
Fermi National Accelerator Laboratory 

FEFMILAB-Cod-93i339 

Distributing Functionality in the 
Drift Scan Camera System 

T. Nicinski, P. Constanta-Fanourakis, B. MacKinnon, D. Petravick, C. Pluquet, 
R. Rechenmacher and G. Sergey 

Fermi National Accelerator Laboratory 
P.O. Box 500, Batavia, Illinois 60510 

November 1993 

Presented at the 3rd Annual Conference on Astronomical Data Analysis Software and Systems, 
Victoria, British Columbia, Canada, October 13-15, 1993 

a OpwaM by Untietities Research Assmktion Ih. under Cm&act No. DE-ACm76CH03000 tih the United States Depamnbnentof Energy 



Disclaimer 

This report was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor any agency thereof, nor any of 
their employees, makes any warranty, express or implied, or assumes any legal liability 
or responsibility for the accuracy, completeness, or usefulness of any information, 
apparatus, product, orprocess disclosed, or represents that its use would not infringe 
privately owned rights. Reference herein to any specific commercial product, process, or 
service by trade name, trademark, manufacturer, or otherwise, does not necessarily 
constitute or imply its endorsement, recommendation, or favoring by the United States 
Government or any agency thereof The views and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States Gouernment or any agency 
thereof. 



Distributing Functionality in the Drift Scan Camera 
System1 

Tom Nicinski, Penelope Constanta-Fanourakis, Bryan MacKinnon, Don 
Petravick, Catherine Pluquet, Ron Rechenmacher, and Gary Sergey 

Fermi National Accelerator Laboratory, PO Boz 500, Batavia, IL 60510 

Abstract. The Drift Scan Camera (DSC) System acquires image data 
from a CCD camera. The DSC is divided physically into two subsystems 
which are tightly coupled to each other. Functionality is split between 
these two subsystems: the front-end performs data acquisition while the 
host subsystem performs near real-time data analysis and control. Yet, 
through the use of backplane-based Remote Procedure Calls, the feel of 
one coherent system is preserved. Observers can control data acquisition, 
archiving to tape, and other functions from the host, but, the front-end 
can accept these same commands and operate independently. The DSC 
meets the needs for such robustness and cost-effective computing. 

1. Introduction 

The Drift Scan Camera System (DSC) was developed at Fermilab for two ma- 
jor reasons: to be used as a science instrument on the ARC 3.5m telescope at 
Apache Point Observatory, New Mexico, and to provide experience with using 
large CCDs (Charge Coupled Devices) for the Sloan Digital Sky Survey (SDSS). 
Because Fermilab is a High Energy Physics laboratory, its experience in produc- 
ing high speed data acquisition systems was beneficial in the development of the 
DSC. 

The DSC is split into two major functional units: 

. Front-end data acquisition (DA). Its duties include: 

l acquiring data from the CCD Camera 
l displaying acquired data in real-time 
. storing acquired data on disk in the Frame Pool 
. archiving acquired data to 8mm tape. 

l Host processing. Its duties include: 

. controlling front-end operations 
l analyzing Frame Pool data in near real-time. 

‘Sponsored by DOE Contract number DEACOZ-76CA03000. 

1 



Some quality goals of the DSC include: 

l Responsiveness. The front-end must acquire data at high rates without 
loss. In addition, it must process host requests for data during acquisition. 
The host must be able to retrieve and analyze acquired data in near real- 
time. This is necessary to allow the host to determine, from acquired data, 
that problems need to be fixed (such as a misaligned instrument rotator). 

. Robustness. The front-end data acquisition must be capable of operating 
without the presence of the host, including an unexpected loss of the host. 

. User-friendliness. Graphical User Interfaces (GUIs) may be used. But, 
DSC must have a command language allowing operation without GUIs. 

These goals also apply to the SDSS System being developed. Since SDSS 
data rates are considerably higher, off-loading operations to the host is even 
more vital. 

2. Isolating Functionality within DSC Components 

The two major DSC functional units are isolated physically in two subsystems 
(see Figure l).The choice of machines was dictated by cost, computing power, 
availability of commercial hardware, and the ability to use in-house built hard- 
ware. VMEbus is an ideal backplane with the necessary bandwidth. One ma- 
chine to handle all DSC needs could not be found, necessitating a separate host. 

The Instrument Control Computer (ICC) contains the front-end DA while 
host analysis is done on the Online Analysis Computer (OAC). The ICC is a 
20 MIP Motorola MVME167b Single Board Computer. The OAC is a 30 MIP 
Silicon Graphics 4D/35. These machines’ VMEbuses are tightly coupled with an 
HVE Engineering VME Repeater (link). ICC and OAC processes communicate 
with each other ;ia shared-memory. 

VMEbus Camera Infedace 
acquires data from the CC d 

~3); 

camera across fxw optic*. 

CDIOM: provides signals to contml 
.fhe shutter. 

Vigm and SCD: provide real-time 
display of acquired data. 

RimrG: provides archiving of data 
to Bmm tap5 

Figure 1. DSC Block Diagram 

3. The Need for Backplane Communications 

The data rates of the DSC are not excessive, but the need for the OAC to 
analyze large data sets in near real-time necessitated backplane communications 

2 



across shared memory. The DSC operates in one of two modes: drift scanning or 
staring. With a CCD size of 2048 x 2048 pixels (2 bytes each), the DA acquires 
data at 461 KBytes/sec. at the maximum drift rate. This data is packaged into 
Frames and stored on disk in the Frame Pool. The nominal Frame size is the 
CCD size, approximately 8 MBytes. At the maximum drift rate, an 8 MByte 
Frame is generated every 18.1 seconds. Buffering Frames to disk allows clients 
(including the archive*) to access data asynchronous to data acquisition. 

For the host to analyze Frames in near real-time, Frames must be moved 
from the Frame Pool to host tasks quickly. Using the backplane interconnect, 
Frame transfer times are comparable to the time required to retrieve Frames 
from disk, about 10 seconds for an 8 MByte Frame; minimal time is spent 
on the actual transfer. However, coaxial Ethernet involves additional overhead 
along with transfer times an order of magnitude slower. Thus, using shared 
memory across the backplane provides the host considerably more analysis time 
between Frames (without resorting to double buffering in the science code). 
Besides moving Frames quickly from the ICC Frame Pool to the OAC, with 
tight coupling, other data can be shared transparently: 

l Frame Pool directory. Maintaining, in shared memory, the list of all exist- 
ing Frames permits OAC tasks to search the directory. 

l Status entries. They provide information about the states, capacities, etc., 
of different DSC components. Host user interfaces can effectively inform 
users without repeatedly querying the ICC. Control parameter entries are 
also used to affect many system operations. 

The shared data resides in ICC memory. This permits the ICC to continue 
operations in case the OAC is unavailable. The sharing is relatively efficient, 
compared to socket-based protocols, since only one indirect memory access is 
needed. If tasks outside the ICC and OAC need access to the shared data, a 
server on the OAC can be written to provide that access. 

Sharing data across memory also improves system efficiency and reliability: 

l Communication overheads are greatly reduced by using DMAs rather than, 
for example, socket-based protocols. 

a Some processing tasks are localized to the “requester.” For example, as 
mentioned above, OAC tasks perform Frame Pool directory searches, free- 
ing up additional cycles for the ICC. 

l Fewer points of failure exist (backplanes are more reliable than networks). 

4. Distributing Control 

Besides distributing functionality, control of the ICC is also distributed. A 
client/server model is used, where the clients can be on any machine, including 
the ICC, and the servers are on the ICC. ICC servers are theoretically not 
service-specific; they can handle all requests from all clients. In practice, servers 
handle specific jobs. Thus, by using varying server task priorities, client access 
to the ICC is prioritized. For example, a lower priority server task handles client 
requests for Frames; these requests cannot then block data acquisition. 

3 



Through more shared memory, the ICC can be controlled by the OAC. 
Remote Procedure Calls (RPC) across the backplane were chosen over a socket- 
based RPC because of better robustness. Although the hardware independent 
backplane RPC is somewhat complex, ICC servers and OAC clients can “con- 
nect” and “disconnect” from it without affecting their respective peers. The 
verification of safe backplane critical sections was considered simpler than han- 
dling connection requests and abnormal disconnects in a socket-based protocol. 

4.1. Modularizing Commands 

Having ICC servers handle all client requests is greatly simplified by using one 
common interpretive language throughout the DSC. Tel (Ousterhout 1993) is a 
C and LISP-like extensible command interpreter. Commands can be added as 
Tel procedures or by easily interfacing C routines to the interpreter. DSC uses 
low-level C routines with Tel routines layered above to provide a user interface. 
As Td behaves the same on all platforms, users see no distinctions between 
issuing commands from the OAC or the ICC. 

OAC clients issue Tel commands to ICC servers via the backplane RPC 
while ICC clients execute Tel commands directly. The GUIs on the OAC, acting 
as clients, emit Tel commands. Not only is a user-friendly environment provided, 
but the system can be run with only line oriented commands, as the GUIs use 
the same Tel interface to ICC and OAC functions. GUIs can be brought up 
quickly by using Tk (Ousterhout 1993), the Tel toolkit for X Windows. 

4.2. Using Existing Apache Point Facilities 

DSC also interfaces to existing Apache Point machines on the local network: 

s Telescope Control Computer. It controls the 3.5171 telescope and en&sure. 
It broadcasts UDP packets containing telescope position/time pairs. 

. Master Computer. Through a TCP/IP socket-based protocol, the DSC 
system issues telescope and enclosure movement commands and obtains 
information about the telescope, weather, etc. 

5. Results 

The DSC System has met its goals successfully. It’s quite responsive and robust. 
Users have quickly written considerable code (much in Tel) to perform analysis 
on the OAC and to control the ICC. 

The DSC DA and communications architecture will be used as the base 
for the more ambitious SDSS System. Due to modularity, many DSC software 
components can be reused with little or no changes. With transparent access to 
shared data, such as the Frame Pool directory, the OAC off-loads work from the 
ICC. With SDSS’ higher data rates (7 MBytes/set. to 9 ICCs), such off-loading 
is necessary. 

References 

Ousterhout, John K. 1993, An Introduction to Tel and Tk, Addison-Wesley. 

4 


