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RÉSUMÉ

On a effectué une étude par analyse de l'aimant de direction du faisceau
injecté N° 2 qui est logé dans la culasse du cyclotron supraconducteur de
TASCC. À des champs magnétiques élevés se produisant dans le cyclotron, on
a observé que la force de l'aimant de direction était insuffisante pour
injecter convenablement le faisceau: on a avancé comme hypothèse que la
cause était la saturation de l'aimant du fait de fuites provenant de la
culasse du cyclotron. L'étude a confirmé l'hypothèse et, en outre, on a
reconçu l'aimant pour éliminer les problèmes mentionnés ci-dessus. On
donne des détails sur l'approche par analyse ainsi que les résultats de
l'analyse de l'aimant original et de l'aimant reconçu.
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ABSTRACT

A two-dimensional analytic study has been made of the injection steering magnet No.
2, which resides inside the yoke of the TASCC superconducting cyclotron. At high
magnetic fields in the cyclotron, it was observed that the steering magnet had
insufficient strength to properly inject the beam; saturation of the steering magnet
as a result of leakage from the cyclotron yoke was hypothesized as the cause. This
hypothesis has been confirmed by this study, and. furthermore, the steering magnet has
been re-designed to circumvent the above problems. Details of the analytic approach
are given along with the results of the analysis of the original and redesigned
magnets.
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1. INTRODUCTION

It has become apparent during recent attempts to accelerate uranium ions in the TASCC
cyclotron [1] that the injection steering magnet (SM-2) does not have sufficient
bending power to produce a properly centered beam at injection; this problem is felt
to result from saturation of the iron of the steering magnet due to flux leaking from
the cyclotron yoke. Furthermore, the aperture of this magnet (1.5 cm) is too small to
transmit all of the beam. The steerer sits in a 30 cm diameter hole in the cyclotron
yoke (see Figure 1), which at high mean magnetic fields (> 4.5 T) is fully saturated;
TOSCA calculations indicate that for a 5 T mean field in the cyclotron, the magnetic
field in the yoke is 2.215 T. This saturated condition of the yoke means that a large
magnetic field exists in the yoke hole and much of this leakage flux will be carried
by the yoke of the steering magnet. Saturation of the yoke of the steering magnet
will greatly reduce its bending power when the steering direction is such that the
flux from the coils of the steering magnet add to the leakage from the cyclotron.

Figure 1 Schematic drawing of the injection steering magnet SM-2.

In order to study this problem and to optimize the design of a replacement magnet, it
was felt that an analytic approach would be useful. An analytic solution can be found
in two dimensions if we assume uniform permeability; such an assumption, although not
completely accurate, will give a good indication of the situation and will allow the
yoke of the steering magnet to be optimized.

2. ANALYTIC MODEL

If we assume a uniform magnetic field in the vertical direction in the cyclotron
yoke, and neglect for the moment any current in the steering magnet, we can write
[2, 3]

H = -V0>, (1)



where <E> is the magnetic scalar potential which satisfies Laplace's equation

V2$ = 0. (2)

It is most convenient to use cylindrical coordinates, as this describes the geometry
of the yoke-hole and the steering magnet. In cylindrical coordinates (2) becomes

1 d
To? d92 dz2

Separation of variables in the usual way leads to

$ = R(r)0(6)Z(z)

which in turn leads to three differential equations

(3)

(4)

dz2
= 0 (5)

+ n2© = 0,
de2

and

r2 d2R

dr2
+ r dR -[• R =0.

(6)

(7)

In our case, we neglect any z-dependence; in other words, we assume that the hole and
the steering magnet are infinitely long. Hence Z = constant, which implies that v =
0. Thus,

Z(z) = e/(vz + ̂  => K = {constant)

and

0(0) = e"10,

For v = 0, the solution to (7) is

R(r) = ̂

(8)

(9)

(10)

as is easily checked by direct substitution of (10) into (7); <£n and £)n are real
constants.
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Figure 2 Schematic of a section of the yoke showing the yoke hole, and the steering
magnet yoke with poles and coils removed. The radii and regions shown cor-
respond to magnetic field and parameter designations in the text.

If we assume that the field is vertical in the cyclotron yoke for r » c (see
region d of Figure 2) then the potential $ must have the form

= -H0rsin(0) sin(n9) (11)
n=1

where E-, = H0 is the field in the yoke far from the hole and the A_ are constants
to be determined; B0 = (iH0 and the magnetic induction is uniform for r » c. The
general boundary conditions for a static magnetic field are [2]

and
n-(B2 - BO = rvOL2H2 - = n-Oi2V<D2 - = 0

nx(H2 - HO = nx(VO>2 - V*,) = K,

(12)

(13)

where n is a unit vector perpendicular to the boundary and K is the surface current
on the boundary. For b < r < c, both of the solutions to the Bessel equation (7)
are allowed, and from the boundary conditions we see that the potential has the
form

Cnr
nlsin(n9). (14)

n=1

Similarly, in region b, a < r < b the potential has the form



*•«•»

= I [Dnr> + Enrn]sin(n6) (15)
n=1

and in region a, 0 < r < a, $ has the form

r
nr

n sin(n6) (16)
n=1

because 4> must be finite at the origin. In order to determine the unknown coef-
ficients An through Fn, we must set up a system of equations that satisfy ail of
the boundary conditions simultaneously. From the symmetry of the problem, we see
that the normal boundary condition (12) is satisfied by Br and the tangential boun-
dary condition (13) is satisfied by Ho, where the subscripts r and 0 refer to the
radial and tangential components of B and/or H in cylindrical coordinates. The gra-
dient in cylindrical coordinates is [4]

07)

which leads to the following components for H:

oo
d

= H0sin(0) + £nAnr"-
1 sin(n8) (18)

n=1

oo

HQ = -j ^- = H0cos(0) - £nAnr
n-1 cos(n0) (19)

n=1

H? = - [ n[Bnrn-i - Cnr"-ijsin(n0) (20)
n=1

CO

H§ = - [ nBnr"-i + Cnrn-icos(n9) (21)
n=1

n[bnr"-i - Enr"-ilsin(ne) (22)
n=1



Enr
n-i]cos(n0) (23)

n=1

H* = - V nFnr"-i sin(n6)LI
n=1

(24)

H = - nrn-1 cos(n6) (25)

n=1

3. FIELDS IN THE CYCLOTRON YOKE HOLE

It is instructive to study first the simple problem of just the hole in the yoke
with no surface currents present; here we need only the solutions for regions d and
a. From the boundary conditions, we obtain the equations

and

H0sin(0) sin(n0)

n=1

sin(nG) (26)

n=1

H0cos(G) - £ nAnr
n-1 cos(nG) = -

n=1 n=1

^-1 cos(nG) (27)

where we assume no currents on the boundary; kd = m/M-o» trje rat|'° °f tne Per~
meability of region d to the permeability of free space. Equations (26) and (27)

can be rewritten as an infinite set of matrix equations of the form
follows:

as

H,
-1

1/C2 -1
(28)

; n > 1. (29)

where we equate the coefficients of sin(n9) and cos(nG), respectively, for each value



of n. We see from (29) that Fn and An vanish for all n > 1. The inverse of the matrix
in (28) is easily found to be

1 -c2 c
-1 -

(30)

where we have dropped the superscript on the vectors and matrices. Hence the coeffi-
cients are c = M V with tf = (\^H0, H0) and we obtain

_ -y _ 2kdH0
A1 -- r— • h - - (31)

We see that in the limit \^ — •> 1 that ̂  -» 0 and F., — •> -H0, as expected.

Also from (24) and (25) we see that the magnetic field H and the induction B are uni-
form everywhere in the hole in the yoke (region a) as long as the permeability is
constant, which is a good approximation either when the yoke is fully saturated or
when the yoke is well below saturation and the relative permeability is very high,
>1000. As we approach saturation, the permeability will be a complicated function of
r and 6 and will result in terms with n > 1 being non-zero.

3.1 Simple cos(6) Current Distribution

If we add a surface-current density in the z-direction of the form /Q/C cos(6) on the
boundary r = c, we find from (13) and (27) that the matrix ftf remains unchanged, but
the "driving-vector" ti becomes $ = (kdH0, H0+/o/c). We obtain immediately the new
coefficients

, _ c[cH0(1-kd)+/0] _ kd(2cH0+/0)
AI -- Ra+1 - ' ' ~ " c(kd+1) '

This result shows directly that a cos(6) current distribution produces a perfect
dipole field in a linear system. Depending on the sign, the current /0 adds to or
subtracts from the imposed field, as expected.

4. ANALYSIS OF THE STEERING MAGNET SM-2

4.1 Analysis of the Original Design

We now turn to the original problem of the steering magnet in the hole. For the pur-
poses of this analysis, we will ignore the poles in the original steering magnet (see
Figure 1) and treat only the yoke; if the yoke is saturated, then the magnet will not
generate the required steering fields. The important parameters of the present
steering magnet are shown in Table 1 , while Figure 2 shows the geometry under inves-
tigation as well as the definitions of important regions and parameters.



Table 1
Parameters for the Present Magnet

FIELD

B
(T)

1.00

2 COILS
A-t
(A)

22060

Gap
(mm)

20.0

POLE

Width
(mm)
50.0

Length
(mm)
140.0

Inner
<j>(mm)

18.00

YOKE

Outer
(t>(mm)

24.00

Hole
<j)(mm)

30.00

By arguments identical to the ones above, we conclude that all coefficients are zero
for n > 1. Hence from (18) through (25) and the boundary conditions, we obtain the
following matrix fW for the coefficients ̂  —> F.,:

k-j/c2 -1 1/c2 0 0 0
1/c2 - 1 -1/c2 0 0 0
0 -1 1/b2 kb -kb/b2 0
0 -1 -1/b2 1 1/b2 0
0 0 0 kb -k,/a2 -1
0 0 0 1 1/a2 - 1

(33)

Here, kd = u.d/u.0, and kb = m/i-ip. the ratios of the permeabilities of regions d and
b, respectively, to the permeability of free space. If we add, as in the above dis-
cussion, a current-density of the form /g/a cos(9) flowing in the z-direction on the
boundary r = a, we see that yf = (kdH0, H0, 0, 0, 0, Ua). The matrix, 5W, can be
inverted with the help of the MAPLE-V algebra program. The result is very complicated
and it is not meaningful to display it. The expressions for the coefficients A^ -> F,
are given in Appendix 1. The advantage of the analytic approach is that we can easily
compute the fields as a function of a, b, H0 and /0 in any desired combination.

Our first task is to estimate the main parameters of the model. The yoke fields Byoke
were calculated with the program TOSCA [4], which incorporated a standard B-H curve
with a saturation magnetization |i0Ms = 2.14 T. From the relation between B and H and
the definition of magnetization, we see that far from the hole,

M — R /M CZÂ.\nO — Dyoke'Fld W^v

These quantities can be obtained from a B-H curve. The B-H curve for the iron used in
the cyclotron was never measured. What is known is that the saturation magnetization
of a sample of the yoke iron was u.gM = 2.12 T, instead of the more typical 2.14 T for
pure iron. Figure 3 shows the "standard" B-H curve and the magnetization curve M from
the program POISSON. The curves shown in Figure 3 are used in this analysis. A
similar curve is used in TOSCA. In order to compute the solution

C = M1ti (35)

to the matrix equation tf = Me, we must determine the relative permeabilities, kd and
kb. For the purposes of this discussion, we assume the value that kd has far from the
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hole; this will underestimate the flux leaking into the hcle. The constant kb must be
found by an iterative procedure; we assume a magnetization M and then solve the
equations

= B - mH; B =

which leads to

M = (kb-1)H

(36)

(37)

where H is also a function of kb. Because M is very near the saturation magnetization
Ms, the system converges very rapidly (see Figure 3). The value of kb is computed at
the mean radius of the steering magnet yoke; (a+b)/2.

B 1.3

0.5

a)

? VIO1^

H

1.5

0.3

b)

B

Figure 3 a) A typical B-H curve for pure iron, taken from the program POISSON, b)
The Magnetization curve derived from the B-H curve shown in frame a).

Table 2 gives the important parameters used in the calculations along with the prin-
cipal results of the model shown in Figure 2. Figure 4 plots B, for Bmean = 5 T, as a
function of r on the horizontal plane, where the fields are a maximum, for the four
regions shown in Figure 2. We see immediately from Figure 4 and Table 2 that in the
vicinity of the midplane, the yoke of the steering magnet is saturated for the high
field case at all radii even without any steering current. Figure 5a shows a 3-D plot
of the magnetic intensity |B| as a function of r and 9 for the yoke of the steering
magnet at the high-field; Figure 5b shows IB | as a function of r for 9 = n/2, i.e.
along the valley of Figure 5a where the boundary condition on the normal component of
B, (12), applies. This result confirms that the bending power of the steering magnet
will be greatly reduced for high mean fields in the cyclotron due to saturation of
its yoke. Figure 6 shows a similar plot to Figure 4 for Bmean = 3.6 T. Here we see
that the leakage flux into the hole is small and that the steering magnet yoke fields
are modest; there is no difficulty reaching the full steering power in this case.



Table 2
Principal Parameters for Original Magnet

BmeanC")

(T)
5

3.6

Byoke(2)

(T)
2.215

1.603

HO
(A/m)

81715.6

1662.15

Ba

(T)
0.1035

1.55X10'4

Bb

(T)

2.196

0.09119

kb

24.31 1

6787.0

kd

21.616

767.92

(1) Mean Magnetic Induction B in the accelerating region of the cyclotron.
(2) Magnetic Induction B in the Cyclotron yoke far from the hole.
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3

2.8

0.12 0.125 0.13 0.135 0.14 0.145 0.15
r

0.16 0.18 0.2 0.22 0.24 0.26
r

Figure 4 Magnetic induction B(T) for the original design at Bmean = 5 T as a func-
tion of r for G = 0; a) region a, b) region b, c) region c, and d) region
d. Note that the yoke of the steering magnet, b), is saturated.

4.2 Design Optimization

The first question one can ask is "Is it possible to modify the yoke design of the
present magnet to reduce the saturation?". Figure 7 shows ku, Bb, and Ba as a func-
tion of the outer radius of the steering magnet yoke. The figure shows that for a
fixed value of a = 0.09 m, which is determined by the pole and coil requirements, the
value b = 0.12 m is optimum. Either an increase or a decrease in b leads to a reduc-
tion in kb and a corresponding increase in
improve the current design.

Bb, and Ba. Thus it is not possible to
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a)

U.09 0.095 0.1 0.105 0.11 0.115

Figure 5 Fields in region b: a) Isometric plot of | B | as a function of 0. b) Plot of
131 as a function of r, a < r < b, which lies along the valley of a).
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Figure 6 Magnetic induction B for the original design at Bmean = 3.6 T as a function
of r for 0 = 0; a) region a, b) region b, c) region c, and d) region d.
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0.09 0.15

0.09 0.1 0.11 0.12 0.13 0.14 0.15 ii.09 0.1 0.11 0.12 0.13 0.14 0.15

b

Figure 7 Optimization of radius b for the original design at Bmean = 5 T: a) The
relative permeability kb as a function of the outer yoke radius; a < b < c.
b) The magnetic induction Bb in the midplane of the steering magnet yoke.
c) Ba in the interior of the steering magnet.

The only way to improve the performance is to decrease the inner radius, a, which
leaves too little room for the coils in a conventional magnet. Also, the aperture
should be increased as much as possible to improve the beam transmission. Since the
injection steering magnet is preceded by a vertical steering magnet, another improve-
ment would be to combine the X- and Y-plane steerers into one unit. This would allow
us to lengthen the combined magnet, which would result in greater shielding of the
leakage flux and decrease the maximum fields required in both the X and Y directions.
The solution to this problem is to employ a double "Cos(6)" type of magnet, which, as
we will see, requires superconducting coils.

Let us combine the vertical and horizontal magnets and increase the length from
140 mm to 350 mm. Because the bending power of the magnet varies as BL/Bp, where Lis
the length of the magnet and Bp is the magnetic rigidity of the beam, we could reduce
the field by 140/350; let us choose 1/2, as it gives us an extra margin. If we assume
that a clear aperture of 40 mm is adequate (the present magnet has a useful aperture
of less than 15 mm), and that the coils and their constraints can be wound into a
25 mm space, then the yoke of the steering magnet can be thickened and its outer
radius re-optimized. Here, though, we will include the field from the coils of the
steering magnet; this strategy minimizes the field in the steering magnet yoke and
hence the perturbation of the field in the cyclotron yoke due to the steering magnet.
Perturbation of the cyclotron yoke field induces a first harmonic in the cyclotron
midplane field and will decenter the beam. Let us assume that the new inner radius of
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the steering magnet yoke is a = 50 mm; then, following the procedures used to obtain
Figure 7, we find from Figure 8 that the optimum is around b = 105 mm, which includes
now the effect of the maximum steering field of 0.5 T.

0.09 0.095 0.1 0.105 0.11 0.115 0.12

C)

0.12

Figure 8 Optimization of radius b for the improved design at Bmean = 5 T: a) The
relative permeability kb as a function of the outer yoke radius; a < b < c.
b) The magnetic induction Bb in the midplane of the steering magnet yoke.
c) Ba in the interior of the steering magnet.

Figure 9 shows the geometry of the improved design, while Figure 10 shows the mid-
plane fields for the improved design. A comparison of Figure 4 with Figure 10 shows
how dramatic the improvements are. The leakage field in the center of the magnet
drops to 0.842 mT from 104 mT, while the field in the center of the steerer yoke
drops to 1.296 T from 2.196 T. This improvement is mainly the result of the increase
in the gap between the steering magnet and the yoke of the cyclotron, which reduces
the leakage of flux into the steering magnet, but the increase in thickness of the
steering magnet yoke also contributes. Figures 11 and 12 show the operation of the
COS(0) magnet for B^^ = 5Tand/0 = -20 OOOAand/0 = +20 000 A, respectively. We
see that the fields in the active volume of the magnet (region a) lie slightly below
and above 0.5 T, respectively. However, the steerer yoke fields are dramatically dif-
ferent, with the yoke partially saturated for L = -20 000 A and below 1 T for
/0 = +20 000 A (see figure 11 and Figure 12). The perturbation to the field in the
cyclotron yoke is now insignificant even for the case with /0 = -20 000 A shown in
Figure 11, although there is some asymmetry between /0 = -20 000 A and
L = +20 000 A. Figures 13 and 14 show the operation of the COS(0) magnet for
Bmean = 3.6 Tand/0 = -20 000 Aand/0 = +20 000 A, respectively. Here we see that
the steering magnet operates in a nearly symmetric manner, far from saturation and
with no perturbation of the field in the cyclotron yoke. The results for the re-
designed steering magnet are given in Table 3.
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t X
9 = 0

a
(mm)

50

(mm)

105

c
(mm)

150

Figure 9 Schematic of a section of improved steering magnet showing the cyclotron
yoke, the yoke hole, the steering magnet yoke and superconducting coils.
The radii and regions shown correspond to magnetic field and parameter
designations in the text.
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Figure 10 Magnetic induction B(T) for the improved design at B .̂̂  = 5 T as a func-
tion of r for 9 = 0; a) region a, b) region b, c) region c, and d) region
d.
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Table 3
Principal Results for the Improved Magnet

Bmean(
1)

(T)
5
5
5
3.6
3.6
3.6

Byoke(2)
(T)

2.215
2.215
2.215
1.603
1.603
1.603

/o
(A)
0

-20000
+20000
0

-20000
+20000

Ba
(T)

0.000842
-0.4969
0.5030
6.2x1 0'6
-.5025
+.5025

Bb
(T)
1.296
1.698
0.8800
0.02987
0.4473
0.4473

Kb

24.31 1
453.0
3447
6787.0
4336
4336

kd

21.616
21.616
21.616
767.92
767.92
767.92

(1) Mean Magnetic Induction B in the accelerating region of the cyclotron.

(2) Magnetic Induction B in the Cyclotron yoke far from the hole.
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r

Figure 11 Magnetic induction B (T) for COS(6) steerer at Bmea_ = 5 T incorporating
the improved design as a function of r for 6 = 0; a) region a, b) region
b, c) region c, and d) region d. The current density has the form
/Ocos(9)/a with /0 = -20 000 A.
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Figure 12 Same as Figure 10, but with /0 = +20 000 A.
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Figure 13 Magnetic induction B (T) for COS(0) steerer at Bmean = 3.6 T incorporat-
ing the improved design as a function of r for 0 = 0; a) region a, b)
region b, c) region c, and d) region d. The current density has the form
/Ocos(0)/a with /0 = -20 000 A.
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Figure 14 Same as Figure 10, but with /0 = +20 000 A.

5. CONCLUSIONS

The results presented here show that it is possible to redesign the injection steer-
ing magnet SM-2 to reach its design field of ±0.5 T even at maximum cyclotron field.
This can be done by making use of a COS(9)-type magnet. With a maximum current /0 =
20 000 A, the mean current density is

Jo = V-

7C/2

F Jcos(8)rd9di

0 n
(38)

where r? and r, are the outer and inner radii of the coil region, respectively. For a
conventional coil, we obtain a mean current density of about 20 A/mm2. When we
account for insulation, and the water channel area, we would obtain a current density
of about 50 A/mm2, a value well above the current carrying capacity of copper (10-
12 A/mm2). Thus, even though we have more than doubled the length of the magnet, and
thereby halved the maximum field, the current density is well outside the range for a
conventional magnet. (For comparison, the present magnet has 1103 turns per coil of
#16 B&S gauge wire, which at a maximum current of 10 amps has a current density of
7.64 A/mm2.) This confirms the necessity of using superconducting coils. In order to
make superconducting coils stable in this geometry, the coils must be held in a rigid
stainless-steel collar. Let us assume that the collar restricts the superconducting
windings to a space between r = 30 mm and 40 mm. Then we obtain a mean current den-
sity of 57 A/mm2. If we assume a packing fraction of 75% for the windings in the
coils, we obtain 76 A/mm2, far below the current limit of about 2500 A/mm2 for NbTi
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superconductors. Thus it should be easy to design coils for a combined X-Y COS(9)-
type superconducting steerer. A reasonable design could have 200 turns per coil at
100 A to achieve the required 20 000. A-turns per coil. The vertical steerer coils
could be smaller, say 15 000 A-turns per coil as the steering requirements are lower.
The above estimate of the required Ampere-turns is only approximate; the value comes
from a surface current at r = 50 mm. The real coils will be at a smaller radius,
which would reduce the required ampere-turns, but would be decoupled from the iron
yoke by the retaining collar, which tends to increase the required ampere-turns.

Although this work demonstrates the possibility of building such a magnet, much more
needs to be done. Proper calculations with POISSON, for example, are required for the
detailed coil design, not only to determine the conductor geometry and determine the
exact value of the A-turns, but to take account of the non-linearities in the iron. A
detailed coil design is necessary, which must include a comprehensive stress
analysis. The coils must be rigidly clamped so that no conductor motion is possible
when the magnet is energized; the energy of a dropped paper clip can quench a super-
conducting magnet. Also, the cryogenic problems are not insignificant, although
certainly solvable.
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APPENDIX 1

Following are the expressions for the coefBcients AI through FI taken from a
MAPLE V program used to invert the matrix (33).

. Lr Jj.n /,. . 9 » 9 t » *>i*> n. » f / > 9 •» * 3 * >
AI = —-— (2 fc4 rb*ki + k$ c*b + 2 fc4 c A-2 a'1 - £4 c"aj •

Den v

+k4 b4 — fc4 a262 - fc4 6
4i2

2 + fc4 6
2i2

2a2 — 2 c262fc2 — c262 - 2 c2fc2 a
2

+c2a2 - c262fc2
2 + cVa2 + 64 - a2i2 - 64fc2

2 + 62Jfc2
2a2)

2 c2 (-2 62fe2 - 62 - 2 k2 a
2 + a2 - 62fc2

2 + fe2
2a2) fc4 ffp

1 ~ l'en

2 c2 (62 - a2 - 62fc2
2 + fe2

2a2) 62fe4 H0

Den

4c262(fc2-l)a2fc4g0

a2 - yfc4 c
2a2

-fc4 a
262 - k4 64)fe2

2 + fc4 62jfc2
2a2 + 2 c262ik2 + c262 + 2 c2Jfc2 a

2 - c2a2

4-c262E2
2 - c2ife2V - b4 + a262 + 6 V - 62*2V
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