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APPLICATION OF THE INTEGRAL METHOD TO MODELLING THE
OXIDATION OF DEFECTED FUEL ELEMENTS

by
Miroslav Kolâf

ABSTRACT

Because interim dry storage is an alternative to storage in water pools, it is very
important to be able to predict the long-term behaviour of used nuclear fuel in air,
especially of fuel elements possibly defected in reactor or during subsequent handling.
Extensive oxidation may lead to fuel disintegration and thus to substantially increased
costs of interim handling and preparation for final disposal. The ability to predict the
extent and rate of oxidation of defected fuel elements under conditions of limited or
unlimited oxygen supply would be instrumental in determining the optimum operating
conditions of a dry-storage facility.

The starting point for this report is the discrepancy reported in previous work between
the reaction-diffusion calculations and the CEX-1 experiment, which involves storage of
defected fuel elements in air at 150°C. This discrepancy is considerably diminished here
by a more critical choice of theoretical parameters, and by taking into account the fact
that different CEX-1 fuel elements were oxidized at very different rates and that the fuel
element used previously for comparison with theoretical calculations actually underwent
two limited-oxygen-supply cycles. Much better agreement is obtained here between the
theory and the third, unlimited-air, storage period of the CEX-1 experiment.

The approximate integral method is used extensively for the solution of the
one-dimensional diffusion moving-boundary problems that may describe various storage
periods of the CEX-1 experiment. In some cases it is easy to extend this method to
arbitrary precision by using higher moments of the diffusion equation.

Using this method, the validity of quasi-steady-state approximation is verified.
Diffusion-controlled oxidation is also studied. In this case, for the unlimited oxygen
supply, the integral method leads to an exact analytical solution for linear geometry,
and to a good analytical approximation of the solution for the spherically symmetric
geometry. These solutions may have some application in the analysis of experiments on
the oxidation of small UO2 fragments or powders when the individual UO2 grains may
be considered to be approximately spherical.
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UTILISATION DE LA MÉTHODE INTÉGRALE POUR LA MODÉLISATION

DE L'OXYDATION D'ÉLÉMENTS COMBUSTIBLES DÉFECTUEUX

par

Miroslav Kolar

RÉSUMÉ

II est très important de pouvoir prédire le comportement à long terme du combustible nucléaire irradié
exposé à l'air, en particulier celui d'éléments combustibles devenus défectueux dans le réacteur ou au
cours de leur manutention postérieure, du fait que le stockage provisoire à sec semble être une
solution de remplacement économique au stockage provisoire en piscine. Une forte oxydation peut
conduire à la désintégration du combustible et ainsi à une augmentation considérable du coût de la
manutention intermédiaire et des préparatifs en vue du stockage définitif. La capacité de prédire
l'importance et la vitesse d'oxydation des éléments combustibles défectueux dans des conditions
d'apport d'oxygène limité ou illimité contribuerait à déterminer les conditions optimales d'exploitation
d'une installation de stockage à sec.

Le point de départ du présent rapport est la divergence signalée dans des travaux antérieurs entre les
calculs de la réaction-diffusion et l'essai CEX-Î, qui porte sur le stockage provisoire d'éléments
combustibles défectueux exposés à l'air, à 150 °C. Cette divergence est considérablement restreinte
dans ce cas par un choix plus déterminant des paramètres théoriques et en tenant compte du fait que
divers éléments combustibles du CEX-1 ont été oxydés à des vitesses très différentes et que l'élément
combustible utilisé antérieurement pour la comparaison avec les calculs théoriques a été en réalité
soumis à deux cycles d'apport d'oxygène limité. On obtient ici une bien meilleure concordance entre
la théorie et les résultats de la troisième période de stockage avec apport d'oxygène illimité de l'essai
CEX-1.

La méthode intégrale par approximation est largement utilisée pour résoudre les problèmes de
diffusion unidimensionnelle à frontière mobile qui peuvent correspondre à diverses périodes de
stockage de l'essai CEX-1. Dans certains cas, il est facile d'étendre cette méthode pour obtenir une
précision arbitraire en se servant de moments d'ordre supérieur de l'équation de diffusion.

Cette méthode permet de vérifier la validité de l'approximation de l'état quasi stationnaire. En outre,
on étudie l'oxydation régie par la diffusion. Dans ce cas, où l'apport d'oxygène est illimité, la méthode
intégrale conduit à une solution analytique précise de la géométrie linéaire et à une bonne
approximation analytique de la solution de la géométrie à symétrie sphérique. Ces solutions
pourraient trouver quelque application en analyse des essais d'oxydation de petits fragments ou de
poudres d'UO2, lorsque l'on peut considérer que les grains d'UO2 pris individuellement sont à peu près
sphériques.
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1. INTRODUCTION

The stimulation for this study came from the need to predict the long-term behaviour
of defected used-fuel elements stored in an interim dry-storage facility. This need is also
the motivation behind the long-term Controlled Environment Experiment, Phase 1
(CEX-1), in which a large number of intentionally defected and control undefected
irradiated CANDU fuel elements are stored in dry air at 150° C [1, 2]. During the first
two CEX-1 storage periods, extending over a total of 99.5 months, the pressure vessel
storing the fuel bundles was sealed so that only a limited amount of oxygen was
available for oxidation. Because this may not correspond to the situation occurring in
commercial dry-storage facilities, unlimited air supply was allowed during the third
storage period of 40 months.

The main purpose of this report is to investigate a selection of models that may be
applicable to various storage periods of the CEX-1 experiment. We assume that at
150°C the oxidation of UO2 stops at the approximate composition U3O7, although
traces of higher uranium oxides (U3O8) were found even at this temperature in some
specimens recovered after the third storage period.

We start from the discrepancy between theory and experiment reported by Garisto [3].
In Section 2 we review some of the reaction-diffusion models used in Ref. [3], and study
the effects of transient processes that were not discussed there in detail, probably
because of difficulties with numerical integration in the case of a moving boundary.
Here we avoid these numerical problems and independently confirm the theoretical
results of Garisto [3] by attacking the moving-boundary problem from a different
direction, using the simple integral method [4-6] in which the diffusion equation is
satisfied only on average. We show that in some cases this method can be made
arbitrarily precise by requiring that an arbitrary number of higher moments of the
diffusion equation be satisfied. This approach was suggested in Ref. [5], but does not
appear to have been used in actual calculations before. In this way we convert a partial
differential equation into a set of ordinary differential equations.

For simplicity, we are studying one-dimensional (ID) models only. This seems to result
in errors involving a factor of only 2 in comparison with 2D solutions (representing 3D
models with rotational symmetry) [3], whereas the discrepancy between theory and
experiment reported by Garisto [3] involves a factor of 170. In any case, enough
quantitative experimental data are not available at present for comparison with more
exact models. Only "zero-order" reaction in the oxygen concentration is studied, which
seems to be justified by the results in Section 3.3. Rigorous treatment of the variable
rate of oxygen consumption is presented in Section 2.4 for three different simple types
of consumption-rate dependence on the degree of oxidation.

In Section 3 we apply the integral method to diffusion-controlled oxidation, both in
linear and spherical geometries. For unlimited oxygen supply in the linear geometry
(i.e., in a rod shape) we found an exact solution. This solution also serves for finding a
good approximation for the spherical geometry, which can be useful in interpreting some
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experiments on the oxidation of individual UO2 grains. For limited oxygen supply in a
fuel rod, infinite time seems to be needed to use up all oxygen trapped in a container.

For unlimited oxygen supply we found that, for the parameter values corresponding to
the UO2 fuel, the time dependence of the advance of the oxidation front through the
fuel element is essentially the same in the diffusion-controlled and the reaction-diffusion
models. This may be surprising at first glance, until one realizes that at larger times
the two models converge, in a sense, as discussed in Section 3.1.

In Section 4 we present a more detailed discussion of some of our calculations and
compare them with various experimental data. We arrive at plausible values of the
consumption rate and the apparent diffusivity, which give fairly good agreement of
theoretical predictions with the CEX-1 data. An independent experimental
confirmation of these values, especially of the apparent diffusivity, is desirable.

Finally, Section 5 contains some concluding remarks.

2. REACTION-DIFFUSION MODEL

Equivalent porous medium models formulated by Garisto [3] theoretically allow for an
arbitrary ratio of the reaction rate and the apparent diffusivity. Garisto, however,
encountered problems with the numerical integration of the diffusion-reaction equation
in the presence of a moving boundary. Here we try to confirm the theoretical results of
Garisto [3] by attacking the problem from a different direction, using the simple integral
method [4-6] in which the diffusion equation is satisfied only on average.

We consider a simplified case: the oxidation of a cylindrical fuel element of radius b
with the Zircaloy cladding completely removed from one of its end caps (thus the defect
radius is equal to b). This makes it possible to stay within the ID approximation. The
long axis of the fuel element extends along the positive X axis with the defected end
positioned at A' = 0. For X < 0 we assume an atmosphere with an oxygen
concentration equal to CCx(O) (Cex rnay depend on time 0 as oxygen is consumed in
the case of limited oxygen supply). The concentration of oxygen inside the cracks and
pores of fuel is C(A', 0 ) . The oxidation of the porous UO2 is a complex process that
takes place throughout the solid matrix. We assume that it can be described by the
rate, eKv, of consumption of oxygen in a unit volume of medium, which also accounts
for the diffusion of O2 through the solid matrix (cf. Section 3.4). Here e is the total fuel
porosity, and Kv is independent of C ("zero-order" in C) and depends only on the local
degree of oxidation (i.e., on the amount of UO2 remaining at a given place). Thus Kv

depends implicitly on A' and 0, which will be explicitly denoted as KV(X,Q). In this
equivalent porous medium approximation, the reaction-diffusion equation to be solved
is [3]

dC(X,Q)



- 3 -

with the initial and boundary conditions

C(X,0) = 0 f o r X > 0 ,

C(O,0) = Cex(0) f o r 0 > O ,

and additional conditions relating the oxygen flux at X = 0 to Cex(0) and KV{X, 0) to
the local degree of oxidation. These are discussed later for individual cases. Equation
(1) applies only where C > 0. De in Equation (1) is the apparent diffusion coefficient of
O2 involving the crack tortuosity.

It is beneficial to introduce the following scaling:

'<to, (3)

(,e) = Coc{x,t). (4)

Then x and t are dimensionless position and time, and in these scaled coordinates the
equations for the scaled concentration read as follows:

dc{x,t) _ d2c{x,t)

c(x, 0) = 0 for x > 0, (6)

c(0,Z) = Cex(0 f o r Z > 0 , (7)

Cex(0) = 1 , • (8)

it(ar, 0) = 1, (9)

where

k(x,t) = Kv{X,Q)/Kv0, (10)

and

(H)

Note that a can be expressed in terms of Garisto's parameter p [3] as

6
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2.1 LOCAL DEGREE OF OXIDATION

The local degree of oxidation, 0 < do(x,t) < 1, is defined such that d0 = 0 corresponds
to the unoxidized UO2 and d0 = 1 to complete oxidation to U3O7. Here we assume that
further oxidation of U3O7 to higher uranium oxides can be ignored at the temperature
of 150°C maintained in the CEX-1 experiment. Oxidation starts at the position x as
soon as the oxygen front arrives at x. Let us denote the time of arrival of the front at x
by iarr(-'c)- Depending on the type of the model, the oxygen front can reach a maximum
and then recede back to the origin passing through the point x at a later time t<iep(x)
when the oxidation stops at .x\ Or it can expand forever; then tdep(x) = 00, and the
oxygen front is always identical with the oxidation front. Naturally, there can be more
complex situations with the oxygen front moving back and forth several times, each
time increasing somewhat the local degree of oxidation, but these are not studied here.

Maximum weight gain of a small volume of fuel, dV, located at x is equal to

Mo
gM = pdV{\ -e)

6 Mf '

where p is the density of UO2, £ is the total crack and pore porosity, Mo = 32 is the
molecular weight of oxygen, and M{ = 270 is the molecular weight of UO2. The actual
weight gain at x starts to be nonzero at t = tan(x), and is given by the time integral of
the rate of oxygen consumption,

mm(0,0dcp(ar)) mm{t,tiep(x))

g = dVM0 I eKv{ax,Q')dQ' = dVMoef3Kv0 J k(x,r)dr.
0arr("r) iarr(^)

Here Qarr(cix) = fS tarr(x), Q<\ep(ax) — (3tdep(x), and Q' = (3T. The local degree of
oxidation is then do(x,t) = 0 for t < iarr(̂ ')> d

inin(Md«p(*))

do(x,t) = — = — [ k(x,T)dr for t > tarr{x), (12)
9M A J

tarr(l)

where

p(l-e) _ / > ( ! - £ )
GMteKyoP 6 Mr e <V l

The dhnensionless quantity A is essentially a constant: the only parameter in Equation
(13) that may vary to some extent is Co- In addition, there may be some uncertainty in
the value of the total porosity s. Assuming e = 0.05,* we have A = 15048.0 for normal
atmospheric pressure (Co = 8.55 x 10"6 mol • cm"3) and p = 10.97g • cm"3.

total void volume (including cracks, open porosity, pellet end-dishes, axial and diametral pel-
let/sheath gaps and internal fission gas plenums) has been measured and found to be less than 3.0 mL for
a typical irradiated Pickering or Bruce fuel element [7, 8], which corresponds to a porosity of somewhat
less than 0.055.
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2.2 UNLIMITED OXYGEN SUPPLY AND CONSTANT CONSUMPTION RATE

The constant consumption rate assumption can be justified for short times only,
because in reality the reaction must be switched off at the latest when all UO2 at the
given position x is oxidized. The present assumptions correspond to cex(t) = 1 and
k(x,t) = 1, and Equations (5) and (7) become

c(0,/) = l f o r * > 0 . (15)

Then the scaled equations need to be solved only once, and their solution then scaled
back to real coordinates and concentrations using Equations (2) to (4). Equations (14)
and (15) have the following steady-state solution (cf. Réf. [3]):

c(x) = |(x-x/2) iovx<V2 , ,
= 0 for x > s/2 ' { '

Thus in the original coordinates, A'max = a\/2 is the maximum distance where oxygen
penetrates. Beyond this distance no oxidation occurs.

Let us now investigate the transient process in which the steady state in Eq. (16) is
approached from the initial state in Eq. (6). We use the integral method originally
formulated by Goodman [4], roughly along the lines of Ref. [6]. Let us denote by xm(t)
the right end-point of the interval in which c(x,t) > 0 at time t. Apparently xw(0) = 0,
•I'm (00) = \ / 2 ,

c{xm{t),t) = Q (17)

and

x=xm[

Following Crank and Gupta [6], one can derive the following additional conditions for
xm(t):

X / x=xm{t)

J Ytdx:=~\~e) "^W' (2°)

(|^) = -*«('). (21)
where the overdot represents as usual the time derivative. Equation (19) was obtained
by differentiating Equation (17) by t and using Equations (18) and (14). Equation (20)
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was obtained by integrating Equation (14) by x from 0 to xm (this amounts to requiring
that the diffusion-reaction equation is satisfied on average only). Equation (21) was
obtained by differentiating Equation (18) by t and using Equations (19) and (14).

One can generate an infinite number of further conditions by considering higher
moments in Equation (14), as was suggested in Ref. [5]. This consists of multiplying
Equation (14) by xj and integrating from 0 to xm:

Fir r>+1

^Ç-dx - ^ - ; i = 1,2,... (22)

Let us now approximate the solution in Equations (14), (6) and (15) by a polynomial of
degree n:

Mx*; 0<x<xm(t)- (23)

Substituting this into Equations (17) through (21), and the first n — 4 equations (22)
(j = 1,2,... ,n — 4), one can obtain a set of n + 1 ordinary differential equations for
a,i(t) and xm(t) that is approximately equivalent to the original partial differential
equation. As ??. —» oo, we may even hope to obtain the exact solution. Because in the
case studied here c monotonically decreases with x, relatively small values of n already
give a satisfactory approximation. We show that three different approximations in
Equation (23) with n = 3 and n = 4 already give practically identical results, indicating
that we do not need to increase n any more. These approximations are as follows:

(i) n — 3. Using the conditions in Equations (17) through (20) gives

axxm = . 7 4 / 2 - 3 ,

a2 x2
m = 3 - x2

n ,

«34=a4/2-l,

_ 2-xl

(ii) n = 3. Using the conditions in Equations (17), (18), and (21) (ignoring (20)) gives
the same first three formulas for a,- in terms of xm as above, and

. _ 6 3
%m — J" •

xm xm

(iii) n = 4. Using all conditions in Equations (17) through (21) gives:

a2 x
2
m = a 4 / 2 - 3aixm - 6 ,

a3x
3

m = - a
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a.i xA
m = x2

m/2 - a^xm - 3 ,

xm = -r-(aixm - x2
m + 4 ) ,

Xm

Hi « + 2 + S) + 20

One can see that with increasing n, the resulting equations become more complicated
and generally cannot be solved analytically. We solved them numerically, using the
fourth-order Runge-Kutta algorithm. There is a slight problem with the initial
conditions because a:m(0) = 0, and at the same time xm occurs in the denominators of
the above equations, thus xm(0) and ai(0) are infinite. Only for n = 3 can one integrate
uniquely the above equations from L = 0, obtaining for small times xm(t) ~ 2\/67 for
case (i) and xm(t) « \/2At for case (ii). The numerical integration can then be started at
a small t = t-mit « 0.001 with xm(t\n;i) given by these approximate formulas. For n = 4 it
is not clear what the best initial condition for a\ is. At first we trie/ to derive the initial
approximation for c(x,t) from the solution of the reactionless diffusion equation, which
is equal to c(x,t) = evîc(x /2\/t) « 1 — -7= + O((x/y/t)3). Retaining only the linear part
of this solution gives xm = \/ir^n;t, a\ = —l/xm. After some experimentation, we found
that a better starting point (giving results independent of ^n;t as t-lnit —> 0) is the one
taken from case (i), i.e., xm = 2>/62jnit,, and a\ = xm/2 — 3/xm.

The dependence of xm on t obtained in this way for the above three cases is shown in
Figure 1. One can see that the limiting value xm = \/2 is obtained very rapidly in
about one scaled time unit. For the literature values used in Ref. [3], De = 0.2 cm2 • s"1,
Co = 8.6 x 10"6 mol • cm"3, and Kv0 = 4.0 x 1O"10 mol • cm"3 • s"1 for 150°C, one gets
a = 65 cm and j3 = 21156 s. That means that the maximum oxygen penetration of
65\/2 cm is achieved in about 6 h; thus the quasi-steady-state approximation used in
Ref. [3] is well justified for the range of parameter values considered there.

2.3 LIMITED OXYGEN SUPPLY AND CONSTANT CONSUMPTION RATE

Let us assume that there are Nd identical defected fuel elements in a hermetically sealed
container. Part of the inner volume of the container, equal to V, is occupied by air.
Total influx of oxygen into one defected fuel element is equal to

' - * * , (24)
a

where e is the total porosity of fuel. The decrease of the external concentration of
oxygen is determined by the equation

(VC) -NdFcx. (25)
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FIGURE 1: The dependence of the maximum oxygen penetration, xm, on time for
ccx = 1 and k — 1 as obtained by the integral approximations (i), (ii), and
(iii) of Section 2.2. The horizontal dotted line corresponds to the limit
value of x,n equal to \ /2.

Using Equations (2) and (3), one gets from Equations (24) and (25) the relation

where

eCo £ 2

v»

(26)

(27)

Note that this quantity is different from p of Ref. [3]. For the time being let us still
assume that k(x,L) = 1, which is justified if the degree of oxidation remains small
everywhere.

Within the integral method, one has now to satisfy simultaneously Equations (14), (6),
(7), (8), (26) and a suitable subset of Equations (17) through (22). In the previous
subsection we found that the n = 3 case (i) (requiring that Equation (20) be satisfied)
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already gave good results. Using the same degree of approximation for the present case
gives

3

C(.T,O = I > ( O * ' ' ; o < x < xm{t),
1=0

hx xm = x2
m/2 - 3&o ,

b2xl=3b0-x
2
m,

b3xl=x2
m/2-bQ, (28)

p
b

12
Xm ~ 2b0

\p(Gbo-x
2
n)-±-(x2

jn-2bQ)\ .

These equations give no steady state, although on physical grounds the final state is
xm = b0 = 0, corresponding to all oxygen being used up.

Let us compare the time dependence of the oxygen front obtained from Equations (28)
with the quasi-steady-state approximation (QSSA) of Garisto [3]. In our scaled
coordinates, QSSA assumes that

Thus

$ S S A = 4 4 , (29)
and Equation (26) gives xm = —P, which integrates to

XQSSA = y/2-Pt. (30)

In Figure 2 we compare the values of xm and b0 obtained by Runge-Kutta integration of
the last two equations in Equation (28) with those given by the QSSA formulas
(Equations (29) and (30)). One can see that for smaller values of P (P = 5.6 x 10~4 in
Figure 2c corresponds to the parameter values given at the end of the previous
subsection), QSSA is an excellent approximation - its basic assumption that the
all-time maximum oxygen penetration equal to \/2 is achieved almost instantaneously
(relative to the duration of the whole process) is well justified. This is still true even for
P = 0.1 (Figure 2b).

For small values of P, one can thus safely use the QSSA result of Equation (30). Then
taTT(x) ~ 0 for all x, and idep(a;) = (\/2 — x)/P. For the final degree of oxidation after
all available oxygen has been used up, one obtains from Equation (12)

do{x, oo) = — *dep(x) = A p . (31)
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FIGURE 2: The comparison of the maximum oxygen penetration, xm(t), and the
external concentration cex(t) = bQ(t), obtained by numerical integration of
Equations (28) with the QSSA values (Equations (29) and (30)). (a)
P = 1, (b) P = 0.1, and (c) P = 5.6 x 10~4. The dash-dotted horizontal
line corresponds to the limit value of xm equal to >/2. In plot (c) the
exact and QSSA results are practically indistinguishable.
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FIGURE 2 continued

Thus the final degree of oxidation decreases linearly with distance from the defect. It is
the largest at the defect,

<4(0,oo) =
QMSV

A P

2 A „() C'o

In real coordinates, the all-time maximum oxygen penetration is

= a\/2 =

and the whole process lasts

aep (0) =
V 2Cp

De K,vO

(32)

(33)

(34)

The larger the consumption rate Kvo, the shorter the duration of the whole process, the
smaller the maximum oxygen penetration, and the higher the degree of oxidation at the
surface (defect). Thus the present approximation is not applicable to very large
consumption rates when c/o(0,oo) approaches unity. Then one has to take into account
the decrease of the consumption rate with the degree of oxidation. Because in the
limited-oxygen-supply storage periods of the CEX-1 experiment, r/o(0,oo) seems to be
below 1, we have not studied here the limited-oxygen-supply case with variable
consumption rate.
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2.4 UNLIMITED OXYGEN SUPPLY AND VARIABLE CONSUMPTION RATE

In this case cex(/.) = 1, and k(x,t) is a suitable function of the local degree of oxidation
do(x,t) introduced in Section 2.1. Oxidation starts at the position x as soon as the
oxygen front, represented by .Tm(/.), arrives at x. For the unlimited oxygen supply, xm(t)
is always a monotonically increasing function of t, and so the time of arrival, ta,n(x), of
the oxygen front is given by the inverse of xm(t):

t = tarr[x) <=> x = xm{i). (35)

In this case /fiep(.T) = oo. Thus Equation (12) becomes

do(x,l,) = - J k{x,r)dT for t>tarr{x). (36)

Initially, one always has

k{xm(t),t)~l. (37)

For further evolution of fc(x,t), let us consider three different model cases of the k
versus d0 dependence that are relatively easy to treat semianalytically.

(A) Step-like dependence: k = 1 if do < 1 and k = 0 if do = 1; that is, the rate of
oxidation is independent of f/0, but oxidation to U3O7 is switched off instantaneously
once the fuel is completely oxidized. Then Equation (36) gives

do{x, t) = ~(t- tm{x)) if do(x, t) < 1, (38)

i.e., if t < li(x) where ti(x) is the time when r/0(.r, t) reaches the value of 1 at x.
Apparently,

ti{x) = tarr{x) + A , (39)

and

k{x, t) = 1 for farr(o:) < t < h{x), (40)

and k(x, t) = 0 otherwise.

(B) Linear dependence: k = 1 — do while do < 1. Then differentiating Equation (36) for
this case by t gives

-do(x,t) = -(l-do(x,t))

for t > t,vr(x). This differential equation has the solution

do(x,t) = l-e-l=h^1. (41)
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Thus

k(x,t) = e - ^ 1 , (42)

and l\{x) = oo. Therefore, for this case, the fuel at an arbitrary position x is never
completely oxidized in finite time.

(C) Assume that the dependence of k on d0 is such that it gives a
linear dependence of k on time:

k{x,t) = l-io[t-t!irr(x)], (43)

where w is a constant yet to be determined. From Equation (36) one then gets

do(x,i) = I [l + |[«arr(.T) - *]] [t - tan(x)}. (44)

Equations (43) and (44) must give at time t — t\(x) simultaneously k(x,ti) = 0 and
do(x,t) = 1. One can satisfy these conditions only if 10 = ^ and

(45)

Thus for t <U{x),

k(x,L) = l-~[t-tarr(x)}, (46)

do(x, t) = I [l - ±[t - <„(*)]] [* - tarr(x)}. (47)

These two equations then give

k(x,t) = yjl - do{x,t). (48)

All three cases are compared in Figure 3. The real situation probably lies somewhere
between cases (A) and (C), k at first being independent of time (on d0), and then
rather rapidly going to zero [9-20].

We now attempt to use the integral method to solve Equations (5), (6), and (15).
Conditions in Equations (17), (18), and (19) still hold (the last one remains unchanged
because of Equation (37)), however Equations (20) and (21) have to be replaced by

Xm(t) . . Xm(0

/ I - ( I ) „-
v ' x=0 0

OX / x=xm{t) \UXJ x=xm(t)
* • « -



- 1 4 -

1.0

FIGURE 3: The three model dependences of the oxygen consumption rate on the
degree of oxidation discussed in Section 2.4.

Let us first calculate the integral that occurs on the right-hand side of Equation (49),

I{t)= J k{x,t)dx, (51)
o

for the three cases (A), (B), and (C) introduced above.

Case (A). It is apparent that

where xmin is the minimum (innmum) of all x such that do(x,t) < 1, i.e., ti(xmin) = t.
Using Equations (39) and (35), one gets £m;n = xm(t — A), and

= xm(t)-xm(t-A). (52)

Case (B). From Equation (42),

*m(t) / (
exP( T1- dx.
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Using substitution r = laTr{x), i.e., dr = l"px'dx = ( Xv
d ) ^ ; gives

i)= jdXrniTl (J_ZT\dT
J (IT \ A /
0

and integrating by parts finally gives

(53)

where

1 \ . , ( t - r \ .
dr.

o

Differentiating this formula by t gives

- * B ( 0 1 ; *B(0) = 0 . (54)
ILL Z_A

Case (C). From Equation (46) we have

(0.
— / (r))\ rlr

where .Tmin has the same meaning as in case (A) but now xm\n = xm(t — 2A) by
Equation (45). Using the same substitution, r = iarr[x), as in case (B) followed again
by integration by parts gives

(55)

where

= KT xm(t)dr.

Here we assume that xm(t) = 0 for / < 0. Again, differentiating by i gives

^ 0. (56)

Defining

$A(t) = xm(t-A), (57)

one can formally write Equation (49) in all three cases in the same form,

Jldx = ~\Û) - ^ W + ^caseW; case = A,B,C, (58)
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where 4>case(£) is given by Equations (57), (54), or (56).

Let us now turn to Equation (50). From Equations (40), (42), or (46) we have

M = - /" t s c .r m A ; case = A ' B ' c ' (59)
where

Here we have made use of Equation (37) for the (B) case.

Let us again assume that the approximation in Equation (23) holds. We investigate the
two simplest cases, n = 3 and n = 4, first.

(I) n=3. Using the conditions in Equation (17), (18), (19), and (5S), one obtains the
same formulas for o,- in terms of xm as in case (i) of Section 2.2, and

(60)

where $c,isc is given by Equation (57), (54), or (56). Thus in case (A), one has a single
differential equation (60); in the other two cases, one has a system of two ordinary
differential equations for xm and $ B o r $c- However, for a numerical integration, case
(B) is the simplest one because one deals only with quantities related to the same time
instant, whereas cases (A) and (C) require storing past values of xm, at t — A and
t — 2A respectively, which makes it very difficult to use an integrating scheme with
variable step.

(II) n=4. Using the conditions in Equations (17), (18), (19), (58) and (50) with
Equation (59), one obtains the same formulas for «2, «3, and CL\ in terms of a,\ and xm

as in case (iii) of Section 2.2, and

o

and

in case

X

L —

(A)

771

6

and

3

• (x2 +

'lm Xm

T r2

2axxm

+ 4) +

+

\

8)+ 20

J&Wm

{(l\ + Xm - $case)] ?

"^m ' I i .'case

'771

(61)

(62)

in cases (B) and (C). Again, for cases (A) and (C), one needs to store past values of xm

to be able to calculate
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Actually, it turns out that one can get quite a good idea about the long time behaviour
of the solutions for ?! = 3 and 7? = 4 without doing extensive numerical calculations. In
case (A), for /. < A, for both ?? = 3 and 4, $,i(/) = 0 and the solution is exactly the
same as that for the constant consumption rate (see Figure 1). Because A is of the
order of 10"' scaled time units, xm(t) may be considered constant (equal to \/2) for
0 < I < A. At / = A, <&A(1) changes very rapidly from 0 to xm(t — A) « >/2, which will
be followed by a fast switching of xm(t) to a new almost constant plateau. A similar
switching can be expected at / = 2A, 3A, . . . Thus the solution will have
approximately a step-like form:

xm[t) = 7,-\/2 = const, $,i(0 = 7i-i\ /2 for (i - 1)A < t < t'A ; i = 1,2,... ,oo .

Substituting this ansatz into Equations (60) and (57) (assuming that xm = 0 on the
plateaus), one gets for 7,- the following recursion relation;

= I (7.-1 + x/7,-1 + 9) • (64)H = I (7.-1 +

Starting with 71 = 1, this gives 72 = 1.387426, 73 = 1.564239, 7, = 1.649186,
75 = 1.690869, etc. As i -+ 00, 7,- goes to a fixed point 7^ = \/3 as can be checked by
direct substitution into Equation (64). This corresponds to ,rm(oo) = \/6. The same
steady state can in fact be obtained directly from Equation (60)
(^A(t) = xm(t - A) = xm(t) = Vê

Similarly for n = 4, one gets from Equations (61), (62), and (57)

7,- = \ (li-x + / £ i + 16) , (65)

iind ai(L) = (7,_i — 7,')v/2 for (i — 1)A < t < iA. The values of 7,- are now different,
7 l = 1, 72 = 1.2S0776, 73 = 1.370206, 7, = 1.399595, 75 = 1.409346, etc. The fixed
point is now 7^ = \/2 giving .x-m(oo) = 2 and «1(00) = 0. Again, this steady state can
be obtained directly from Equations (61) and (62).

Unfortunately, the long time behaviour (the values of the plateaus) and the t = 00
limits are rather different for n = 3 and 7?. = 4. Evidently, for this problem one has to
use higher values of n to achieve convergence. Moreover, the fact that ,Tm(oc) (the
range of oxidation) is finite does not seem physical. As is shown below, for higher n
(satisfying the higher moments of the diffusion-reaction equation), there is no I = 00
steady state, and xm(t) is unbounded.

For n = 3, one can easily check that the (B) and (C) cases give the same t = 00 limit as
the (A) case, ,Tm(oo) = \/6.

Numerical integration can be done most easily in the (B) case. For n = 4, it indicates
that the long-time dependence of xm, $ s and a,\ on time is approximately linear.
Equations (61), (63), and (54) really give for t —* 00 an approximate solution in the
form

and $ B ( / ) « - ^ = - , (66)
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which agrees with the numerical results.

Similarly, for the (C) case, one can obtain from Equations (61), (63), and (56) for
t —> oo a similar approximate solution in the form

^ d * l " ^ ( 6 T )

These limit solutions give monotone c(x,t) for xm(t) < 3.8. For larger xm (larger times)
a minimum starts to develop in the first half of the interval (0, xm) and a maximum in
the second half. Eventually, the minimum drops below zero and the maximum becomes
larger than 1. Thus we again have unphysical behaviour for large times. In summary, in
all three cases, (A), (B), and (C), there is a significant difference between the n = 3 and
n = 4 results for long times, and all the long-time results are unphysical in some
aspects. To obtain convergence, one has to use larger values of n. For a given n, the
value of c(x,i) must equal the exact value in at least n — 4 points of the interval (0, xm).
Thus as n increases, one can expect that the onset of unphysical behaviour will be
delayed to larger times. For large n, one needs an equivalent of the condition in
Equation (22) for the present case of the variable consumption rate, which reads

Xm rj xm rv xm

j xj ^ da: = - j / â '-1 ~dx- J xj k{x, t) dx . (68)
0

For j = 1, this condition must be satisfied by any approximation with n > 4. Because
for j = 1 the first term on the right-hand side of Equation (6S) is equal to 1 by
Equations (15) and (17), one can immediately see that this condition cannot produce a
steady state for t —> oo. In a steady state, dc/dt = 0, thus the left-hand side of
Equation (68) would be equal to zero. Similarly, as xm(t —> oo) —* const, the integral in
the second term on the right-hand side would go to zero for all three cases (A), (B), and
(C) because the range of x values where k(x,t) > 0 would go to zero. This would lead
to a contradiction because of the presence of 1 on the right-hand side of Equation (68)
for j = 1. Thus the solutions for xm for n > 4 are expected to be continually growing
for all times.

Let us denote the last term in Equation (68) by /,-(£), i.e.,

Xm

Ij(t) = J xjk{x,t)dx.
0

Following the same procedure as in the case of Equation (51), one gets

where
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- *;B(0] ;

jt*jc(i) =~ [x»\t)-x»l(t-2u] ; *iC(0) = 0.

Thus i(t) of Equation (51) is equal to 70(/) as expected.

Let us assume that Equation (23) holds, and introduce the abbreviation
cii(t) = at-(*)a4(0- Then to satisfy Equations (17), (IS), (19), (49), (50), and (68), the
following relations must hold:

n

1=1

n

i=2

£ t"; Xm ~ * "• ^ l = —:
,-_j î "I"

1 "
case A : .•£„, = — D3 ; where D3 = — £ i ( i - l)(i - 2)«;,

a'm 1=3

£)3 , IDl
case B, C : xm = - ^ + y -J" +

j -1 xm j +1 L x4 J

j = l , . . . , n - 4 .

Again, one can express ôn_2, «n-i and cin in terms of the remaining «;. Differential
equations for the remaining a,- have the same form for all three cases, and can be
obtained from the above relations using the MAPLE V program listed in Appendix A.
This program also gives the step-like approximation to their solution in case (A), and
the asymptotic behaviour of the solution in the (B) and (C) cases.

In the (A) case, the values of the plateaus are the same for all n > 5 (the corresponding
values of a,- were calculated explicitly up to n = 20), and are given by the recursive
relation

7t = \Jll-\ + 1 : which gives 7; = \fi

because 71 = 1. This approximate solution is presented in Figure 4. The centres of the
plateaus of xm{l) can be connected by a smooth curve of the form Jitj'A -f-1. This
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FIGURE 4: Approximate step-like time dependence of the oxidation front for the
unlimited oxygen supply and the case (A) dependence of the oxygen
consumption rate on the local degree of oxidation. For all n > 5 the
"staircase" is the same.

smooth curve represents a good approximation of the advance of the oxidation front,
especially for larger times,

(70)

In reality, the edges of the steps would be somewhat rounded. In real coordinates, this
smooth curve has the equation

12 Mt e Co De Vë. (71)

Note that the average advance of the oxidation front does not depend on the
consumption rate Kvo at all, only on the product Co De, that is, on the rate of supply of
oxygen through the medium. The values of the plateaus are \/iXmax, where A'max is
given by Equation (33), and the jumps between successive plateaus occur at time
instants equal to the multiples of

(72)
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Thus as A'uo increases, both the step height and the width decrease; however, the
centres of the steps will always lie on the same curve (Equation (71)). Let

(i — 1)A < / < /A. Then the local degree of oxidation equals 1 for x < J2(i — 1), and

for all J'2 (i — 1) < x < \/2i it grows practically simultaneously from 0 to 1 as time
proceeds from (?' — 1)A to ?'A; cf. Equation (38).

In the (B) and (C) cases, the MAPLE V program in Appendix A confirmed that the
long-time asymptotic behaviour of the solution apparently has, for all n > 4, the same
form as that of Equations (66) and (67); that is,

xm(t) « £ t, «,- « Q,- Z2 ; i = 1 , . . . , n , (73)

where £ and cv; are constants. From Equation (69) we again have £ = \//case/A. For all
n > 5, ax = ( - l ) n - '£ 2 / (n - 1); for all n>6,a2 = (-l)n(n - l)£2/2, etc. Thus one can
immediately see that the asymptotic behaviour is unphysical at least for all odd n
because cvt > 0 for odd n. In fact, it is unphysical for all n, but as n increases, the onset
of unphysical behaviour is delayed to larger and larger times, as illustrated in Figures 5
and 6. Figure 5 is for the value of A corresponding to UO2 fuel; Figure 6 is for a much
smaller value of A to show more easily the asymptotic behaviour of xm(t). The
very-short-time behaviour is the same as that for the constant consumption rate (see
Figure 1); that is, xm "shoots up" from zero practically immediately to y2 where it
stays for some time. In this initial phase all n (even n = 3, cf. Figure 5a) give quite
satisfactory results. As the local degree of oxidation near the origin (defect) increases,
the oxygen consumption rate starts to decrease in the immediate vicinity of the defect,
and xm slowly starts to increase further. For larger times, the exact xm then apparently
follows the same parabola of Equation (70) that was obtained by smoothing the case
(A) "staircase" of Figure 4. Actually, the exact xm(t) can in case (B) be approximated
much better - almost exactly, immediately from i = 0 by a shifted parabola

(74)

or

Am(0) = WA,2]ax + n_£\
 0 •

Because tho asymptotic behaviour of xm(t) corresponding to a finite n is linear (cf.
Equation (73) and Figure 6b), no finite n can follow this parabola for all times. As n
increases, the approximate xm leaves the parabola at ever increasing times (compare
n = 4 and n = 5 in Figures 5 and 6). Thus the time interval in which a finite-n
approximate solution represents correctly the exact one, increases with n.

Although we have not proved it rigorously yet, our results nevertheless indicate
convincingly that in case (B) the exact time dependence of the oxidation front is given
by Equation (74) or (75), which for large times are exactly the same as the smoothed
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FIGURE 5: The time dependence of the oxidation front for the unlimited oxygen
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J2t/A (representing the smoothed case (A) time dependence).
A = 15048. (a) is the enlarged initial portion of (b).
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case (A) formulas in Equation (70) or (71). From Equation (74) we then have
/.arr(.r) = A(.r2 — 2)/2, and Equation (41) gives for the local degree of oxidation

(/o(^0 = l - e x p p " ( ^ ~ - r 2 ) . (76)

This do(x,t) is significantly different from 1 only for x2 £ x^t) — 4. Because case (C) is
in a sense intermediate between cases (A) and (B) (cf. Figure 3), it is quite possible
that Equations (70) and (71) will also apply to case (C). This however still remains to
be proven. Assuming that this is the case, Equation (47) would then give for the local
degree of oxidation in case (C)

for ^ ) - 4 < x 2 < . ^ ) , (77)

and r/o(a-, /) = 1 for .T2 < a4(0 - 4.

Let us mention ahead of time that for the parameters corresponding to the UO2 fuel,
the advance of the oxidation front in the case of the diffusion-controlled oxidation is
also given by an equation identical with Equation (71) (cf. Equation (88) and the
discussion following Equation (94)).

Garisto [3] did several calculations with a variable consumption rate corresponding to
our case (B), but for a limited oxygen supply. However, his calculations may not be
completely consistent because it seems that he used the formula for the degree of
oxidation derived assuming that the consumption rate is constant. Here we attempt to
achieve self-consistency, at least in the framework of the integral approximation and for
the simpler case of unlimited oxygen supply.

3. DIFFUSION-CONTROLLED MODEL

In the limit of infinite reaction rate of oxidation, all the oxygen available at a certain
position X is used up instantaneously. Oxidation is thus controlled by the rate of
diffusion of oxygen through an already oxidized layer of material. In this case, the
scaling constants a and (3 of Equations (2) and (3) go to zero, and so it is better to
treat this limit separately. In this case, there is no unique scaling to dimensionless
equations and thus we work in the real coordinates X and 0 . We first discuss the
diffusion-controlled oxidation of a rod (defected fuel element) under unlimited oxygen
supply, then briefly the same system under limited oxygen supply, and finally oxidation
of a sphere under unlimited oxygen supply.

3.1 UNLIMITED OXYGEN SUPPLY IN A ROD

The geometry of the system is the same as in Section 2 - oxygen diffuses through one
defected end (the cap being completely removed) of a used-fuel element. The external
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oxygen concentration is constant, equal to CQ. Assume that, at time 0, the part of the
fuel clement between 0 (the defect) and A'm(0) is completely oxidized (do[X,Q) = 1 for
A' < A'm(0) and do(A',0) = 0 for X > Xm{Q)). The flow of oxygen through this
oxidized region is governed by the simple diffusion equation

Q). 0 < x < x ( Q ) (78)

Here D is the apparent diffusion coefficient for oxygen diffusion through the oxidized
material. In principle, it can be different from De of Section 2. In fact, De may depend
slightly on the degree of oxidation, which was ignored in Section 2. The solution of
Equation (78) must satisfy the following evident initial and boundary conditions:

C(A',0) = 0, (79)

C(O,0) = CcX(0) = Co, (80)

C(A'm(0),0) = O. (81)

Let us now derive the condition for the velocity of the moving boundary X < A'm(0)
between the oxidized and unoxidized regions. The total influx of oxygen into the
unoxidized material at X = A"m(0) is given by

All this oxygen is instantaneously used in oxidation. During a time interval c/0, the
total influx of oxygen (in grams) is thus

dW = F Mo dO.

This amount is capable of oxidizing completely (from UO2 to U3O7) a layer of certain
thickness dXm(Q). The weight of unoxidized fuel contained in this layer is

dW0 = p(l - e)irb2 dXm .

Complete oxidation corresponds to the weight gain of

dW Mo

Substituting here the above expressions for dW and dW0 gives

dx L Y ' (82)

where

R =
p(l-e) A<V
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cf. Equation (13). Differentiating Equation (SI) by 0 and using Equations (S2) and
(78) gives another condition that must be satisfied by the solution of Equation (78):

dX)x=
(83)

x
Finally, by multiplying Equation (78) by Xk, k = 0,1, . . . , and integrating from 0 to
Xm(Q), one gets the following integral conditions

A'=A'm(0)
(84)

and

xm(Q)

f xkdCriY-n f xk

FiX2 - 1 2 (85)

In the spirit of the integral method, let us assume that

c{x, 6) = Co + è ai(Q) * ' ; ° < x < xm{Q), (86)
t = i

with Xm(0) = 0. Substituting this into the conditions in Equations (81) through (84)
and the first n — 2 conditions in Equation (85), one can see after some manipulations
that all these conditions can be satisfied for arbitrary n if

= - a , - 0 - * , (87)

where £ and a,- are the solution of a certain system of algebraic equations (linear in a;
and nonlinear in £), and they depend on n. This is true even for n = 1, when Equations
(83) and (84) must be ignored, and when

Xm{Q) = ^J2RDCOQ, i.e., ^ = 1 = 2RDC0 =
2D 12M{£C0D
A p(l-e) '

cf. Equations (13) and (71). Substituting Equation (87) into (86) gives

XV „

(88)

(89)

This means that the exact solution obtained in the limit n —> oo must be of the form

(90)

where <p(y) is a function defined for 0 < y < £, whose truncated Taylor series for
y — -4= is approximately given by Equation (89). From Equation (80) one has

(91)
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and from Equation (81),

(92)

Substituting Equation (90) into Equation (78) gives for f(y) the following ordinary
differential equation:

Integrating this equation twice and using conditions Equation (91) and (92)
determine the integration constants gives

ip(y) = CQ— -,—-j-v— = Co 1 r^-—r- .

to

(93)

Finally, substituting Equation (90) using Equation (93) into the condition in Equation
(83) or (82) gives the following relation for the value of £:

(94)

This equation can easily be solved numerically. Its solution is compared in Figure 7
(solid line) with the value of £n=i of Equation (88). From the form of Equation (94) it is
evident that the n = 1 square-root dependence of £ on D is preserved also in the exact
£. However, the dependence of the exact £ on RCo is much weaker than in the n = 1
approximation. Though the solid curve of Figure 7 is monotonically growing for all
K = ^7^ = Â7* ' ^S derivative goes to zero as n —» oo (for large K, it approaches the
inverse of K « we"2). The same solution to this problem, as given by Equations (90),
(93) and (94), has been obtained using the method of matching the solutions at the
moving boundary by Crank [9] when studying tarnishing reactions.

Thus the square-root dependence of the position of the oxidation front Xm(Q) on time
0 that appeared already for n = 1 in Equation (88) has survived even in the exact
solution. Only the exact value of £ is given by a much more complicated implicit
formula, Equation (94). However, for the UO2 fuel, A = 15048.0 (cf. Equation (13)),
thus K = 3.75 x 10~5. As one can see from Figure 7, for such a small value of /c, the
solution of Equation (94) is identical with £n=i of Equation (88). Thus Equation (88) in
this case represents very well the exact solution. Note that it has exactly the same form
as Equation (71) of Section 2.4, which may be surprising at first glance because the
present model differs considerably from that of Section 2.4. However, note that
Equations (76) and (77) give for larger times a relatively narrow (with respect to xm)
region near xm where the local degree of oxidation is less than 1. Only in this region
can oxidation take place in the reaction-diffusion model. The same is true for case (A)
of Section 2.4. Thus for larger times, there is actually not a significant difference
between the two models. The main difference is at small times, represented by the
difference of xm from the parabola in Figures 5a and 5b.

This is an example where the integral method could be relatively easily carried out in
all orders of ??., and where it even leads to the analytical form of the exact solution.
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FIGURE 7: The dependence of w = -4= on K = ^%- = -^j^- Solid line represents the
solution of Equation (94) (rod) and the dashed line the solution of
Equation (107) (sphere). Dotted line corresponds to the n = 1 formula
(Equation S8), i.e, to u = J\\/T^K.

3.2 LIMITED OXYGEN SUPPLY IN A ROD

In this case all the relations are the same as in the previous one, except that the
condition in Equation (80) must be replaced by a condition of the type in Equation
(26), namely

.Y=O

and thus

C / A / A " = 0
(95)

where Cex(0) = Co and

eNd7rb2D
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In this case, there seems to be no easy way to solve the integral method conditions
semianalytically for arbitrary ??.. Ignoring the conditions in Equations (83), (S4), and
(85), we illustrate only the situation using n = 1.

Assuming that C(X, 0) = ai(0) X -f Cex(0), we get

RD "M

and

Integrating this gives

1 x. RDC0 In 1 -
QXn

RDCo
(96)

For small 0 , A'm(0) must also be small. Keeping only terms up to the quadratic one in
the Taylor series of the logarithm on the left-hand side of Equation (96) gives

a?m(0)« \J2RDCQQ.

Thus the short time dependence of Xm(Q) is the same as in the
unlimited-oxygen-supply case (see Equation (88)), as it should be.

For 0 oo, A'TO(0) is approaching the value of RD
(F'i from below, and the first term in

the square brackets on the right-hand side of Equation (96) can be neglected; thus

and

Xn

Ce

RDCo

Q
— e, HDCo

Co e RDCo

This exponential dependence theoretically means that infinite time is needed to
consume all the available oxygen. However, the amount of remaining oxygen approaches
zero very fast as time increases. Nevertheless, this behaviour is in contrast with the
finite time needed to consume all oxygen in the reaction-difFusion model of Section 2.2.
However, this infinite-time result in the present case still has to be confirmed by
numerical calculations for higher n approximations. But in the light of the results of
Section 3.1, one can expect that the n = 1 approximation is already a good
representation of reality. Note that here when going from Section 3.1 to Section 3.2, we
go from an unbounded A'm(0) in Section 3.1 to a bounded A'm(0) in Section 3.2. Thus,
one can expect that the same n that already gave satisfactory results in some sense in
the unbounded case, will be at least as good in the bounded case. When going from
Section 2.2 to Section 2.4, the situation as regards Xm(Q) is just the opposite - we go
from a bounded case to an unbounded one, which is probably why the n = 3 and n = 4
approximations give such poor results in Section 2.4.
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3.3 UNLIMITED OXYGEN SUPPLY IN A SPHERE

This particular system is used as a simple model for the oxidation of individual UO2
grains [9-11], which is definitely a diffusion-controlled process. The grains are
approximated by perfect compact spheres with no pores or cracks. Let us study the
oxidation of one such sphere of radius 7-0, surrounded by air with constant oxygen
concentration Co. Initially, at 0 = 0, the sphere consists of UO2 only, and the
concentration of oxygen inside the sphere is equal to zero. Let us assume that at time 0
the oxidation front penetrates down to radius rm(0) (measured from the centre of the
sphere). The diffusion of oxygen through the oxidized layer of U3O7 is described by

dC(r,Q) n 1 d ( 2dC{r,Q)\
— b ^ = D-1^T \r —h ï ro>r>rm(Q). 97

oQ r2 or \ or )
Now D is the intrinsic diffusion coefficient of oxygen in U3O7 (there are no pores or
cracks). Substituting

C(r ,0) = -£ / ( r ,0 )
r

into Equation (97) gives an equation of the same form as Equation (78):

dU{r,Q) - ; rQ>r>rm(Q). (98)

The initial and boundary conditions for U are

U{r, 0) = 0 ; 0 < r < r0, (99)

U(ro,Q) = roCo, (100)

U(rm(Q),Q) = Q. (101)

The flux of oxygen into the unoxidized inner region of the sphere is

F = Airrl D -m •

\ / r=rn

In the same way as in the preceding subsection, we get for the homogeneous sphere,

dW _ MQ FMpdQ

dW0 ~ 6Mf ~ '

and thus

±(Q) ^ ) , (102)
d& \ or I

\ / r=rm

where now
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Because Equation (98) has the same form as Equation (78), a solution of Equation (98)
satisfying conditions in Equations (99), (100), and (101) is

r > r0 ~ £\/0 = r m (0 ) , (103)

where </?(?/) is again given by Equation (93).

Equation (103) gives

£ r=r

'"0

Substituting this expression into Equation (102) gives

0

where

l_d_ RDroCoe
2dQm ^ D ë e r f ( W ) ' ( '

u =
isfD'

Unfortunately, this condition cannot be satisfied identically because from Equation
(103) we have

rm = r o - £ \ / 0 . ' (105)

However, one can try to satisfy Equation (104) approximately: integrating Equation
(104) gives

Let us now choose £ so that at least the duration of the complete oxidation of the whole
sphere is the same as given by Equations (105) and (106). The oxidation stops when
the oxidation front reaches the centre of the sphere, that is, when ?'m = 0 (remember,
here we are studying the oxidation to U3O7 only; at higher temperatures, the oxidation
to U3O8 continues even after that). Let this happen at time 0e,ui. Then requiring that
rm = 0 corresponds to the same 0end in both Equations (105) and (106), we have

and

RC
u>erf(u>)=2Ke-u'2; £ = l^DW; K = - ^ , (107)

V71"
which is almost the same as the condition in Equation (94) except for the additional
factor of 2. Because of this factor, wsphere(K) = u>roc\(2n). The solution of Equation (107)
(u;sphere(K)) is represented in Figure 7 by the dashed line. One can see that for the
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0.2 0.4 0.6
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FIGURE S: Comparison of Equations (108) (solid line) and (109) (dashed line). r0 is
the radius of the sphere, rm is the position of the oxidation front at time
0, and Oend = (ro/£)2 ls ^he time necessary for the complete oxidation of
the whole sphere to U3O7.

exactly identical parameters, the (approximate) speed of the oxidation front in a sphere
is smaller than that in the rod.

Equation (105) can be written as

(108)

and, using £ determined by Equation (107), Equation (106) becomes

(109)

These two expressions are compared in Figure 8. Their difference represents the degree
of approximation with which Equations (103) and (107) solve the spherical problem.

Hopefully, the application of the higher n integral approximations directly to the
spherical problem would lead to the exact form of r m (0) , although it may hot be
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possible to write it in a simple analytical form. Here let us just note that the linear
11 = 1 approximation gives exactly the same expression for £ as in the case of a rod. A
first degree polynomial satisfying Equations (100) and (101) has the form

This linear expression is the steady state of Equation (97). Thus the n = 1
approximation corresponds in this case to the quasi-steady-state approximation. This
gives

dC _ Co
dr r0 - rm '

and then from Equation (102),

r0 - rm = y/2RDCoë. (110)

This is exactly the same dependence as in Equation (88). Thus the dotted curve of
Figure 7 applies to both cases. Equation (110) is often used for the analysis of the
experiments studying the oxidation of UO2 powders [9-11], However, as we have
discussed above, its square-root dependence on D© seems to be only an approximation.

The relative weight gain (r.w.g.) of the whole sphere is evidently equal to

Mo
r.w.g. = (111)

In Figure 9 we compare the time dependence of this weight gain corresponding to the
two approximate formulas in Equations (108) and (109). The shapes of the two curves
agree well with experimental data, for example as presented in Figure 1 of Ref. [14],
Figures 4 and 7 of Ref. [21], Figure 1 of Ref. [18], or Figure 2 of Ref. [16]. The main
difference is that the initial slope of most experimental curves is finite (an exception
being Figure 1 of Ref. [14] where the initial slope seems to be infinite), whereas the
initial slope of the two curves in Figure 9 is infinite, as can be seen easily by
differentiating Equation (111) by 0. It is the initial slope of the experimental curves for
the irradiated CANDU fuel as measured by Hastings et al. [15] (see also Ref. [19] -
CANDU fuel seems to give clearly an initial linear dependence of weight increase on
time) that was used to calculate the rate Kvo of oxygen consumption in Ref. [3] (see
Equation (114) in what follows).

We have also calculated the time dependence of the relative weight gain for an ensemble
of spheres with uniformly distributed radii in a certain interval for Equation (108). The
form of this dependence is practically the same as the one for a single sphere (solid line
in Figure 9), also having an initial infinite slope. The only difference is that for the
same 0 , r.w.g. slightly increases with the spread in radii.

Actually, most of the previous authors* did not attempt to derive the dependence of £
on D and Co- They usually assumed that Equation (105) holds with £ = rQ\fk\ where

*An exception is Equation (4) of Ref. [13] or Equation (2) of Ref. [10] that contains the expression
2RDCQQ and is a variation of Equation (111) using (110) (n = 1), and gives curves similar to the ones
in Figure 9.
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FIGURE 9: Comparison of the time dependence of the relative weight gain of the
whole sphere corresponding to Equations (108) (solid line) and (109)
(dashed line).

k' is called a "rate constant" (see e.g. Equation (9) of Ref. [11]) or "oxidation rate
constant" [12], and is calculated from experimental data. In the notation introduced
above, k' = Q~*à. Note that the experimental data in Figure 7 of Ref. [11] (see also
Figure 7 in [12]) correspond more closely to Equation (108) than (109), except for small
times where the oxidation rate is much smaller than as given by Equation (108). This
was attributed in [11] to the so-called oxidation incubation, but it may also at least
partially correspond to the initial portion of the dashed curve in Figure 8.

The k' values, as calculated from experimental data by Woodley et al. [12], depend to
some extent on the degree of oxidation, which confirms the fact that Equation (108)
holds only approximately in the spherical case.

The weak dependence of £ on Co in Equation (107) (Figure 7) justifies the choice of the
oxygen-consumption term in Equation (1) as being independent of C.
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A MODIFIED REACTION-DIFFUSION MODEL

Now that we have found in Section 3.3 the dependence of £ on the concentration of
oxygen at the external surface of a spherical grain, one can, at least in principle, use the
results of the previous subsection to derive a more realistic dependence on time (degree
of oxidation) of the consumption rate Kv used in the equivalent porous medium model
of Section 2. Let us assume again that we have a system of cracks and pores described
by porosity e and an apparent diffusion constant De, and that the individual grains can
be approximated by spheres of radius ?-o, and the oxidation of the grains proceeds as
described in Section 3.3. Then the rate of consumption of oxygen at a position A' may
be derived from Equation (111) using rm/r0 given by Equation (108) with 0 substituted
by 0 — 0 a r r and £ given by Equation (107) where Co is substituted by C(X,0):

1 - £ d

MoVo

1 - g d
(112)

Hère Vo = JTT/'O is the volume of the idealized spherical grain. This will represent a
good approximation only if C(X, 0) will change slowly at the position X over the time
interval 0 a r r < 0 < 0 a r r + ©eiui because the formulas of Section 3.3 were derived
assuming that Co is constant. However, in view of the weak dependence of £ on Co
through the formula in Equation (107), it is possible that moderate variation of
C(A', 0) will not pose substantial problems. In this way, the "order of reaction" would
be automatically taken care of. In any case, the practical application of Equation (112)
will require further studies.

4. COMPARISON WITH THE CEX-1 EXPERIMENT

It was observed during the first (after 41 months in dry air at 150°C) and second (after
another 58.5 months) examinations that different bundles had oxidized at rather
different rates. Thus the-consumption of oxygen was not distributed equally among all
defected elements (there were 56 defected elements in the first storage period, and 52 in
the second one - four elements were removed for destructive examination during the
first interim examination). Bundle FO6605C was selected for more detailed second
examination because it experienced the greatest amount of UO2 oxidation during the
first 41 months of the experiment, much larger than other bundles. Thus most of the
oxygen available for fuel oxidation was probably consumed by its 15 defected elements.
In Ref. [3] it was assumed that all defected elements were exactly identical, and
Nd = 52 was used.

Element 8 of bundle FO6605C used in Ref. [3] for the comparison with limited-supply
model calculations actually underwent two oxidation cycles. There is no doubt that
during the first storage period (41 months) the oxygen supply was really limited - the
extent of oxidation found at the first examination was even lower than expected with 56
defected elements. It is likely that a part of the available oxygen was consumed by the
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oxidation of other (steel) components of the CEX-1 pressure vessel and the containers
in which the fuel bundles were stored. Unfortunately, no analysis of the composition of
the atmosphere remaining in the pressure vessel was performed at the first examination.

During the second examination a leak was detected in the defected bundle
compartment. However, it was impossible to determine when this leak actually started,
whether it existed for some time before the second examination, or whether it appeared
only during the opening of the CEX-1 pressure vessel at the time of the second
examination.

These facts show that neither of the two limited-air-supply CEX-1 storage periods
provide an ideal test case for the theoretical calculations of Ref. [3], or of this report.
The degree of oxidation experienced by the CEX-1 fuel elements during the two storage
periods differed considerably. The degree of oxidation of different fuel bundles in the
same storage period also varied considerably. In this situation, it is perhaps possible to
apply the theory of Section 2.3 at least to the elements that experienced the largest
oxidation, those from bundle FO6605C, which evidently must have controlled the time
dependence of CCX{Q). Then N,i to be used in formulas of Section 2.3 cannot be the
actual total number of defected elements stored with air volume V, but an effective
number such that V/N,i represents the volume of air consumed by the oxidation of one
FO6605C defected element. One can estimate the effective value of Nd from the
appearance of the sections of destructively examined elements during the first and
second interim CEX-1 examinations.

The following numerical values corresponding to the CEX-1 experiment are well defined:

V = 4.21 x 10'1 cm3, Co = 8.55 x 10~6 mol • cm"3 ,
i = 0 . 6 c m , p = 10.97 g • cm-3, (113)
e = 0.05, M{ = 270 g • mol"1 .

Oxygen contained in the above volume V can oxidize completely to U3O7 the length,
6(t-e) gfc2 = ^"^ cm> °f a UO2 fuel element of radius h and total porosity e. The sum of

all the oxidized islands of element 3 of bundle FO6605C (examined destructively after
the first CEX-1 storage period of 41 months) seems to correspond to complete oxidation
of at most 1 to 2 mm of the length of the element. All the oxidation appears to occur
within 1 cm on both sides of the defect. No traces of U3O7 were found by chemical
analysis beyond this distance from the defect. Because in our calculations we have
assumed a one-sided diffusion from the defect, a real element defected somewhere along
its length roughly corresponds to two idealized geometries studied in the previous
sections. Thus the total amount of the oxidized material in one idealized element would
correspond to Nd between 49.5/0.1 and 49.5/0.05, that is, to Nd = 495 to 990. This is a
much larger number than the actual total number of defected fuel elements, 56,
indicating that most of the oxygen trapped in the CEX-1 vessel was consumed by
oxidation of something other than the fuel elements. This casts doubt on our
assumption that FO6605C elements controlled fully the time dependence of Cex(O)
during the first storage period.
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During the second examination (after the second storage period of 58.5 months), the
amount of oxidation found in the vicinity of the defect of element 8 of bundle FO6605C
was much higher - corresponding to about 4 to 5 cm of completely oxidized element,
and the oxidation was confined within about 5 cm on both sides of the defect [2]. This
would correspond to N,i = 19.5 to 24.4. This is much less than the actual total number
of defected fuel elements, 52, but it is only slightly higher than the number of defected
elements in bundle FO6605C, which is 14. Because other bundles apparently
experienced much less oxidation, this would indicate that during the second storage
period the oxidation of other components of the pressure vessel was insignificant, and
that the reported leak probably really occurred only during the second excimination
(otherwise the extent of oxidation would be much larger).

The basis of comparison of the CEX-1 limited-air data with the equivalent medium
model arc Equations (32), (33), and (34), provided the value of P of Equation (27) is
small enough.

In addition to the values in Equation (113), Garisto [3] used the values

Kv0 = 4.12 x 1(T10 mol • cm"3 • s"1 ,

and

De = 0.1905 cm2 • s"1 .

Substituting these values into Equation (33) gives A'max = 89.5 cm. This is much larger
than what was found in the CEX-1 examinations, which is the essence of the
discrepancy reported in Ref. [3]. Let us now investigate whether these values can be
modified somewhat to get a better agreement with the CEX-1 results. The above value
of De is more or less a plausible guess [3]; we do not know about any experiments
directly measuring this quantity. On the other hand, the value of Kv0 is based on
apparently reliable experiments. It was derived in Ref. [3] using the formula

-F— i
3600 x 100 e Mo

where

(114)

is the weight increase rate in %-h'1, Rg = 8.3144 J (mol-K)"1, and T is absolute
temperature. Formula (114) was obtained from oxidation experiments conducted at 175
to 400°C on small fragments of irradiated CANDU fuel [15]. It gives values that are of
the same order as the weight increase rates for other types of fuel (cf. Figure 1 of Ref.
[16] or Figure 4 of Ref. [21]). However, extrapolating this formula to the temperature of
150°C may give values that are too small. In Table 1, we compare the values given by
Equation (114) with the values of the average rate of weight increase calculated from
Table III of Ref. [12] for powders and fragments of irradiated pressurized-watcr reactor
(PWR) fuel with linear heat rating much smaller than that of CANDU fuel. These
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average rates of weight increase were obtained simply by dividing the total weight
increases of Table III of Ref. [12] by the respective duration of oxidation. Data obtained
in the 18O2 atmosphere were rescaled to normal air. One can see that the values of F
obtained in this way from Ref. [12] are, especially for lower temperatures, up to one
order of magnitude higher than those given by Equation (114). Although PWR fuel has
a lower linear heat rating, it also has smaller grain size, higher porosity and higher
burnup than CANDU fuel. The net effect is to make PVVR fuel more reactive for the
UO2 to U3O7 step of oxidation. Thus the higher consumption rate obtained from the
results of Woodley is not conclusive enough by itself. However it is fully in agreement
with the average value of the activation energy for the UO2 to U3O7 oxidation equal to
108 kJ-mol"1 obtained by averaging all the published values [22]. Substituting this
smaller value of the activation energy into Equation (114) gives

A'o = 1.3 x 10~8 mol • cm"3 • s- 1

TABLE 1.

COMPARISON OF WEIGHT INCREASE RATES

Temperature (°C)
140.0
154.9
155.4
175.2
175.6
200.2
200.4
224.0
224.9
225.0
225.2

F from Equation (114)

1.03 x 10"5

3.49 x 10~5

3.62 x 10-5

1.60 x 10""
1.65 x 10""
8.76 x 10-'1

8.88 x lu"'1

3.77 x 10"3

3.98 x 10"3

4.00 x 10-3

4.05 x 10~3

F from Woodley et al. [12]

1.57 x 10-"
9.66 x 10~5, 2.04 x 10-'1

1.25 x 10-"
1.07 x lO"3

3.83 x 10""
1.87 x lO"3

1.60 x 10-3

5.15 x lu"3

4.63 x lu"3

4.83 x lu"3

4.16 x lO"3

This higher value of Kv0 is consistent with the fact that the activation energy of 120 kJ-
mol"1 occurring in the formula in Equation (114) is actually a "mixed" activation
energy corresponding to simultaneous oxidation to U3O7 and U3O8 at higher
temperatures. In addition to this high value of Kv0, for the comparison with the CEX-1
limited-air data we also use the value

Kv0 = 4.0 x lu"9 mol • cm"3 • s"1,

which roughly corresponds to Woodley's results in Table 1, and is only one order of
magnitude larger than the value used by Garisto.

Note that Woodley et al. [12] did not interpret their data in terms of F (the initial
portions of most of their weight-increase curves were not very linear) but in terms of
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the rate k' discussed at the end of Section 3.3. How to best interpret this kind of data
seems to be an open question. The real significance of A'j,o is not very clear in the light
of the discrepancy between theoretical infinite initial slopes and experimental finite
ones. Also, KVQ can contain some effect of the diffusion through the pores of the
experimentally studied fragments that hardly ever consist of single grains, i.e., a portion
of what should actually be completely described by De. However, without further work
on Equation (112) we are not yet ready to use the values of k'.

Let us now return to the comparison of Equations (32), (33), and (34) with the CEX-1
limited-air data. Note that A'max of Equation (33) does not depend at all on the total
amount of air, V/Nu, used up in a single element. Thus A'max attained during the first
and second storage periods should be the same (because the maximum local degree of
oxidation assuming A'max = 1 cm in the first storage period does not exceed 20%, under
the assumptions of Section 2.3, the oxidation experienced in the second cycle would just
be superimposed on that of the first cycle - i.e., would take place in the same spatial
region around the defect). Thus, assuming that Equation (1) with the somewhat
controversial A'̂ o is relevant to the CEX-1 experiment, there are at least three different
possible scenarios for the first and second storage periods, as outlined below.

(i) A'niax = 1 cm in the first storage period and A'max = 5 cm in the second period. Then
assuming that G'o is the same in both storage periods, the second period cannot
correspond to a limited-air-supply situation, and the leak would have occurred
sometime during the second period, leading probably to a situation of unlimited oxygen
supply at substantially decreased oxygen concentration (assuming that the leak was a
very small one). To obtain A'niax = 1 cm from Equation (33) would require the values
given in Table 2 for the maximum degree of oxidation (Equation 32) and the total
duration of the process (Equation 34). Here 1 average month = 30.4375 d. The value of
P in all cases is well below 0.1 (below 0.01 for the larger values of A'u0), thus the QSSA
approximation is well justified. These values of Dc seem to be unrealistically low. Thus
the scenario (ii) described below is more probable.

TABLE 2.

PARAMETER VALUES FOR SCENARIO (i)

A'uo (mol
4.0

4.0

1.3

•cm"3-s"1)

x 1O"10

x 10~9

x 10~8

De

0

0

0

cm'^s"1)

.000023

.000234

.000760

Nd

495
990
495
990
495
990

4,(0, oo)

0.2
0.1
0.2
0.1
0.2
0.1

©dep(O) (months)

24.45
12.22
2.44
1.22

22.90 days
11.45 days

(ii) A"max = 5 cm in both the first and second storage periods. Namely, the amount of
oxidation in the first period was so low that it is almost impossible to try to estimate
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visually for this case the spatial dependence of the local degree of oxidation, because
the extent of the oxidized areas is smaller than the irregularities of the network of
cracks and pores. Thus it is plausible that under some suitable averaging, Xmax = 5 cm
also in the first period. Then one can satisfy Equations (32), (33), and (34) with the
parameter values given in Table 3. Again, the value of P in all the above cases is well
below 0.1 (below 0.01 for the larger values of A'v0). Here the values of Kv0 between
4.0 x 10~9 and 1.3 x 10~8 mol • cm"3 • s"1, and De between 0.00584S and 0.019 cm2 • s"1

might correspond to reality. De = D/T2, where the diffusivity of oxygen in air is
D = 0.381 cm2 • s"1. This would give tortuosity between r = 4.5 and 8, which may be
too high. The oxidation in the second period takes place for a significant fraction of the
duration of the storage, i.e., it is much slower than predicted in Ref. [3]. The relatively
short times for 0cicp(O) in the first storage period reflect the fact that only a very small
portion of the available oxygen is used up by the fuel elements. In any case, the data
for the first storage period should not be given too much significance in the comparison
of our theory with the CEX-1 results. It is quite possible that rapid, shallow oxidation
of all exposed UO2 surfaces occurs before any observable thickening of the U3O7 layer
takes place. Such an incubation period is not described by the present theory. It would
provide another fast oxygen sink during the first storage period in addition to the
oxidation of the carbon-steel components of the experimental setup.

TABLE 3.

PARAMETER VALUES FOR SCENARIO (ii)

A't,o (mol • cm 3 • s"1)
4.0 x 10~lu

4.0 x 10"y

1.3 x 10~8

De (ernes'1)
0.000594

0.005848

0.019

Storage Period
1

2

1

2

1

2

Nd

495
990
20
25
495
990
20
25
495
990
20
25

4(0,00)
0.04
0.02
0.99
0.79
0.04
0.02
0.99
0.79
0.04
0.02
0.99
0.79

©dep(0) (months)
4.89
2.44

121.02
96.82

14.88 days
7.44 days

12.10
9.68

4.58 days
2.29 days

3.72
2.97

(iii) The third plausible scenario is that the oxidation of defected fuel elements was in
the first storage period so much slower than the oxidation of other components of the
experimental setup that a rapid decrease of the oxygen concentration in the pressure
vessel to about 1/25 of the original concentration occurred. This reduced concentration
then played the role of the modified C'o for the fuel oxidation. This led to A'max = 1 cm
and to the effective Nd decreased by a factor of 25. This in turn increased the values of
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FIGURE 10: Spatial dependence of the local degree of oxidation in element 14 of
bundle FO6605C after 40 months of storage in unlimited air supply. The
defect position is taken as the coordinate origin X = 0. Data points
(connected by a dashed line for convenience) were obtained from the
photomacrographs of several longitudinal and transverse sections of the
fuel element, and represent the fraction of the area of a given section
that experienced grain pullout due to oxidation. All sections except
those corresponding to the the fourth and sixth data points were
longitudinal, 1.5 to 3 cm long. For these sections, the positions of data
points correspond to their centres. Near the left end of the element, d0

could not be determined in this way because fuel grains fell out when
cutting the element.
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do(0, oo) and 0dep(O) by a factor of 5, giving the total duration of oxidation in the range
from 1.22 to 2.44 months for Kv0 = 4.0 x 10~9 mol • cm"3 • s"1. All the values for the
second period would be the same as in the preceding case (see Table 3) because the
oxidation of other parts does not seem to play any significant role in the second period.
Thus assuming different effective values of Co in the two storage periods could lead to
different values of A'max in accordance with Equation (33).

Because the oxidized areas were relatively small, the results of the first and second
CEX-1 examinations could perhaps also be interpreted as corresponding to
diffusion-controlled oxidation characterized by a sharp transition in the degree of
oxidation between 1 and 0 at some distance from the defect (see Section 3.2). That was
one of the reasons why the diffusion-controlled oxidation was studied in Section 3. One
could imagine that the pores are originally practically closed (De —> 0), and they open
only as the result of the slight volume shrinkage as UO2 is oxidized to U3O7, thus
allowing a significant diffusion of oxygen only after the passage of the oxidation front.
There is good experimental evidence that the passage of the oxidation front really
opens up the grain boundaries in the unirradiated UO2 and probably also in irradiated
CANDU fuel [23].

However, planimetric data (see Figure 10) from the third CEX-1 interim examination
performed after the third storage period of 40 months with unlimited air supply of dry
air at 150°C (preceded by 41 -f 58.5 months under limited-air-supply conditions) are
not particularly compatible with a diffusion-controlled process on the scale of the whole
fuel element. Nevertheless, the actual oxidation of individual fuel grains is almost
certainly a diffusion-controlled process. Preliminary results of Section 3.2 suggest that
in such a process with limited air supply, all oxygen can never be consumed in a finite
time. Thus the small amount of oxygen found in the remaining atmosphere in the
defected bundle compartment of the CEX-1 pressure vessel at the time of the second
examination might be the signature (at least if we could be sure that it was not caused
by the leak discussed above) of the diffusion-controlled oxidation of individual grains
that cannot at present be taken into account by an equation of type (1), but could
hopefully be considered in the future by an equation of type (112).

In the end, let us attempt to compare the unlimited-air data of Figure 10 with our
results of Section 2.4. The comparison is somewhat complicated by the fact that (i) in
the homogeneous equivalent porous medium model, d0 decreases at any given instant
monotonically with the distance from the defect, whereas in a real fuel element the
random network of cracks and grain boundaries can result in a nonmonotone spatial
dependence of d0; (ii) most points in Figure 10 were obtained from longitudinal sections
of the fuel element that sample only a tiny part (a straight line) of the transverse
cross-section at a given value of X, which might also contribute to the nonmonotone
behaviour of d0 to the left of the defect in Figure 10; (iii) a real fuel element has a finite
length and a defect in its circumferential cladding, whereas our simple theory is
formulated for the semi-infinite case with the defect in the end cap.

The subjects of our comparison are essentially Equations (75), (72), (76) and (77).
Since the duration of oxidation is 40 months, let us introduce the abbreviations
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A,io = A'm(0 = 40 months) for the position of the oxidation front after 40 months, and
jV-io _ -iomonths fa ^ i e num\:)Cr of plateaus of Figure 4 corresponding to the duration of

the third storage period. In case (A), A')0 = A'max \/[A^o] -f 1- The experimental value
from Figure 10 is A'1O Z 36 cm.

For the parameter values that gave A'inax = 5 cm in the limitcd-air-supply case, we
obtain from Equations (75) and (72) the values in Table 4. All three parameter sets
give an A'JO that is much smaller than the experimental value of Figure 10. The largest
value of A'IO gives the last parameter set, but even this set gives a very poor agreement
with the third-examination data, as shown in Figure l ia . The rest of Figure 11 shows
plots of do(X, 40 months) corresponding to parameters modified in various ways to get a
better agreement with the CEX-1 data of Figure 10.

TABLE 4.

VALUES CHARACTERIZING THE THIRD, UNLIMITED-AIR, STORAGE PERIOD
OF THE CEX-1 EXPERIMENT FOR THE PARAMETERS OF TABLE 3

A'uo (mol • cm 3 • s ')

4.0 x 1O-10

4.0 x 10-<J

1.3 x 10~8

De ( em '^s - 1 )

0.000594
0.005848

0.019

/?A (months)

122.3
12.23
3.76

A',,o (cm)
case (A)

5.0
10.0

16.58

case (B)

5.76
10.33
17.05

Nw

0.327
3.27
10.63

Assuming that there is increased oxidation near the ends of the fuel clement in
comparison with d0 of a semi-infinite rod, Figure 10 could in a semi-infinite rod
correspond to A',(0 as high as 4G cm. Requiring that A'to = 46 cm and that
do(X,40months) < 1 for A' > 10 cm gives the situation shown in Figure l i b . Because
the theoretical d0 profiles decrease rather sharply near A'm, the agreement between
experimental and theoretical curves in Figure l i b is still rather poor. It gets much
better when one requires-A'JO = 37 to 38 cm as shown in Figures l lc,d,e.

All the parameter sets used in Figure 11 arc summarized in Table 5.

TABLE 5.

PARAMETER SETS USED IN FIGURE 11

Figure
11

a

b
c
d
0

(mol -cm 3 • s"1)

1.3 x 10"8

2.5675 x 10"y

2.6390 x 10"y

3.0 x 10~y

2.0 x 10"y

De

(cm2-s"1)

0.0190
0.1513
0.0979
0.0734
0.0608

I3&
(months)

3.76
19.05
18.54
16.31
24.46

A'-io

case (A)

16.58
45.26
36.06
35.42
32.23

(cm)
case (B)

17.05
46.0
37.0
38.0
37.0

N40

10.63
2.10
2.16
2.45
1.64

-"* max

(cm)

5
26.13
20.82
20.45
22.79
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FIGURE 11: Comparison of the local degree of oxidation d0 after 40 months of
unlimited air supply for cases (A), (B) and (C) of the
oxygen-consumption-rate dependence on d0 (cf. Equations (76) and (77))
with the part of the CEX-1 oxidation profile of Figure 10 (shown by
dotted line) that lies to the right of the defect (between the defect and
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FIGURE 11 continued

Note that to achieve reasonable agreement between theory and experiment, one has to
use the parameters that give for Xmax of Equation (33) the values of 20 to 23 cm. This
is much larger than what was obtained from the limited-air data of the second storage
period. One should not be bothered very much by this fact in the light of the
uncertainties related to the interpretation of the limited-air data. Clearly, greater
weight should be given to the comparison with the unlimited-air data. It is also possible
that tails of the oxidized region in the second CEX-1 storage period extended as far as
20 cm from the defect, but the degree of oxidation beyond 5 cm was too small to be
registered during the second CEX-1 examination. Quite reasonable agreement between
theory and experiment is obtained in Figures llc,d,e with A^o « 2.0 x 10~9 to
3.0 x 10~9 mol • cm"3 • s"1 and De « 0.06 to 0.1 cm2 • s"1. These values of the
consumption rate are larger by less than one order of magnitude than the value used by
Garisto [3], but they are in good agreement with all available experimental data. The
value of De is much larger than that obtained from the comparison with the limited-air
data, and it corresponds to a rather low, realistic value of tortuosity, T « 1.9 to 2.5.
Starting from the CEX-1 data, the value of De is directly proportional to X$o (cf.
Equations (75) and (33)), and the value of Kv0 is then determined by the shape of the
d0 curves. Because the rather different models that we consider in this report give
practically identical parabolic law of the advance of the oxidation front (cf. Equations
(71), (75) and (88)), one can assume that this parabolic law is an essential attribute of
the diffusion process independent of the details of the reaction taking place. Thus this
determination of De may be a rather reliable one. In Figure 11, the shape of the
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experimental do curve resembles that obtained with the (B) and(C) model dependence
of k on d0. In view of the simplicity of the equivalent porous medium model, the
agreement between the experimental and theoretical (B) and (C) d0 curves is
encouraging. One can hope that a variation of the (B) and (C) cases, perhaps along the
line of Section 3.4, can lead to a good description od the used fuel oxidation.

5. CONCLUSIONS

Using the integral method, we have solved in an exhaustive way the zero-order
reaction-diffusion model with a constant consumption rate, and limited and unlimited
oxygen supply. In Section 2.4 a rigorous treatment of the effect of the dependence of
the consumption rate on the local degree of oxidation was presented, which is relevant
to the third unlimited-air-supply storage period of the CEX-1 experiment. We have
verified that the quasi-steady-state approximation used for the limited-oxygen-supply
case in Ref. [3] is justified for parameter values applicable to the CEX-1 experiment.
We have found plausible values for the consumption rate and apparent diffusivity that
give good agreement, especially with the CEX-1 unlimited-air-supply data. Further
experimental work is desirable to verify whether these values correspond to reality.

Some diffusion-controlled oxidation models were also studied in Section 3. For
unlimited oxygen supply in the linear geometry we found an exact solution. This
solution provides a good approximation for the spherical geometry. This result sheds
some light on the origin of the oxygen consumption rate used in the reaction-difFusion
models of Section 2, and can be useful for correct interpretation of experiments on the
oxidation of individual UO2 grains (or powders and fragments).

We have found that the temporal advance of the oxidation front is essentially
independent of the details of the models, at least for models investigated in this report,
and that it is given by a parabolic law.

More theoretical work needs to be done on the topics of Sections 3.2, 3.3, and 3.4,
especially on Section 3.4 where an initial formulation of an improved reaction-diffusion
model incorporating the results for the diffusion-controlled oxidation of the grains of
Section 3.3 is given.

In summary, although some old questions have been at least partly answered in this
report, a few new questions were opened.
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APPENDIX A

The MAPLE V Program Used in Section 2.4

# Usage: for example:
# restart; n:=5; Plateau:=true; Brute:=true; Digits:=20;
# read 'this_file_name';
#

# This Maple V program finds the ordinary differential equations for the
# integral-method approximation of order n to the ID diffusion-reaction
# (oxidation) problem with zero-order reaction in 0 concentration,
# unlimited oxygen supply, and consumption rate dependending on the
# degree of oxidation.
# It also finds the values of gamma'i (plateaus) for the (A) case
# (Plateau: =true), and the asymptotic behaviour for the (B) and (C)

# cases (Asymp:=true).

# Here a.i represents a'i with an overbar.

printlevel:=0:

if(Plateau=true) then Asymp:=false; fi;

if(not type(Asymp,boolean)) then Asymp:=true; fi;
Plateau:=not Asymp;
if(Plateau=true and not type(Brute,boolean)) then Brute:=false; fi;
if(n<4) then

print('n must be >= 4 ! ! ! ' ) ;

else

n2:=n-2:
nl:=n-l:
n3:=n-3:

# From boundary conditions:
a.n2 := t -> l/2*(xm(t)~2-nl*(n+n2*al(t))
- sum('(n-i)*(nl-i)*a.i(t)',Ji'=2..n3));
a.nl := t -> -n-2*a.n2(t)-sum('(n-i)*a.i(t)','i'=l..n3);
a.n := t -> -1 - a.nl(t) - a.n2(t) - sum('a.i'(t),'i'=l..n3);
# Test boundary conditions (the following 3 expressions should give 0):
lprint( ' ',radsimp(l+sum('a.i(t)','i'=1..n)));
lprintC ' ,radsimp(sum('i*a.i(t) >, ' i'=l. .n))) ;
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lprintC ',radsimp(sum('i*(i-l)*a.i(t)','i'=2..n)-xm(t)"2));
# D3 in the equation for diff(xm(t),t):
D3 := radsimp(sum('i*(i-l)*(i-2)*a.i(t)','i'=3..n));
print('D3' = D3/xm(t)~3);

# Integral condition (Oth moment; k=0):
Eset:={sum((diff('a.i'(t),t)*xm(t)-'i'*'a.i'(t)*diff(xm(t),t))/('i'+l),

Ji'=l..n)+ al(t)/xm(t)+xm(t)-FiCaseO = 0}:

# Higher moment conditions, k=l..n-4:
n4:=n-4;

for k from 1 to n4 do
Eset := Eset union

{sum((diff('a.i'(t),t)*xm(t)-'i'*'a.i'(t)*diff(xm(t),t))

/('i'+k+i), Ji'=l..n)
+ k*sum('i'/('i'+k-l)*Ja.i)(t)/xm(t),'i'=l..n)
+ (xm(t)-FiCase.k/xm(t)"k)/(k+l) = 0};

od;
SubsS := {diff(xm(t),t)=Dxm,seq(diff(a.i(t),t)=Da.i,i=l..n3)};
Eset := subs(SubsS,Eset);
Vset := {seq(Da.i,i=l..n3)>;
# Calculate RHS of equations for diff(a.i(t) ,t) = Da.i:
RHS := solve(Eset,Vset):
# Check solution:
lprintC Solution check:', radsimp(subs(RHS,Eset)));
# Assign solutions:
assign(RHS);
for i from 1 to n3 do

Da.i := collect(Da.i,[Dxm,xm(t)].recursive);
if(Asymp) then print(evaln(Da.i) = Da.i); fi;

od;

if(Plateau) then
# Plateaus for the A case:
printlevel := 0;

Dxm := 0;
FiCaseO := 'gami_l'*sqrt(2);
for k from 1 to n4 do FiCase.k := FiCase.(k-l) * FiCaseO; od;

i := 'i';
SubsS := {xm(t)=gami*sqrt(2),seq(a.k(t)=a.k.i,k=l..n3)};
Eset := subs(SubsS,Vset) union {subs(SubsS,D3)};
Vset := {seq(a.k.i,k=l..n3),garni};

if(Brute) then
# By "brute force", the beginning of the sequence of garni
# can be obtained in the following way:
gami_l:=l.;
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for i from 2 to 10 do
Eseti:=Eset;
sol:=solve(Eseti,Vset);
Nsol := nops({sol});
for k from 1 to n2 do

if(op(l,op(k,sol[l]))=evaln(gami)) then break; fi; od;
gl:=op(2,op(k,sol[l]));
if(Nsol = 2) then

for k from 1 to n2 do
if(op(l,op(k,sol[2]))=evaln(gami)) then break; fi; od;

g2:=op(2,op(k,sol[2]));
if(gl < 0) then

if(g2 < 0) then print('Both roots are negative'); break; fi;
gami_l:=g2;

else
if(g2 > 0) then print('Both roots are positive'); break; fi;
gami_l:=gl;

fi;

else
print(Nsol,' solutions: ',gl);
for s from 2 to Nsol do
for k from 1 to n2 do

if(op(l,op(k,sol[s]))=evaln(gami)) then break; fi; od;
g2:=op(2,op(k,sol[s]));
print(' (,g2);
if(g2 > gl) then gi:=g2; fi;

od;
gami_l:=gl;

fi;

print(i,gami_l,evalf(sqrt(i),10));

od;
fi;

# Recursive equation for garni in terms of gami_l is thus very

# simple, it is:
gami_l:='gami_l';
sol := solve(Eset,Vset);
for k from 1 to n2 do

if(op(l,op(k,sol))=evaln(gami)) then break; fi; od;

print('The resursion is: ',op(k,sol));

fi;

if(Asymp) then
#printlevel:=2;
#Asymptotic behaviour for the B,C cases:
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SubsS := {Dxm = xi,xm(t)=xi*t,seq(a.k(t)=al.k*t~2,k=i..n3),

FiCaseO=xi*t, seq(FiCase.k=(xi*t)~(k+l),k=l..n4)};

Eset := {};

for k from 1 to n3 do

Da.k :.= subs(SubsS.Da.k) ;

Eset := Eset union {2*al.k = limit(Da.k/t,t=infinity)};

od;

Vset := {seq(al.k,k=l..n3)};

print(op(solve(Eset,Vset))):

fi;

fi;

#end;
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