K 

relative to the Dirac delta function basis, as in Eq. (43). 

Introducing these matrices, whose elements are denned as follows (where the pair 

of indices (ij) are to be interpreted as a single 'vector' index for the row or column), 
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d(lj)l = d.}, i + j < t f , (45) 

M l f c ) = X ; y / , l=l,...,L,i + j<K , (46) 

p , , sp (X , ,K , ) , / = l , . . . , I , (47) 

Eq. (44) is conveniently expressed as the matrix equation 

p = Md . (48) 

M, being a transition matrix, must be invertible [5, p. 195]. If in practice 

one makes an unfortunate choice of subspace T>L, so that, contrary to the previ­

ous assumption, the orthogonal projection of subspace Ki on subspace "DL does not 

span T>L, then a new subspace T>L must be sought by seeking a new set of points 

(Xi, Yi), I = 1 , . . . , L in the (x,y) continuum, that »io indeed convert to an invertible 

M. A systematic strategy for choosing the subspace VL is as follows. M is progres­

sively constructed one row at a time by choosing one point (Xj, Yi) at a time, each 

time forming a new row of M. This results in an I x I intermediate matrix, with 

1 < / < L at each stage of the procedure. If the rank of the intermediate matrix is /, 

then the chosen (Xi, Yi) is a suitable point for generating subspace T>i, and one can 

proceed to choose the next ((/ + l)th) point. If the rank of the intermediate matrix 

is (/ — 1), then any resulting matrix M wil not be invertible, so the chosen (Xi,Yi) 

is unsuitable for generating subspace T>i (when considered in conjunction with all 

previously chosen points), therefore a new choice must be made for (X^Yj) and the 

procedure repeated. 

M ~ \ the inverse of M, is actually the transition matrix from the Dirar. delta 

function basis of Vi (Eq. (40)) to the basis of Vi given by Proj P t(i*y'), t + j < K 

(Eq. (43)), and Eq. (48) can be rewritten as 

d = M - , p . (49) 
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This matrix equation yields the required monomial coefficients dt] as the elements 

of d. Note that the coordinate matrix p and the transition matrix M (or M _ l ) 

both depend on the particular subspace T>i in such a way that the other coordinate 

matrix d is invariant with respect to changes in the subspace T>&. Note also that the 

basis that forms the original representation of p(i,y), which in this case is the set 

of p t J(x,y), is irrelevant; this technique is entirely suitable for transforming from an 

arbitrary basis to the basis defined by the set of product terms x'yJ. 

The theory for the basis transformation that was noted in Sec. VI A is concep­

tually simpler and more direct than the theory that is derived in this section, how­

ever it is explained that symbolic expression of the coefficients of the transformation 

equations is precluded by their severe complexity. These coefficients, whose values 

are dependant on the particular basis of orthogonal polynomials, would have to be 

computed by a numerical algorithm on each occasion that Ci.hogonal polynomials 

are generated. These factors support the contention that the theory that is eluci­

dated in this section, although being more convoluted when stated in abstract form, 

emerges with greater clarity, conciseness and efficiency of implementation when the 

abstraction is elaborated upon to yield explicit transformation equations. This is the 

justification for dismissing the 'obvious' theory of Sec. VI A in favour of the formally 

more complicated theory developed in this section. 

C. Specific transformation equations 

The result of a specific application of the theory of Sec. VIB for the case of 

degree 4 polynomials (K = 4 , L = 15) is stated below. The set of points 

(XI,YI) , / = \,... ,L , that define the subspace Vi are chosen to be ordered pairs 

of integers, as is apparent from the elements of p. Consequently, M has integral 

elements and M - 1 has elements that are rational numbers. Inversion of M using 
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exact algebra was accomplished by using the symbolic mathematics computer pro­

gram MATHEMATICA [12]. Expanding the matrices of Eq. (49) into their individual 

elements, gives one set of possible transformation equations as 

doo 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 p(o,o) 

d\o 0 l o - l 0 - 1 
"12 0 4 ° 0 0 0 0 0 0 P(1,0) 

doi 0 0 2 0 -.2 
3 

0 - 1 
12 0 £ 0 0 0 0 0 0 mi) 

d2o - ! I 0 I 0 - 1 
' 2 4 0 - •A ° 0 0 c 0 0 0 P(-hO) 

<*n 1 - 1 - 1 - 1 - 1 
" 6 

1 
6 

1 
6 0 0 6 

4 
1 

"12 
1 
4 

1 
"12 " 

1 
"e" 

1 # 0 , - 1 ) 

do2 - f 0 I 0 2 
3 0 - 1 

' 2 4 o-i 0 0 0 0 0 0 P(2,0) 

J30 o-i 0 1 0 1 
12 0 - -A ° 0 0 0 0 0 0 #0 ,2 ) 

fltji = 0 0 - i 0 1 
2 0 0 0 0 1 

4 
1 
4 " 

1 
~ 4 

1 
4 0 0 # - 2 , 0 ) 

d\i 0 - 1 0 1 0 0 0 0 0 1 
4 

1 
4 " 

1 
~ 4 

1 
4 0 0 # 0 , - 2 ) 

do3 0 0 - i 0 1 
6 0 1 

12 o-A 0 0 0 0 0 0 #1 ,1 ) 

d*o I _ i o - 1 

4 6 " 6 
0 1 

24 0 A 0 0 0 0 0 0 0 # 1 , - 1 ) 

«bi 1 1 1 1 
2 2 2 6 0 6 0 0 0 1 

5 0 c 1 
6 0 1 

2 # - 1 , - 1 ) 

dn x 2 2 2 
_1 

2 
0 0 0 0 1 

4 
1 
4 

1 
4 

1 
4 

0 0 # - 1 , 1 ) 

d\z _ i I I 0 2 2 2 " 
1 
« 0 1 i 0 0 1 

2 
1 
0 0 0 1 

A 0 #1 ,2 ) 

do* 1 0 - 1 0 1 
6 0 1 

24 0 ti 0 0 0 0 0 0 #2,1) 

(5 0) 

Expanding Eq. (50) into its compt ents yields the individual equations for the 

desired monomial coefficients d,} in the representation of the least squares solution 

p{x,y) as a superposition of monomials. The di} coefficients are calculated exactly 

if the p(x,y) values can be calculated exactly from Eq. (12). An assessment of the 

severity with which numerical errors in p{x,y) propagate through to numerical errors 

in dij, and how these latter errors can be minimised, is given in the next section. 
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D. Domain trcltng 

In evaluating the d\j by Eq. (50), reference is made to the values of p(x,y) at 

selected points in the domain (x,y) € ([—2,2], [—2,2]). However, suppose that p(x,y) 

has been determined to be the optimal analytic approximation for samples distributed 

over a substantial region of the domain (x,y) 6 ( [ - J 4 , ; 4 ] , [ - . B , B]), for constants A 

and B. 

Assume that A *> 2 and B >• 2. In this case it is (almost) certain that p(x, y) 

has an exceedingly small variation over the interval (x,y) 6 ([—2,2], [—2,2]). Con­

sequently, as can be verified from Eq. (50), all of the dtJ with the exception of dm 

are very small, that is, \d,,\ <£ |p(0,0)| for {a;} ^ {00}. However, absolute errors in 

the evaluation of p\x, y) at the individual selected points are not generally similar, 

so when linearly combined to give the absolute errors in the d,}, the absolute errors 

do not cancel in the 6ame way as the p{x,y) cancel in yielding the diy Summarising 

these observations, one concludes that the dt} have the same absolute errors as the 

p(x, y) (in terms of order of magnitude), but the values of the dtJ are much smaller 

than the p(x, y) (generally). Therefore, the relative errors in the d,} are much greater 

than the relative errors in the p\x y). 

This problem can be completely rectified by utilising a more appropriate domain 

for the selected values of p(x, y) appearing in Eq. (50), as will be immediately demon­

strated. Eq. (38) can be rewritten as 

Define new coefficients ai} ~ A'B'dij . (52) 
X y 

Define new independent variables x' = — , y' = — . (53) 
A tf 

Define a new polynomial p'(x', y') = p(Ax\ By'). (54) 
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Substituting these definitions into Eq. J51) derives an equation analogous to Eq. (38), 

pV,y') = i ; t i , / ' V - (55) 
j=0 1=0 

Eq. (55) is essentially Eq. (38) with the domain scaled so that the (experimental) 

samples are confined to the interval (x',y') € ([—1,1],[—1,1]). Eq. (50) is still ap­

plicable with the p values replaced by corresponding p' values evaluated at the same 

points (eg. p(x = l,y = 2) is replaced by p'(i' = l,y' = 2)), and the di} replaced 

by d'x]. The domain within which p'(x',y') is evaluated at selected points remains 

(x',y') € ([—2,2]. [-2,2]), so there is now a much closer correspondence between 

the region of experimental samples and the region of selected points. In particular, 

p'(x',y') will in general exhibit considerable variation over the latter region, hence 

the previously identified numerical problem has been overcome. 

Finally, the required unsealed monomial coefficients d^ are obtained from the 

scaled coefficients d'l} by inverting Eq. (52) to obtain 

4 , = ^ J V i , j . (56) 

Adhering to this domain scaling procedure produces dl} coefficients with relative 

errors of the same order of magnitude as the relative errors present in the evaluation 

of p(x,y), which i< lplies that there is no degradation in precision introduced by the 

transformation from the Pi}{x,y) representation to the x'y1 representation. There 

is, however, a significant reduction in computational complexity associated with this 

transformation. A technique for reducing computational complexity even further, 

with no detrimental effect on numerical accuracy, is indicated in the next section. 

E. Nested multiplication 

To evaluate the least squares polynomial p(x, y) using Eq. (38) for the case K — 4 

(ic. fourth degree polynomial), without retaining intermediate partial products, re-
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quires 40 multiplications and 14 additions. However, any polynomial of two variables 

can be expressed with a nested multiplication structure separately in the x and y co­

ordinates [13]. Using nested multiplication, the least squares polynomial is expressed 

as 

p(x,y) = (,(,(j<io4y + 

Mia* + do3)«)]y + 

()(«<fnx + dl2)a + JraMiV + 

(1GM31* + d2x)a + rfn)jJf + Joi)i).y + 

(o(iUM«o* + 3̂o)jX + <fio),x + <fio),x + doo)0 . (57) 

Using this nested multiplication scheme requires 14 multiplications and 14 additions 

for every evaluation of the least squares polynomial p(x, y), which constitutes a worth­

while reduction in computational effort compared with the direct evaluation. 

This completes the exposition of an algorithm for the least squares approximation 

of experimental samples (or discrete samples of an arbitrary function) by a polyno­

mial in twc independent variables of degree 4, and it is noteworthy that the stated 

intention of arriving at an algorithm devoid of matrix arithmetic has been satisfied. 

An assessment of the validity of the algorithm, by numerically executing it on several 

sets of actual samples, is undertaken in the next section. 

VII. NUMERICAL VALIDATION OF THE ALGORITHM 

The following procedure will be implemented to assess the validity of the algo­

rithm that has been developed in previous sections. A 'test polynomial' of degree 

4 in two variables is denned by choosing numerical values for its di} coefficients in 

Eq. (5). Values of this polynomial at randomly located positions are used as the sam­

ples upon which the least squares orthogonal polynomial approximation algorithm 
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operates. Upon execute of the algorithm, one identifies a 'reconstructed polyno­

mial' by computing its <L,} coefficients. Comparison between the two polynomials is 

made by comparing corresponding coefficients. Since the least squares algorithm that 

has been explicitly stated in this paper spans a complete set of degree 4 polynomials, 

it is expected that the algorithm will faithfully reproduce the test polynomial as its 

reconstructed polynomial. Corresponding coefficients in the test and reconstructed 

polynomials are expected to be identical, to within floating point arithmetic errors. 

Results of executing this test on two sets of samples are tabulated in Table I. 

Floating point arithmetic is conducted entirely in double precision (8 byte numbers, 

approximately 15 digit accuracy). The minimum mean square error (c 3) is computed 

according to Eq. (21). Although e2 > 0 by definition, in both of the examples quoted 

in Table I, e7 is calculated to be a negative number as a consequence of numerical 

errors. On comparing corresponding coefficients in the tables, it is eminently reason­

able to conclude that the reconstructed polynomial reproduces the test polynomial 

to within numerical errors, thus confirming the validity of the algorithm (or more 

precisely, the implementation of the algorithm by this particular computer program). 

VIII. CONCLUSIONS AND GENERALISATIONS 

The content of this paper arose out of a genuine need to establish a simple and 

robust technique of analysing the data arising from physics experiments being con­

ducted by the ESM Centre, although analogous data analysis scenarios abound both 

within and beyond physics (Sees. I and II). 

A technique of generating orthonormal polynomials in two independent variables 

was stated in Sec. III. In this exposition, sufficient polynomials were constructed 

to form a complete set for polynomials of a certain degree; no more and no less. 

However, this condition is not an intrinsic restriction of the theory, and an arbitrary 
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number of orthonormal polynomials can be constructed. Also, the condition of two 

independent variables is not an intrinsic limitation of the theory. The theory that 

is espoused in this paper ca«; l*e extended to an arbitrary number of independent 

variables, although there will be a commensurate increase in the complexity of the 

statement of the resulting equations. 

Within Sec. IV the orthonormal polynomials are utilised to optimally approximate 

empirically or analytically determined samples. A derivation of the optimal coefficient 

values in the superposition of the orthonormal polynomials is undertaken. 

The preceding theory is applied to explicitly construct a complete set of orthonor­

mal polynomials of degree 4 (Sec. V). Although the orthogonal polynomial generation 

algorithm is conducive to direct implementation as a computational procedure, the 

explicit analytical approach adopted here allows the identification and omission of 

the numerous redundancies present in the coefficients, that would otherwise be labo­

riously computed by the direct naive approach. 

A general theory for the transformation of a polynomial from a representation 

in terms of orthonormal polynomials to the conventional representation as a sum of 

products is developed in Sec. VI. A specific set of transformation equations, derived 

according to the principles of the theory, is stated for the case of degree 4 polynomials, 

although the same technique can be extended to polynomials of arbitrary number of 

monomial terms. A more direct theory for accomplishing this transformation, which 

is noted together with its detrimental aspectj, is conducive to implementation as a 

general computational procedure that is executed as part of the braoadei polynomial 

approximation algorithm. 

A practical perspective to the preceding theory is provided in Sec. VII, where the 

algorithm that has been developed for polynomials of degree 4 is implemented as a 

computer program. Using this computer program, several tests of the algorithm are 
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executed, the results of which manifestly confirm the practical validity and utility of 

the algorithm. 

IX. COMPUTER PROGRAM 

The computer program that was used to produce Table 1 i3 written in ANSI C, 

apart from the use of a few non-critical intrinsic functions. It is modular and fully 

documented, and a substantial portion of it can be extracted intact to be used as the 

foundation of an implementation of the algorithm that is discussed in this paper. 

The source code for this program is available by contacting the author by elec­

tronic mail (phrsc@cc.flinders.edu.au), facsimile ((618/08) 201 2005), or post. 
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TABLES 

TABLE I. Results of two applications of the least squares orthogonal polynomial ap­

proximation algorithm. A 'test' polynomial is denned and used to calculate JV sample values 

within the domain (i,y) € ([-A, A],[-fl,5]). The algorithm computes the 'reconstructed' 

polynomial with a minimum mean square error c2. 

N = 2 0 , 4 = 1000.0, B = 1000.0, N = 100, A = 5000.0, B = 5000.0, 

e2 = -5.8208 x 10" 1 0 (as calculated). e2 = -2.4414 x 10"3 (as calculated). 

coeff. test reconstructed test reconstructed 

doo -8.100xl0" 4 -8.1000000 xlO" 4 4.820 xlO 2 4.8200000 xlO 2 

dXo 1.170xl0 _ 1 1.1700000X10"1 -1.380 x l O - 1 -1.3800000 xlO" 1 

do\ 0.000 -1.1368684 xlO" 1 5 -3.700X10' 8 -3.6999985 xlO" 8 

djo -9.400 xlO" 5 -9.4000000 xlO" 5 0.000 -4.8894435 xlO" 1 7 

du 2.800 x l 0 _ s 2.8000000x10"* 8.470 xlO" 4 8.4700000 xlO" 4 

do. 3.500x10"" 3.4999998xl0" n 0.000 -6.2118488 xlO" 1 8 

<*30 0.000 9.4146912 x lO" 2 3 -7.100X10" 1 3 -7.1000000 xlO" 1 3 

d-ii -1.900xl0" 8 -1.9000000 x l O - 8 1.329xl0" 6 1.3290000 x l O - 6 

d\i 1.840xl0" 7 1.8400000 xlO" 7 -4.500 x lO" 1 3 -4.5000000 x lO" 1 3 

doj 0.000 1.1368684 xlO" 2 1 l.lOOxlO"8 1.1000000 x l O - 8 

dw 3.100x10"" 3.1000000x10-" -8.280 x lO" 1 0 -8.2800000 x lO" 1 0 

^31 -9.800 x lO" 1 6 -9.8000000 x lO" 1 6 0.000 -7.4505806X10"25 

d22 -2.540 x l O - 1 0 -2.5400000 x lO" 1 0 0.000 2.7939677x10"" 

d\3 0.000 2.7284841 x 10" 2 4 5.040X10" 1 0 5.0400000 x lO" 1 0 

da* 9.060 x lO" 1 0 9.0600000 x lO" 1 0 -8.100X10 - 1 6 -8.1000000 xlO" 1* 
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