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ABSTRACT 

An experiment in a new regime of ion Bernstein wave (IBW) 
heating has been carried out using 130 MHz high power 
transmitters in the JIPP T-IIU tokamak. The heating regime 
utilized the IBW branch between the 3rd and 4th harmonics of the 
hydrogen ion cyclotron frequencies. This harmonic number is the 
highest among those used in the IBW experiments ever conducted. 
The net radio-frequency (RF) power injected into the plasma is 
around 400 kW, limited by the transmitter output power. 

Core heating of ions and electrons was confirmed in the 
experiment and density profile peaking was found to feature the 
IBW heating (IBWH). The peaking of the density profile was also 
found when IBW was applied to the neutral beam injection heated 
discharges. An analysis by use of a transport code with these 
experimental data indicates that the particle confinement should 
be improved in the plasma core region on the application of 
IBWH. 

It is also found that the ion energy distribution function 
observed during IBWH has less high energy tail than those in 
conventional ion cyclotron range of frequency heating regimes. 
The observed iBWH-produced ion energy distribution function is 
in a reasonable agreement with the calculation based on the 
quasi-linear RF diffusion / Fokker-Planck model. 
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1. INTRODUCTION 

Due to the excellent accessibility to high temperature and 
high density plasma core for a relatively wide range of launched 
parallel index of refraction [1], the ion Bernstein wave heating 
(IBWH) is well suited for heating reactor plasma core in the 
future devices. Since IBW can heat the plasma even at higher 
ion cyclotron harmonics, higher frequency than those in 
conventional heating regimes in ion cyclotron range of frequency 
(ICRF) can be used. Furthermore, since the polarization of the 
wave electric field is in the horizontal direction, IBW may be 
launched by a lower-hybrid-like waveguide antenna [2], This 
makes IBWH more attractive, specifically, in its reactor 
applications. 

In the previous IBWH experiments on JIPP T-IIU, 40 MHz was 
used. Two heating regimes of physical interest found in the 
experiment were referred to as Mode-I regime (0) = 3/2Qu = 3&D) 

[3] and Mode-II regime (0) = £1H = 2£2D) [4]. In the Mode-I 
regime, the IBW heating experiment was carried out for the first 
time in the mid-size tokamak and a strong central ion heating 
was observed. In the Mode-II experiment, an efficient electron 
heating was observed. It is predicted theoretically that the 
wave rays with large k|| out of its spectrum are absorbed via 

electron Landau damping. In PLT [5-9], the various IBWH regimes 
(0) = 5i'i-), 3/2ftD, 3He) were identified. The observed ion heating 
efficiency was comparable to that of the conventional ICRF 
heat ing and the particle confinement was improved during IBWH. 
In Alcator C [10-13], the experiments were performed in the high 
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density and high toroidal magnetic field regime. The directly 
launched IBW was detected by the C02-laser scattering system. 
The ion heating and the improvement in the particle confinement 
during IBWH were also observed. In TNT-A [14-16], which is a 
small tokamak, antenna loading and wave propagation were 
investigated in detail and the presence of ion and electron 
heating regimes was confirmed. However, no appreciable increase 
of the stored energy has been reported from the recent 
experiments in JFT-2M [17] and DIII-D [18]. 

Though the viability of IBWH was demonstrated in many of 
the experiments, all of these experiments recorded various 
levels of impurity release during IBWH. In the previous JIPP T-
IIU experiment, the injection power was limited by the plasma 
disruption caused by the impurity influx (thought to be irons 
from the stainless steel Faraday shields). On PLT, the iron 
influx from the Faraday shields was successfully reduced by 
coating the stainless steel shield material with a thin layer of 
carbon [19]. On DIII-D, the impurity problem was significantly 
reduced through wall carbonization (on DIII-D, the source of 
metallic impurity was observed to be mainly from the vacuum 
vessel wall) [20]. The present JIPP T-IIU experiment is 
motivated by the hypothesis proposed by Itoh et al. [21]. A 
particle in the radio-frequency (RF) field has velocity v, 
energy E, and excursion length ^ which have following forms: 

v S ^ eShn^)2 %^^r (1) 
mco ^ mco mcoJ 
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where q and m are the charge and mass of the particle, and E and 
to are the field and frequency of the RF wave, respectively. As 
the frequency increases, both ^ and e become small. In the 
present experiment we choose 130 MHz, which is three times 
higher than that used in the previous experiments, 40 MHz. 
Then, it is expected that the particle and/or energy flux which 
may cause sputtering become smaller, thereby, reducing the 
influx of impurity. It should be also noted that such non­
linear processes as the ponderomotive potential formation which 
have a similar frequency dependence as Eq.(1) are also reduced 
by increasing the heating frequency. 

We report in this paper the results of the new IBW 
experiment utilizing higher frequency in JIPP T-Iiu. The 
experimental results are described in section 2. In section 3, 
the analyses of particle transport is discussed. A new quasi-
linear diffusion model of ion energy distribution during IBWH is 
presented in section 4 . The model is used to explain the 
observed in energy distribution during IBWH. Summary and 
conclusion are presented in section 5. 

2. EXPERIMENTAL RESULTS 

Figure 1 shows the cross section of the IBW antennas at the 
equatorial plane. Each antenna element is a center-fed T shape 
antenna, so-called Nagoya Type-Ill coil [22], This center-fed 
antenna configuration gives a built-in phasing capability which 
eliminates the low n\\ component. The low nj| component has more 
difficulty penetrating into the plasma due to the axial 
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convective loss effect [23], thereby causing the edge heating 
and impurity generation. These three antennas are aligned along 
the toroidal direction at the low field side and protected by 
the carbon limiters. The whole of antennas are covered by the 
one unit of double stainless steel Faraday shield. 

One of the unique features of this experiment is that it is 
the highest hydrogen harmonic frequency IBWH experiment ever 
conducted (a»/iiH = 3-4, f = 130 MHz, Bt = 3 T) . Figure 2 shows 
the square of the calculated perpendicular wave number as a 
function of the major radius for a typical ohmic parameter. In 
this case, the toroidal magnetic field at R = 0.93 m is 2.85 T 
and the pure hydrogen plasma is assumed. The resonance layer of 
the 3rd cyclotron harmonic of hydrogen is located at the plasma 
center. The 2nd and 4th harmonic layers lie completely outside 
the plasma. The wave excited at the antenna located in the low 
field side (the right end of the figure) propagates into the 
interior of the plasma until absorbed at the resonance layer 
near the plasma center. In adopting the higher frequency, it is 
expected that the sputtering at the plasma edge is reduced and 
the impurity influx would decrease accordingly, as described 
before. in this experiment, we could inject the IBW power of up 
to 400 kW without disruption. The power was limited by the 
transmitter output power and the level is about four times that 
of the previous 40 MHz IBW experiment. The calculated RF power 
deposited at the plasma cente*' reached - 10 MW/m3. During IBWH, 
though the iron influx which is thought to come from the Faraday 
shields increased, the serious impurity problem which could lead 
to a major disruption was not encountered. We also searched for 
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the parametric instabilities [24 , 25} with an RF probe but they 
were not observed. 

In optimizing the IBWH performance, it was found that the 
plasma position control with respect to the antenna position is 
quite important. The optimum edge density at the antenna 
position was found to be 03 = (Opi, or n e = 4 x 10 1 7 m~3 before 
application of the RF. The plasma tends to disrupt if the 
antenna edge density is too low or too high. When the plasma is 
too far away, the RF ponderomotive force can further depress the 
plasma density in front of the antenna which can lead to the 
axial convective loss [23!. If the plasma is too close to the 
antenna, the high plasma density can cause the plasma sheath 
related problems [26]. indeed during IBWH, the plasma position 
control must be preprogrammed to prevent the outward movement 
(0.5-1.0 cm) o£ plasma to within few millimeter. 

2.1. IBW only injection experiment 

To confirm the IBWH in this new heating regime, we launched 
IBW into an ohmically heated pure hydrogen plasma. Figure 3 
shows the t ime history of a typical shot in which IBW only was 
appl ied to the ohmic plasma, At the flat top of the plasma 
current {= 170 kA) , the IBW power of 200 kw is applied 
(Fig.3(a)). The stored energy measured by the diamagnetic loop 
increases from 2 kJ to 5 kj {Fig.Bf1'). The electron 
temperature of the plasma center measured by the electron 
cyclotron emission (ECE) increases with the injection of IBW 
fFig.3(cJ) and the sawtooth oscillation is enhanced. The 
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subsequent decrease of the electron temperature is due to the 
large increase of the electron density caused by the injection 
of IBW (Fig.3(e)). The intensity of the H a line near the 
antennas decreases during IBWH (Fig.3(d)). H a signals viewing 
low field side around the bore limiter increase and those 
viewing the high field side decrease. 

Figure 4 shows the energy spectrum of the hydrogen ions 
measured by the fast neutral analyzer (FNA). The bulk ion 
temperature is estimated in the energy range between 1 and 5 
keV. In comparison with the ohmic discharge, it is clear that 
the ions are heated by the injection of IBW. The ion heating is 
observed also by the Doppler spectroscopy. The central ion 
temperature obtained from the Fe XXII line reaches = 1 keV 
during IBWH and this is compatible with that of the FNA value. 
The time history of the bulk ion temperature acquired by the FNA 
is shown in the Fig.3 If). 

Figure 5 is the profile of the electron temperature 
obtained by the measurement of ECE using the 10 channel 
polychromator. The polychromator channels are adjusted to give 
a correct electron temperature profile for a typical cbmic 
discharge previously given as 

Te(r) = Te0(l-(r/a)2)2 

where T e C is the central electron temperature and a is the 
plasma minor radius. As shown in Fig.5(a), just after the 
injection of IBW, the temperature near the center of the plasma 
is raised and the temperature profile peaks at the center. The 
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central electron temperature reaches = 1.1 keV. As the density 
increases daring JBiv, as mentioned before, the whole temperature 
decreases. We compared this electron temperature evolution with 
a simulated density rise using the gas puffing as shown in 
Fig.5(b). When the density rise is produced by the gas puffing 
the electron temperature goes down as the density increases. 
Comparing the Fig.5 (a) with lb), it is clear that the higher 
electron temperature is maintained with IBW injection. The 
electrons are therefore heated during IBWH. However, in this 
regime, the ray-tracing calculations show predominantly an ion 
heating. 

Figure S shows the time evolution of the electron density 
prof ile measured by the multi-channel far infrared (FIR) laser 
interferometer. From this figure, it is found that when IBW is 
injected the density profile peaks gradually at the center 
accompanied with the density rise. From such measurements, it 
is expected that the particle confinement is improved by IBWH 
particularly in the central region. 

Thus, it is found that the central electrons and ions are 
heated by the injection of IBW alone producing more peaked 
temperature and density profiles as compared to the ohmic 
plasma. 

2.2. Superposition of NBI and IBW 

The superposition of IBWH on neutral beam injection (NBI) 
presents an interesting heating characteristic. The neutral 
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The direction ct "he plasma current i co- ii: ject. ion) . The NBI 

ailowr; r he ion temperature profile measurement utilizing the 

charge exchange recombination spectroscopy (CXRS) [2"] . Figure 

7 shows the time history of a typical shot when IBW was appliec 

on top of NBI. At the flat top of the plasma current (= 200 

kA) , NBl (= 350 kW) is injected first and IBW I - 390 kw) is 

applied shortly after as shown in Fig.7(a). The total input 

power in this case is about two times the ohmic power. By the 

injection of N B I and IBW, the stored energy is increased 

(Fig."(b)) and the electron temperature at the plasma center is 

also increased (Fig.7(c)). The H a signal in the vicinity of the 

IBW antennas increases by the injection of NBI, but decreases as 

soon as IBW" is injected (Fig.7(d)). H a signals viewing low 

field side around the bore limiter increase as well as the case 

of the IBW only injection. The radiation loss at the plasma 

center with I B W increased much more than that with NBI 

(Fig.7(f)). This is mainly due to the increased plasma density 

(Pracj « Zeff n e
2j . To reduce the radiative losses further, it is 

clear that the impurity problem must be improved for IBWH. 

However, the maximum IBWH power injected into the plasma is four 

times larger than our previous experiment, so the impurity 

problem in the high frequency regime is successfully reduced. 

The FNA ion temperature increased with the NBI and IBW, 

respectively (Fig.7(g}). 

Figure 8 shows the profile of the ion temperature measured 

by CXRS. The increase of the ion temperature by IBW is caused 

especially in the vicinity of the plasma center and the profile 

is the center peaked form. This is the remarkable feature in 
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this experiment. The somewhat higher ion temperature measured 
by FMA compared with CXRS may be explained by the fact that FNA 
measured the heated hydrogen ions directly whereas CXRS measured 
the indirectly heated carbun ion temperature. 

Figure 9 is the profile of the electron temperature 
obtained by the ECE measurements. During the injection of NBI, 
the electron temperature increases as a whole in comparison with 
ohmic discharge. When IBW is injected the electron temperature 
near the plasma center is raised and the profile peaks more. 
Furthermore, with IBW injection, the central density increases 
by a factor of 2-2.5. 

Figure 10 shows the electron density profile evolution 
obtained from a multi-channel FIR laser interferometer system 
using the Abel inversion technique. To obtain a degree of 
peakedness, the density profile thus obtained is fitted to the 
following functional form of density profile: 

ne(r) = ne0(l-(r/al2)k 

where n e 0 is the central electron density and the k is a profile 
factor. Larger the factor k is, steeper the density profile 
becomes. Figure 10(a) shows the electron density at the plasma 
center. Figure 10(b) shows the time evolution of the profile 
factor k. The indications with arrows in the figures are as 
follows: P- 1 is the period that the plasma is heated ohmically 
without additional heating. P-2 is the period when only NBI is 
injected. P-3 is the period that IBW is applied in addition to 
NBI. P-4 is the period that NBI is turned off but IBW remains 
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injected into the plasma. When NBI is injected (P-2) , the 
increase of the central electron density is very small and the 
density prof ile becomes broad in comparison with the ohmic 
discharge (P-l). when IBW is injected (P-3), the central 
electron density increases greatly and the density profile 
becomes peaky in spite of the broadening effect caused by the 
NBI. When NBI is turned off and IBW remains applied (P-4), the 
profile becomes even more peaked than before and the density of 
the plasma center also increases. 

Thus, in superposing on NBI, IBW couples well with the 
electrons near the plasma center and both the electron 
temperature and density increase in the plasma central region. 
The ion temperature is also remarkably raised near the center 
and the centrally peaked profile is obtained. Due to the 
combined rise in the central density and temperature, the 
central plasma energy density is increased remarkably by IBWH. 
Therefore, the effectiveness of IBWH with the presence of strong 
NBI heating is demonstrated in this experiment. 

3. DISCUSSION OF PARTICLE TRANSPORT ANALYSES 

As mention. before, though NBI is a significant particle 
source, both the average and central density increase only a 
little (Fig.7(e) and 10(a)) and the density profile tends to 
broaden (Fig.10(b)) during NBI. This behavior suggests a 
reduction in the particle confinement during NBI. In contrast, 
when IBW is applied, the density profile peaks and the central 
density increases (Fig.10). Since the particle fueling for IBW 

- 12-

injected into the plasma. When NB1 is injected (P-2l， the 

increase of the central electron density is very small and the 

density profile becomes broad in comparison wiヒh the ohmic 

discharge IP-l). When IBW is injected IP-31， the central 

electron density increases greatly and the density profile 

becomes peaky in spite of the broadening effect caused by the 

NBI. When NBI is turned off and工BWremains applied {P-41， the 

profile becomes even more peaked than before and the density of 

the plasma center a1so increases. 

Thus， in superposing on NB1， 1BI.¥' couples well with the 

electrons near the plasma center and both the electron 

temperature and density 斗ncrease in the plasma central region. 

The ユon temperature is a150 remarkably rai5ed near the center 

and the centrally peaked profile is obヒained. Due to the 

combined rise in the central density and temperature， the 

central plasma energy density is increased remarkably by IBWH. 

Therefore， the effectiveness of 1BWH with the presence of strong 

NB1 heating is demonstrated in this experiment. 

3. DISCUSSION OF PARTICLE TRANSPORT ANALYSES 

As ment ion、 before， though NB1 is a significant particle 

source， both the average and central density increase only a 

little (Fig.7{el and lO{al) and the density profile tends to 

broaden {Fig.lO {bl I during NBI. Thェs behavior suggests a 

reductュon in the pdrticle conEェnementduring NB1. In contrasヒ，

¥.:hen 1BI.¥' is applied， the density profile peaks dnd the central 

density increases (Fig.l0l. Since tb.e partユcle fueling for IBW 

12 



is only taking place at the plasma periphery, this clearly 
indicates that the particle confinement in the plasma core 
region is improved by the injection of IBW. We estimated the 
particle dif fusivity by using the following usual particle 
transport equation: 

dn(r) i d i d 3n(r) 
— + - T~ [rVCrJn(r)] + - — [ rD(rJ— ] = Sir) (1) 

at r dr r dr dr 

where n(r) is the plasma density, V(r) is the particle 
convective velocity which usually flows inward for tokamak 
discharges, D(r) is the particle diffusivity, and Sir) is the 
particle source term. The particle confinement is improved by 
increasing the inward particle convective velocity V or 
decreasing the diffusivity D. we solved Eq. (1) for a steady-
state solution. As observed in the previous tokamak 
experiments, we use here the value of V(r) twice the Ware-pinch 
velocity. For the purpose of comparison, we fix the V(r) and 
calculate the corresponding D(r) for the cases being considered 
here. Without NBI discharges, S(r) is zero (except at the 
edge), and with NBI discharges, Sir) is calculated using the 
particle deposition code (NFREYA code). The resulting particle 
di f fusivity, D [m2/s] , near the plasma center (r ~ 2.6 cm) is 
0.G35 for the ohmic discharge (P-l in Fig.10), 0.208 for NBI (P-
2), 0.097 for NBI + IBW (P-3), and 0.025 for IBW IP-4). The 
diffusivity during NBI is much larger than that of ohmic 
discharge and the particle confinement during NBI deteriorates 
considerably from the ohmic discharge. This is consistent with 
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a typical NBI L-mode discharge. With the injection of IBW, the 
diffusivity approaches that of ohmic discharge and the 
conf inement is improved. Moreover, when NBI is shut of f, the 
confinement is further improved. It should be noted that the 
confinement improvements during IBW may be also explained by an 
increase in the inward convective velocity term instead of the 
reduction in the diffusivity. 

4. DISCUSSION OF QUASI-LINEAR DIFFUSION OF IONS 

During IBWH, an interesting feature is observed in the ion 
energy distribution. Figure 11 shows the energy spectrum of the 
hydrogen ions for the two representative IBW power levels (as 
labeled). The high energy tail of the ion distribution produced 
by IBWH increases as the applied IBW power is increased. 
However, distinguishable from the fast magnetosonic wave heating 
case [28], the IBWH-produced high energy ion tail (non-thermal 
component) does not have the 'runaway' structure; the 
acceleration tends to stop at a certain energy. We investigated 
the RF-induced acceleration of ions in the IBW field using the 
quasi-linear, Fokker-Planck diffusion equation [29, 30]. 

From Ref.[29], a kinetic equation for the ion distribution 
function including the quasi-linear heating by RF and Coulomb 
thermalization is: 

df — = C(f) + Q(f) (2) 
dt 
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where C(£) is the Coulomb collision term and Q(E) is the quasi -
linear diffusion term. Since RF heats the particles 
perpendicularly, v x » vn and for the electrostatic waves, the 
wave field is Ex = E, Ey = 0. Then from Ref.[30], Q(f) is 

n z 2 e 2 1 i,V 1 d •> •> l J " ( Z ) l 2
 B 1 df 

Q(f J = -, i E x
2 7 — 7 — v±2n2 — 5[v„(res)]— — (3) 

m2[k||| ' ' ^mi vi dv±

 ± Z J vi 9v± 

where Jn(Z) is the Bessel function, Z = k 1v 1/Q i, and V||{res) = 
(G>-nQ±) /kj| which is the resonance condition. Since we consider 
the non-thermal component of the perpendicular velocity 
distribution, v T i « v ± « vT.,, where vT. = (2kTj /m^) 1 / z , and j 

denotes the i and e for ions and electrons, respectively. In 
the RF heating case, the distribution function is distorted in 
the perpendicular direction, i.e. , <vx

2> » <V||2> = v T i
2. After 

integrated over the V|/, Eq. (2) is written in the following form: 

d£(v±1t) i d ! 32 

1 a 1 a 1 i i 
+ ^ ^ [^ £ 1 ^ ^ 1 K ^ ^ 

where a = <Avjj> + <{Avj_)2>/2v, p = <{Avn)2>, and y = <(Avx)2> are 
given in Ref. [29] , and K is a quasi-linear RF diffusion term 
which is obtained from the Eq.(3). For steady-state, Eq.{4} can 
be integrated twice and gives the following solution: 
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Jinear difftlsion term. Since RF heats the partエcles
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where日"<8vl/> + < (8V.11 2>/2v， s <(8vl/12>， and y三 <(AvJ.)2>are 

given in Ref. [29]， and K is a quasi-linear RF diffusion term 

which is obtained from the Eq. (31. For steady-state， Eq. (41 can 

be integrated twice and gives the fOllowing solution: 
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f vi -4av ± + 2p + 2p'v± + 
f(v l 0) expt- — — — 

Jv l 0
 2 ^ v i + 4 K / v ± 

where the P' denotes the derivative of p with respect to v x. For 

simplicity, we set that the lower bound of the integral, vj_0, to 

be twice the ion thermal velocity since we are dealing only the 

non-thermal component (which is also the experimentally observed 

value). 

From Eq.(3J, the velocity dependence of K is given as K(vj_) 

<* IJ n(Z)l 2/Z 2. In the case of IBW, because of the very short 

wavelength, it is a reasonable approximation to assume z to be 

large. Expanding in the large argument limit, noting that J n(z) 

« Z" 1, we obtain K =* z~3 or Vj_"3 since Z =•= v x . One should note 

here that by assuming a small spread in k|| (« 10 % which is 

easily satisfied in the experiment), the oscillatory behavior of 

Bessel function averages to zero, recovering K « Z" 3 type 

behavior. Inspecting the integrand of Eq.(5), the dominant term 
in the numerator is -4av ± and in the denominator is 4K/v ±

2. 
Defining K = KQVJ_"3, we can integrate Eg. {5) and obtain: 

v« v / vi J 

£(V_L) « f(v l 0) exp[- rf- (— + —-jl ] (61 

where t s is the slow down time due to the electron drag given in 

Ref.[29]. As can be seen in Eq.(6), the relevant velocity range 

can be divided into two regions: v ± < v a and v_|_ > v a where E a = 

mv a
2/2 = 14.8 kT e. When v ± = v n, the power dissipated by the 

bulk ions equals that by the bulk electrons. Therefore, for v ± 

< v a, the dominant thermalization is by ions and the velocity 
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where ts is the slow down time due to the electron drag given in 

Ref. [291. As can be seen in Eq. (61， the relevant velocity どange
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mvα2/2 14.8 i<.Te_ When vょ =vα， the power diss斗pated by the 

bulk ions equals that by the bulk electrons. Therefore， for v~ 

< Vα， the domユnant thermalization is by ions and the velocity 

16ー



distribution assumes a Maxwellian-like form with an effective 
ion temperature « KQ which is proportional to the RF power. In 
this regime, since v a

3 and t s are both proportional to T e
3 / 2 , 

there is no dependence on electron temperature. For v± > v a, 
the v 1

5/v a
3 electron drag term rapidly start to dominate the ion 

drag term. in this regime, the electron dissipation which is 
independent of the fast ion energy is quite effective in 
counteracting the RF diffusivity which decreases rapidly with 
Vj_"3. Therefore, it can be concluded that the IBW heated 

distribution function tends to assume the Maxwellian 
characteristic up to v a and then decreases more rapidly above 
vcr 

From the experimental point of view, this property 
indicates that if the RF power density is not sufficiently high, 
the resulting distribution is very much like Maxwellian 
distribution since the charge-exchange fast neutral signal falls 
well below the noise level before reaching v a. However, if the 
RF power density is sufficiently high, the steeper drop in the 
distribution function near v a should be observable. In Fig.12, 

we plot the calculated distribution using Eq.(6). The best 
agreement with experiment is obtained when the RF power density 
is chosen 2 and 10 MW/m3 for 90 and 360 kW case, respectively. 
For the 90 kW case, the observed energy distribution function is 
Maxwellian-like. For the 360 kW case, the rapid fall off starts 
around 15 keV which is in the same range as E a = 15 keV with T e 

= 1 keV. The agreement between the ion tail behavior and the 
present theoretical model appears to be reasonable. 
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RF power density is sufficiently high. the steeper drop in the 

distribution function near V(l should be observable. 工n Fig.12， 

we plot the calculated disヒribution using Eq. (6). The best 

agreement with experiment is obtained when the RF power density 

is chosen 2 and 10 MW/m' for 90 and 360 kW case， respectively. 

For the 90 kW case， the observed energy distribution function is 

Maxwellian-like. For the 360 kW case， the rapid fall off starts 

aroundユ5keV which is in the same range as Ea 15 keV with Te 

1 keV目 Theagreement between the ion tail behavior and the 

present theoretical model appears to be reasonable 
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5. CONCLUSION 

IBWH investigation was extended on JIPP T-IIU, utilizing 
high power 130 MHz transmitters, to the 3Q H-4H H range which is 
the highest hydrogen harmonics to date. Investigation in the 
high harmonic frequency range is important because it can lead 
to an early waveguide antenna experiment for IBWH as planned for 
FTU [ 31 ] . A three-element phased antenna array was used to 
launch a relatively well defined ri|| spectrum with nu = 4-8. 

with the increase of frequency from the previous 40 MHz to 130 
MHz, the maximum input power could be increased to 400 kw, which 
is four times larger than the previous value. The 130 MHz 
experiment has much less impurity problem than the 40 MHz case 
which could be due to the combination of higher frequency and 
antenna phasing. It should be noted that both 40 MHz and 130 
MHz IBWH experiments utilized antennas with stainless steel 
Faraday shields. when IBWH is applied, the profile of electron 
density peaks in the core region of the plasma, suggesting an 
core particle confinement improvement. Similarly, an increase 
of the central ion and electron temperatures is observed. The 
core confinement improvement and central heating by IBWH are 
also observed when IBW is combined with NBI. From plasma 
transport analyses, it is found that the particle confinement is 
improved in the plasma core region with application of IBWH. 
This confinement improvement persisted even with NBI heating. 
If the mechanism of the confinement improvement can be 
clarified, it might lead to a method to actively control the 
plasma transport by IBWH. 
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As the IBWH power is increased, an interesting non-thermal 
tail formation has been observed. The high energy ion tail 
produced by IBWH does not have the run-away feature as often 
produced in the fast magnetosonic wave ICRF heating experiments. 
Instead, the IBWH-produced ion tail tends to stop at certain 
energy range. To explain the observed ion tail features, we 
have developed a quasi-linear RF diffusion / Fokker-Planck model 
for IBWH. The model appears to agree well with the observed ion 
energy distribution. In particular, the rapid decrease of RF 
diffusion above the electron-ion equi-dissipation energy, E a = 
15 kTe, can bo explained with this model. The present model 
confirms the bulk ion heating nature of IBWH. This heating 
model also predicts a favorable fusion reaction yield by IBWH 
since for a reactor situation where temperature is sufficiently 
high, T e > 10 keV, any ion acceleration beyond E a tends to 

reduce the fusion reactivity and fusion power amplification 
factor Q. 

As for the future plan, due to the importance of tokamak 
transport for the fusion program, it would be worthwhile to 
investigate the cause of the plasma transport improvement during 
IBWH. This improvements may be related to the fluctuation 
suppression by poloidal velocity shear created by IBWH [32]. To 
measure plasma fluctuation and po* 3ntial, a multi-channel FIR 
laser scattering system and a 0.5 MeV heavy ion beam probe are 
in preparation. 1"o reduce the metallic impurity influx, the 
stainless steel Faraday shields will be coated with a thin 
carbon layer as in PLT [19], wnich should further reduce the 
radiative losses during IBWH. Minimization of radiative loss 
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channel is of course very important to access actual improvement 

of plasma energy confinement during IBWH. 
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FIGURE CAPTIONS 

Fig.l. The structure of the IBW antennas, the Faraday 

shields and the carbon protectors. 

Fig.2. The dispersion relation of IBW for the hydrogen 

plasma. The abscissa is the major radius and the 

ordinate is the square of the perpendicular wave 

number. Electron temperature of the plasma center and 

edge are 900 eV and 90 eV, respectively. Ion 

temperature of the plasma center and edge are 350 eV 

and 35 eV, respectively. Electron density of the 

plasma center and edge are 1 x 1 0 1 9 m~3 and 1 x 1 0 1 8 

m~ 3, respectively. 

Fig.3. Time history of the typical shot in the case of the 

IBW only: (a) applied IBW power. (b) stored energy, 

(c) central electron temperature. (d) the intensity 

of the H a signal near the antennas. (e) average 

electron density. it) ion temperature. 
Fig.4. Energy spectrum of the hydrogen ions before and after 

the injection of IBW. 

Fig.b. Electron temperature profiles. 

(a) Electron temperature profiles of ohmic (OH) 
phase, just after the IBW injection{ n e = 1 x 1 0 1 9 

nr 3), and after a while ( n e = 3 x 1 0 1 9 m - 3) are shown. 

(b) For comparison, the density rise induced by the 

injection of IBW is simulated by the gas puffing. 

Fig.6. Time evolution of the electron density profile during 

IBW. 
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工BWonly: (aJ appl斗ed IBW power. (bJ stored energy. 

(c) central electron temperature. (dJ the intensユty
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the injection oE工BW目
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phase， just afterヒheIBW injection< ne 1 x 1019 
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(bJ For compar斗son，the density rise induced by the 
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Fig.7. Time history of the typical shot in the case of the 
superposition of NBI and IBW: (a) applied IBW and NBI 
power. (b) Stored energy. (c) central electron 
temperature. (d) the intensity of the Ha signal near 
the antennas. (e) average electron density. {£) 
radiation loss at the plasma center. (g) ion 
temperature. 

Fig.8. Ion temperature profile in the case of NBI and 
NBI+IBW. 

Fig.9. Electron temperature profile in the NBI and NBI+IBW 
case. 

Fig.10. (a) Time evolution of the central electron density 
during NBI+IBW. (b) Time evolution of the electron 
density profile factor during NBI+IBW. 

Fig.11. Energy spectrum of the hydrogen ion for the two cases 
with different IBW power. 

Fig.12. Calculated energy distribution functions for the two 
cases with different IBW power. 
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Fig目8. Ion temperature profi1e in the case of NBI and 

NB工+IBW.

Fig.9. Electron temperature profi1e in the NB工andNB工+工BW

case. 

Fig.l0. (al Time evolution of the central e1ectron density 

during NB工+工BW. (b) Time evolution of the electron 

density profile factor during NB工+工BW

Fig.l1. Energy spectrum of the hydrogen ion for the two cases 
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