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That there arc analogs of the thermodynamical laws for classical black holes is a
remarkable and a long known fact (a recent review of this issue is [1].) The central point
of this analogy is the entropy identified with the area of the black-hole horizon. Now
it is also well-known that for a quantum black hole its eniropy additionally acquires
the ultraviolet divergent corrections, Sg.., concentrated on the horizon surface [2]. The
same feature inherent in the "entanglement” entropy appearing in ordinary quantum
theory under iracing out a part of the pure state residing inside a region of space [3].
Anidogously, one can interpret Sy, as the entanglement entropy to be related with the
Joss, for an external observer. of information about field excitations located inside the
Lonizon {1 The physical reason for the surface ultraviolet divergences to occur in this
wav ix correlations across the horizon between inside and outside quantum fluctuations.

It has shortly been realized that for the Rindler space-time, where the divergences
scale simply as the lorizon arcea, they are eliminated from the entropy together with
renormalization of the gravitativnal constant (3], (6. However, for the Schwarzschild
black hole Sy, is nat reduced only to the horizon area (71 In this case an addition in Sy,
i~ removed by the renormalization of a gravitational coupling at the B%-term neeessariiy
venerated in the effective action by quantum corr -+, =« {7, The complete form of the
divergent terms appearing on the horizon surface has been derived explicitly for arbitrary
~tatic black-hole geometry in [s]. This allowed to find out all divergent corrections to
iack hole entrapy [9], {10].

['hie aim of our Letter is to demonstrate, using these results, that in the general case il
one loup divergences Sg., are removed from the entropy under standard renormalization
of the constants in the eiffective gravitational action, including couplings at the seccnd
order curvature terms. To put it in another way, we show that the bare tree-level and
“envanglement™, Sy, pieces of the black hole entropy appear in such a combination to

reproduce tree-level entropy expressed through the renormalized constants.

So far as in quantum theory in curved space-time quanturmn corrections arc known to

result in higher order curvature contributions to the Einstein action [11}, we begin our
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consideration with the following action functional:
1
W= /\/Ed":c (—mﬂ + a4 R R, + agﬁ“”"!{w;\p) (1

where G and g; are the bare gravitational couplings. Due to topological properties, only
two of these couplings are independent in the four-dimensional theory.

We will follow the Gibhons-ilawking path integral approach to the gravitational ther-
mudynamics [12] to give to our analysis a transparent statistical meaning. In this approach
the Tunctional (1), being considered on a Euclidean section M of the correspunding space-
time with period 3 in time, is associated, in the semiclassical approximation, with the

tree-level free energy of the system at temperature 7' = 37}
F(B)=B""W(3) . (2)

Nothing unusual happens as compared to thermodynamics in the Minkowsky space when
space-time possesses a globally defined time-like Killing vector field which is not null
anywhere. A non-trivial point appears in the presence of the Killing horizon, as in the
case of a black hole geometry. In this case, for arbitrary temperature ! the Euclidean
manifold Mg has conical singularities at the horizon surface ¥, in the vicinity of which
it looks topologically as a space product Cy x ¥ of a two-dimensional cone Cg and the
horizon surface £. This leads to a specific Hawking temperature 8~! = [3,‘,‘ for which
the Euclidean manifold is regular. The black-hole thermodynamics la considered at this

temperature. However, to get the entropy using the standard definition
7]
() = (35 = 1) W(Blo-as 3)

we must let 7 be slightly different from fy. This procedure being applied to the action
(1) faces a difficulty due to the terms of higher order in curvature which turn out to be
ill-defined on the conical singularities.

There is a method how to avoid this problem [13] when one approximates Mg by a
sequence of smooth manifolds M converging to My. For the "regularized” spaces My

the action (1) is well-defined and in the limit Mgz — My we get the following formulas
[13)
R:a/ R+47r(l—a)/ , (1)
Mg Mg, b
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/ /f’:n/ R"+snu—a)/R+O((1—a)’) . (5)
My Ma,, T

/ R*R,, = a/ R™R,, + 47(1 —0)/ R,nén® + O((1 —a)?) (6)
My My, T

/ !()Iu/.\ﬂ ”uv\o = “/
My M

where a = /4y and 1! are two orthonormal vectors orthogonal to £. The first integrals

R“"""n“y,\,,+87r(1—a)/n,,”,,n:‘n;‘n;n;#ou)—a)’) . {7)
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in right part of (1)-(7T} are defined on the smooth space at 4 = @y they are proporticnal
ta 1 and do not affect S(3y). As for the terms Q{1 — a)?) in (5)-(7), they depend on
the regularization preseription and turn oul to be singular in the Jimit My — M, but
they do not contribute into the entropy and energy at the Hawking temperature (o = 1),
Indeed, from (4)-(7) one obtains for S the following integral over the horizon surface X:

d .
StGha) = _lim (ﬂd—ﬂ - l) W (Ma )G adli=ay,

My—Ma

= &%Ag - [‘ (8ma, R + 4may R, nin! + SrraJRw,\,nf‘n‘,\n;’nf) (8)

where Ayp is the horizon area. Remarkably, this expression differs from the Bekenstein-
Hawking entropy S = Ag/4G in the Einstein gravity by the contributions depending on
both internal and external geometry of the horizon due to the high curvature terms in
(1). However, it is easy 1o sce that the effect of internal geometry of ¥ is reduced to
the integral curvature of this surface which, being a topological invariant, is an irrelevent
constant addition to the entropy. It is worth noting that exactly the same expression can
be derived by the Noether charge method suggested by Wald [14]. A difference between
two approaches is that Wald's method seems to be more general, but it is defined "on-
shell”, whereas the above derivation of (8) did not operate with the equations of motion.

Consider now quantum theory on the black-hole background. For a massive scalar

field the one-loop effective action reads
i .
W5”=W+§logdct(—D+m)) . 9)

To define this action on the singular manifold My, we make use of the same procedure
going to My, On the smoothed space Wess consists of a finite Wy, and an ultraviolet

divergent Wy, parts. So far as the latter has the same structure as the bare functional
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(1). the divergences are iaken off by the standard renormalization of the gravitational

couplings (¢ and a, [11]
W(MNG a,) + Wl Ma)le) = W(M)G™,a]™) (10)

where " and a]“* are renormalized couplings expressed through the bare ones and an
ultraviolet cut-off parameter .

According to (4)-(7). Wy, generates additional surface ultraviolet divergent terms in
the limit .\;1;; — M. However, one should expect that in this limit the finite part Wy,
also results in the surface divergences, as has been demonstrated in two-dimensional case
where Wy is e onoly known [7] In the four-dimensional theory he total exact structure
of the surface divergent terms W' (M) has been found in (8], For the action (9)
comparison of both the results at 4 >~ Jy. the details of which we omit here. can be
expressed as follows:

i WadMy) = WA (My) + Ot - a)?) . (1)
My—My
The last term in the right-hand side of (11) comes from the finite part of W,H(.\;L.) in
the limit My — M. This shows that the surface divergences of the order (1 — a) are
campletely removed by the standard renormalization of the gravitational constants (10).
However, to get rid off the divergent terms of higher order in (I — a) one is forced to
introduce the surface counterterms additional to those we have in the regular case {10].

The consequence of equation (11) is that the entropy at the Hawking temperature does
not acquire additional divergences apart from the standard ones removed by renormal-
ization of (7 and a,. Indeed, from (11) for the divergent part of S, caused by correlations
between ficld fluctuations inside and outside the horizon, one has

. L4 serac
Sale) = (’m _ 1) Wi M) lamay =

J .

(735 1) yim WaulWto)clams, - (12)
a3 My—My

Finally, taking into account (8), (12) and (10) the renormalization of the entrupy can he

presented as follows:

S(GLa) + Sanle) = S(GT",a]™) . (13)



Here SUGT" al*™) has the furm (8) expressed through (" and a;*” related with the barc
ronstants by the usual equations originated from the one-loop renormalization (10) in
quantum theory on space-times without horizons.

The equation (13) proves the main statement of this Letter. Following from (13} is a
consequence that the finite observed entropy of a hole S{G™",a]"") always comes out as
a combination of the tree-level bare entropy S{(G, a,) and Sg,, (¢} interpreted as quantum
“entanglement™ entropy. Thus, if the gravitational action is totallv induced by quantum
offects, then S(G™", a]*") is "purebred entanglement entropy™ (6]. Besides, we see from
(13) that all the dependence of S4,.(¢) on the number of field species is absorbed into the
observable constants (77" and a"™".

For simplicity we derived (13) for the scalar model (9), but the effect of higher spins
can also be incorporated in our analysis. A special treatment, however, is needed for
the case of non-zero curvature coupling £2¢? in the scalar Lagrangian. It should also be
noted that our result concerns the static black holes and the extension on the stationary
geometries is of interest as well.

To conclude, the following remarks are in order. Generally speaking, there are two
ways to compnute the quantum corrections to the entropy of a black hole. Here we consid-
ered the statistical-mechanical derivation based on equation (3). The other approach to
this problem is to infer the Hawking teinperature, entropy, etc. from the metric of a hole
which takes into account the back reaction effect caused by the quantum matter [15]. In
this case the source of quantum corrections to the black-hole geometry is the renormal-
ized stress tensor < T, >, computed in the Hartle-Hawking vacuum. No ultraviolet
divergences appear in such an approach in addition to those removed from < T,, > by
the renormalization of the gravitational couplings G and a;. One can expect that the
“statistical” and "geometrical” methods give similar results. From this point of view the
absence of additional divergences in the black-hole entropy S, eq. (13}, is not surprising.

In this Letier we concerned the divergent corrections 1o the entropy. However, it is
worth pointing out that also finite quantum corrections to S, that result in its deviation
from the tree-level form (8), are of great interest. Some information about these can

be extracted from the two-dimensional models where the analysis indicates the terms



logarithmically depending on the mass of the hole |7]. The analogous terms in four

dimensions might. be important for understanding the thermodynamics of quantum holes.

This work is partially supported by the International Science Foundation, grant RFL000.
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Qypcacs 4.B., Cosonyxun C.H. E2-94-462
06 oaHoners1eBOH NEPEHOPMHUPOBKE IHTPOIIMH YEPHOM JhipH

Noka3aHo, 4TO OAHONET/IEBHE PACXOAMMOCTH, BO3HHKAIOMME B IHTPONHH
KBAHTOBOH 4YEPHON Onph, MOJHOCTbID YCTPAHAKOTCA CTAHAAPTHON nepe-
HOPMHPOBKOH rPaBHTALMOHHON MOCTOSHHON M APYrHx KoxbdHUHMEHTOB
npu R%-yncHax B PpPEKTHBHOM rPABUTALMOHHOM fAeiicTBHH. CyliecTBeHHNM
MOMCHTOM MpH A0Ka33aTEJLCTBE ABASETCA TO, YTO Onaronaps cnaraeMniM Bhi-
CLICTO NOPSAKA NO KPUBUIHE IHTPONUS OTAMHAETCH OT IHTponnu BekeHmrrei-
Ha-XOKHHra B OJUHIITEHHOBCKOW TCOPUM TrPaBHTALMHM  MONDP3BKAMH,
33BHUCSIUHMH OT BHYTPCHHEN M BHCLIHCA rEOMCTPHM NOBEPXHOCTH NOPH3OHTA.

Pa6ora smnonrena s JlaBoparopun tecoperudeckoi ¢pusukn um.H.H. Boro-
Mmobosa OUAU.
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Fursaev D.V., Solodukhin S.N. E2-94-462
On One-Loop Renormalization of Black-Hole Entropy

Onc-loop divergences appearing in the entropy of a guantum black hole
are proven to be completely eliminated by the standard renormalization of both
the gravitational constant and other coefficients by the R%-terms in the effective
gravitational action. The esscntial point of the proof is that due to the higher
order curvature terms the entropy differs from the Bekenstein-Hawking one
in thc Einstein gravity by the contributions depending on the internal
and external geometry of the horizon surface.

The investigation has been performed at the Bogoliubov Laboratory
of Theoretical Physics, JINR.
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