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ABSTRACT

A model of pollination that considers the amount of geitonogauious pollen transfer in

dilfereut Mowers and plants is presented. We assumed in this work self-incompatible plant

species and we s tudied how pollination is affected by ililferent round tr ips described by

poll inator from its nest, tak ing into account the fraction gcitonoganiv ami the fraction

pollen expor t . A determinis t ic model and a s tochast ic model of pollen transfer were

developed from which we found that when poll inators der-cribe a uniform sequence (visit

t in ' same number of Mowers in each p lant ) , individuals receive tiie maximum out cross

pollen or min imum self pollen. Tha t is. from the point of view of fertilization, the opt imal

number of Mowers visited in each plant depends on the number of Mowers of the plant , t he

length of tlii' visit and the number of individuals.
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1. Introduction

Polle- is produced for the fertilization of other plants, but it is also collected by

pollinators as a protein resource. On the other hand, plants produce nectar in

order to attract pollinators which find in flowers their only nectar sources. In this

dynamic environment, pollinators visit different plants and flowers to collect

nectar and pollen as food resources. After arrival at a plant, they constantly

accumulate self pollen and lose outcross pollen (pollen of other plants). Each

round trip of the pollinator from its nest is called a bout (Friedman & Shmida,

1995). This is important for plants since the pollination depends greatly on them.

We will assume in this work self-incompatible plant species, which will also be

called 'individuals'.

There are some studies (de Jong et al., 1992) that show that the proportion of

self pollen delivered through geitonogamy (pollination between flowers of the

same plant) increases with plant size. We will see how geitonogamy and pollen

export are affected by different bouts, and how they are related to the flowers of

the plant, to the individuals of the patch and to the length of the visit.

In this study, pollen deposition and removal are assumed to be fractions of the

amount carried by the pollinator that will be called A and the pollen present in

the anthers of a flower, called B. We will assume that, when a pollinator (such as

a bee) visits a flower, a constant fraction of pollen on !he anthers (l<2) adheres to

it and deposits a constant fraction (k-|) of the pollen load on its body, on the

stigma or other parts of the flower.

We assume no loss of pollen in the transfer from the pollinator to the stigma and

viceversa. If this loss is considered important it should be included in the above

mentioned fractions, generalizing them.

The model we are presenting in this paragraph is a deterministic one, in which

we do not consider fluctuations in time, or these fluctuations are small enough to

be rejected. If, on the other hand, we assume that the proportions k-| and k2 can

vary and we associate these fluctuations with their probabilities of occurrence, a

stochastic model should be applied. In the first part of this work, we will consider

a deterministic model and in the second part a stochastic model. After comparing

them, we will see that the results obtained for one of them also hold for the

other.



2. Modeling sequences of visits

Pollinators often visit a fraction of the flowers of a plant during each approach

(Klinkhamer et al., 1994). We are considering here that pollinators remain within

one flower species during each bout. Field observations suggest that for

example, bees, even when they change frequently flower species, they typically

remain within one flower species during each bout (Friedman & Shmida , 1995).

We will assume solitary pollinators in such a way that there is not exchange of

information between them (Oster & Wilson, 1978).

In this work, we will also consider that the pollinator visits different flowers in

different plants of the same species and it does not return to the same plant and

flower in the same sequence, in such a way that the pollinator moves to a new

plant carrying A outcross pollen, describing a movement as we can see in

fig. 1, where we consider that the pollinator visits n plants and ff flowers in

the plant (, with / = 1, 2,..., n. The outcross pollen that the flowers receive is

given by the terms where A appears, and the self pollen grains they receive

correspond to the terms with B. We can also see in fig. 1, that the geitonogamy

increases with the length of the flower visitation sequence in the same plant.

The pollinator leaves its nest with an empty nectar tank (crop) and visits the

flowers in order to fill its crop with nectar and to collect pollen. We will assume

that after leaving the nest the pollinator visits a plant where it collects A outcross

pollen and then it starts the sequence of visits of our model. After leaving the

plant n it goes to another plant with A outcross pollen before returning to the

nest. Thus, this first and this last plant will not be considered in the sequence.

We make this assumption only to clarify and simplify the definitions and

calculations of this paragraph.

Geitonogamy, has been estimated in the case of one individual (de Jong et al.,

1993); we generalize the concept for n individuals. In this study, the fraction

geitonogamy of the whole visit is defined as a ratio of the sum of the total

number of self pollen grains that every flower visited receives in every plant

visited and the total number of grains (outcross and self pollen grains) that the

same groups of flowers receive in the whole visit. In other words:

G=

II(k,(1-k,)'lA+k,Bk2X(1-k,)H)
/=i i=i 1=1

We will consider n , the number of individuals in the model, as the minimum

between the number of individuals of the patch and the number of changes (an

average) that the pollinator can make in a bout, moving from one plant to

another. This fraction also depends on the length of the total sequence m (the

bout), the number of plants visited C, with C= 1, 2,..., n, and the numbers of

flowers visited in each plant, named ff. We can easily see that m=f-]+f2+...+fn.

Notice the validity of the relation m < n f, where f is the number of flowers in each

plant. It could be estimated as the mean number of flowers of the plants, and

such that f, < f, with / = 1,2 n.

We assume that the pollen grains the pollinator deposits, is the same quantity

that the pollinator picks up, this is named "pollinator saturation" and written as

follows

(1) k-|A = k2B

In this case, results depend on the pollen deposition fraction k-|. We can see it

below, with m=f-|+f2+...+fn

mk,



The number of pollen grains exported by the pollinator from one plant / to

another plant visited in the same sequence is given as follows (male fitness for

individual C (Klinkhamer et al., 1994)):

D — \ t D M \r V

i=1

Consequently, the total number of pollen grains exported by the pollinator from

one plant to another, from this to the next one, and so on, is given as the

following sum, that, in a sense, could be interpreted as the male fitness of the

sequence:

p =

In a sequence of visits, f-| k2 B+ . . . . + fn k2 B = m k2 B pollen grains adhere

to the pollinator. Therefore, the fraction of pollen export equals

F =
mk2B mk,

Note that under the assumption of "pollinator saturation", G = 1 - F.

The i-th flower of plant / in a sequence ot visits receives k,(i-k,)' 'A outcross

pollen grains while the whole plant (female fitness of individual C)

Analogously we can define, and interpret as the female fitness of the sequence:

In a sequence of visits, f-| k2 B+ . . . . + fn k2 B = m k2 B=m k-| A pollen grains

adhere to the pollinator. Therefore, the fraction outcross pollen which the plants

receive equals:

T=
H

m k, A mk,

Notice that under the condition of "pollinator saturation" (1), which will be used

in the next paragraphs, and from the definitions we have just seen, we obtain

P,; = H, , P=H , and F=T.

2.1 A COMPUTATIONAL APPROACH

As a first step, to explore how pollination vary with the different bouts, we

developed a computational program. The program simulates all possible

sequences the pollinator can follow when it visits m flowers in n individuals

that have an average of f flowers each one, and appoints the one which gives

the greatest movement of outcross pollen. Consequently, the geitonogamy

fraction, the fraction pollen export, the number of pollen grains exported by the

pollinator ( P,- ) and the number of outcross pollen grains which the plants

receive ( H, ) are given for each individual and for each sequence and, in

particular, for the sequence that gives the maximum of F (or minimum of G).

From the computational analysis, we can see that, if m < f, the sequence

corresponding to the visit of only one plant gives the maximum of the

geitonogamy fraction and the minimum of the fitness. If m > f, these values are

obtained when the insect visits m different flowers with the minimum changes of

plants.



The interesting fact we found is that the maximization of fitness and minimization

of geitonogamy was found when the number of flowers visited does not vary with

individuals, or it changes only minimally. According to this, it can result that m/n,

(that is the equal number of flowers visited in each plant), is not an integer

number, in this case, an approximation is given in practice. That is, m/n is

approximated with the minimum integer number smaller than itself, let's call it w.

So, we obtain s plants with w flowers and n-s with w+1 flowers, such as

m=sw+(n-s)(w+1). These results do not depend on which particular plant has

been visited k or k+1 times. Consequently the conclusions do not change. These

considerations are also taken into account in the analytic analysis, where the

variables that represent numbers of flowers are seen as continuous variables in

order to study them with mathematical tools of calculus. We want to analyze all

of these facts from an analytical point of view in order to see the extension of

the approach we found.

2.2 MATHEMATICAL ANALYSIS

Thus, we will see that a mathematical development confirms the results we have

seen with computational methods. From a mathematical point of view, this can

be seen as a problem of maxima and minima with constraint conditions. The

method of Lagrange multipliers gives us a useful tool to calculate extreme

values, or equivalent^, in our case, the maximum that the individuals receive of

outcross pollen. In this case, the problem is reduced to calculate, the minimum

geitonogamy fraction (G) or the maximum fraction of pollen export (F).

We can go on considering G as a function continuously differentiable on an

open set. depending on f-| , f2 fn, which, for our purposes, are assumed

to be continuous variables and such that

fi+f2+.. ..+ fn=m.

The basic result used in the method of Lagrange multipliers is given in the

Appendix I. Following this method for G(f-| , f2 , fn), with the constraint

f-|+f2+- • • •+ ' r f ^ O , we obtain the minimum in (f-|, f2 , fn) such that

f-i =fp=- • • .=fn=—. Particular cases for n=2 and n=3 are calculated in
n

Appendix II.

Thus, from the point of view of fertilization the optimal number of flowers visited

in each plant depends on the number of flowers of the plant, the length of the

visit and the number of individuals.

Since G=1-F, we conclude that, whenever G has a minimum, F has a maximum

in the same point. We could analogously study the maximum for function F with

this method, without considering G. Moreover, since the denominator of F does

not depend on the values of the variables f-] , f2 ,• • • •, fn. only on its fixed sum

m, a maximum for F is a maximum for P, thus a similar analysis can be made for

P=H. Conclusions do not change if different values for A, B, k-j and k2 are

considered, keeping in mind our condition of pollinator saturation (1).

3. A stochastic model

Up to now we have being considering the proportions k-| and k2 as fixed values.

However, in practice, they can vary. Thus, if these values are assumed to be

random variables with the corresponding probabilities, a stochastic model can

be studied. The proportions k-| and k2 vary between 0 and 1 and depend on

different facts such as, width or length of the style. We could also define

coefficients of difficulty or aptitude, to study the stochastic variation of the

proportions. In this work, we will consider the width of the style (a) or length of

the style (b), that can be estimated as an average of real data. We can see that

these assumptions correspond to a Beta Distribution that depends on

parameters a and b, where k-| j means the stochastic fraction the pollinator

deposits on the flower i and k2j the stochastic fraction of pollen on the anthers

of flower i that adheres to it.



So, from the assumptions we have considered, we have that the variable k-j j is

distributed as a Beta distribution with parameters a and b, where the density

function of the Beta distribution, is given as follows

where, a>0, b>0 and 0<k-jj<1.
i

The function B(a,b) = Jkli
a'1(1-k1i)

b' dk,, is called the beta function.
0

The expected value in the case of the Beta Distribution (Freund & Walpole,

1980; Dudewicz & Mishra, 1988) is

andand E d k ^ .
a+b a+b

Note that if the length of the style (b) increases, the expected proportion the

flower receives, decreases. Analogously, when the width of the style (a)

increases, the expected proportion of pollen also increases.

In order to make this stochastic analysis, we will consider the variables as

follows: k-|j is a stochastic variable that represents the proportion of pollen that

the pollinator deposits on the stigma, or on other parts of the flower i, whilst for

each individual t the multidimensional density function g, can be given as a

function depending on the if flowers visited or, in other words, on \f variables,

namely k-|-],ki2. • • -ik-|f. We assume that the proportion of pollen the

pollinator deposits on one flower, does not depend on the proportion which is

deposited on another flower. Thus, these variables can be considered as

independent variables in such a way that the multivariate density function can be

given by

g(kn,k 1 2 k1f|) = gi(k-n) g 2 ( k 1 2 ) . . . g f,(k1ff)

These assumptions are used in the following analysis, where we will study the

fraction outcross pollen which the plants receive (that is the equality we called

T). The other relations we have defined can be studied analogously.

So, we -•:•:• now interested in the expected value of the total proportion of

outcross pollen which the plant i receives. Taking into account the definition of

g, its properties, the expected values we have written above and the mentioned

hypothesis of independence of variables, the expected value for individual I

can be written as follows:

a + b a+b a+b a+b la+b a+b la + b

a + b
+b

+b

In a sequence of visits m
a+b

A gives the expected pollen grains that adhere

to the pollinator. Consequently, the stochastic analogy to the fraction outcross

pollen which the plants receive (T), will be called Ts, and it may be estimated as

T t
m a+b

We cm see that the functions we obtain in this stochastic case are similar to

the functions we obtained in the deterministic case. Thus we can make the same

analysis as for the study of the extreme points in the deterministic case with the

method of Lagrange, and the constraint condition f-|+f2+- • • •+ fn"m=O-

After calculating the partial derivatives we conclude that (f-| , f« fn)i such

that f 1 =fp=... .=fn=—. 9 i v e s a maximum or a minimum, in this case we can see
n

that it is a maximum.
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From the density function of k-jj, that is the beta distribution, we can deduce the

density function of k2; , knowing that k2jB = k-|jA, with a simple change of

variables

The condition of "pollinator saturation" can be seen in terms of the expected

A a
value, that is E(k2jB) = E(k-] jA), from which we have E(k2j) = —

B a+b

Then, the total number of pollen grains exported by the pollinator, which is to be

called Ps in the stochastic case, can be written as:

as before Ps = Hs .

The fraction pollen export is estimated to be

mA
a+b

a
m

a+b

The fraction geitonogamy of the whole visit in the stochastic case is written as:

Gs = 1 -

a+b

We can see that with the deterministic and stochastic analysis, our conclusions

do not change, since functions have the same shape. However, the solution

obtained with the deterministic model agrees with the solution obtained with the

stochastic model only in the case when the deposition fraction and the

adherence fraction vary independently in each flower.
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4. Discussion

When a pollinator visits successive plants and flowers it loses outcross pollen

and accumulates self pollen. When flower visitation sequences in one individual

are longer, a smaller fraction of the removed pollen is actually exported to other

plants and a larger fraction is deposited on the plant itself. In this round trip, the

pollinator can follow different movements.

Our focus is on the different sequences that the pollinators can describe and

how pollination is affected by them. The model presented in this work provides a

means of examining the dynamics of the pollination, and shows how the

individuals, the flowers and the length of the visits influence greatly the

pollination. We considered the geitonogamy fraction as a measure of pollen

transfer among flowers on the same plant and the fraction of outcross pollen to

estimate the compatible pollen, which the plant receives. We studied all bouts

that pollinators can follow and the sequence in which individuals receive the

maximum outcross pollen or minimum self pollen. This was found when

pollinators visit the same number of flowers in each plant. Thus, we can talk

about a constant or uniform sequence. If the number of flowers in each plant

obtained is not an integer number, an approximation is needed in practice. In

this case, different sequences can be obtained depending on the flowers visited

in each plant, however, all of them give the same results related to outcross

pollen and the conclusion is the same.

According to the deterministic model, if the following parameters vary in different

sequences: the amount of pollen carried by the pollinator (A) or present in the

anthers of a flower (B), the proportions of the pollen on the anthers that adheres

to pollinators (k2) and the proportions that deposits (k-|), then our conclusions

do not change under the assumption of "pollinator saturation". Analogously, if in

the stochastic model A and B vary, as well as the parameters a and b that can

describe for example morphological characteristics of flowers, but are constant

values in a bout, results do not change.

12



As a conclusion we can say that, from the point of view of successful fertilization

of plants, the optimal number of flowers visited in each plant is proportional to

the total number of flowers visited and to the number of individuals and depends

on the number of flowers of the plant. From these results, one can expect that, if

the number of individuals n increases and n < m, the optimal value will be found

to be an equal number of flowers visited in n individuals. If the number of

flowers in each plant decreases, the optimal number would vary

correspondingly.

We have presented a model in which pollinators and flowers interact in a

dynamic environment. We assume that individuals are distributed in a patch in

such a way that pollinators can visit one plant and then go to another plant

without returning. Some studies show that the pollinator visits many flowers from

few individuals in order to fill its crop with nectar and to collect pollen (O'Toole &

Raw, 1991). Once the insect visits a plant, one can expect it visits close flowers

in that plant and when it is near a new plant it reaches it and goes on visiting

close flowers in the new individual and so on. In this dynamics one can expect a

regular behavior regarding number of flowers visited in each plant, assuming

that there are not great differences in the individuals. Furthermore, we assume

that any environmental factors that may influence this dynamics are the same for

all plants.

There are some studies (de Jong et al., 1992) that show that flowers on small

and large plants receive equal amounts of outcross pollen (pollen of other

plants), whereas flowers on large plants receive more self pollen, so that the

proportion of self pollen delivered through geitonogamy increases with plant

size. If plants are homogeneous, one can expect that they receive equal

amounts of outcross and self pollen grains that, under the "pollinator saturation",

means that the pollinator visits equal number of flowers in each individual.

Moreover, from the results of our model, one can deduce that, if experimental

data that show a uniform behavior of pollinators are obtained in any patch, a

best fertilization would be expected.

13

This work could prove helpful in studying the field pollination if more data could

be obtained to fit the model and to support the results that our model predicts.

Furthermore, the case of no pollinator saturation should be studied, in order to

generalize the model without restricted conditions.
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APPENDIX I

The Method of Lagrange allows us to find maximum or minimum values with

constraint conditions. The basic result used in it is this:

Suppose G a function continuously differentiable on an open set that contains

the differentiable curve C, e.g. R(t)= x(t) i + y(t) j + z(t) k.
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If XQ minimizes (or maximizes) G(x) on C, then VG(XQ) is perpendicular to C at

XQ- This is the key to why the method of Lagrange multipliers works as we shall

see now.

Suppose that h is a continuously differentiable function defined on a subset of

the domain of G. Xg is a point on the surface h(x)=0, where G has a local

maximum or minimum value relative to its other values on the surface.

We can write, in general for vectors x the following result

If Xg minimizes (or maximizes) G(x), subject to the constraint condition h(x)=0

then VG(x0) and Vh(xn) are parallel, where VG(x0) and Vh(x0) are the

gradients of the corresponding functions.

Thus, if Vh(xg) * 0, then there exists a scalar X such that

VG(xo)=/.Vh(xo)

in our case using the relation we have seen, that is f-|+f2+- • • -+fn=m

the function h is

h(fi , f2 <n)=f1+f2+ + fn-m=O

APPENDIX II

We now see the method of Lagrange in a particular case for two individuals, that

is n=2, in this case we want to minimize

f2)u
mk,

subject to the constraint condition h(f-j , f2)=fi+f2
The gradient is defined VG(fi , f2)= i+——j

3 f, D f2

where the first partial derivative is given in the following equality with f=f-) and

the second one with f=fg

16



9G _ -(1-k,)'ln(1-k,)(f, + g-[i-(1-k,)l-]-[i-(1-k,)1']

Setting VG(fi ,f2)=XVh(fi ,f2) we obtain

D G _. 3G ,

and we can conclude that f-| = f2, the constraint condition gives us f i = f2 =

=—, then this (f-|,f2) is by the method of Lagrange a maximum or a minimum.

We can easily see that, in fact, it is a minimum.

In a particular case for three individuals, that is n=3, we want to minimize

G(fi . f2 • *3) = 1 - mk,

subject to the constraint h(f-) , f2 ,13) = f i + f2 + f3 - m = 0

By a similar analysis we can conclude that f-| = f2 = f3 = —. As before, we can

see that, in fact (f-|, f2, f3> is a minimum.

For a greater number of variables, the method can be applied analogously.

Thus, for G(fi , f2 fn), with the constraint condition f-|+f2+- • . .+ fn-m=O,

we obtain the minimum in (f-j, f2 fp) such that f-j=f2=- • • -=fn=~~
n
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Fig 1 . Pollinators and the pollen transfer
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