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Abstract

The slow relaxation of isolated toroidal plasmas towards their thermodynamical

equilibrium is studied in an Onsager framework based on the entropy metric. The basic

tool is a variational principle, equivalent to the kinetic equation, involving the profiles of

/ density, temperature, electric potential, electric current. These profiles enter in two

functionals reflecting respectively the entropy of the field plasma-plasma system and the

entropy production rate. These functionals are symmetrical. By themselves, they would

drive an Onsager evolution of the system. However the variational principle contains also

an antisymmetrical functional reflecting the trajectory effects. The latter is eliminated, so

that the Onsager relaxation is automatically established in the situations of low

collisionality where the trajectories are integrable and close to the magnetic surfaces (e.g.

in axisymmetric tokamaks). In such situations the Onsager character of the slow

relaxation is a mere consequence of the hamiltonian nature of the field-plasma system. In

the collisional or non integrable cases, an Onsager evolution may be still derived from the

variational principle, but the plasma layers around the successive magnetic surfaces must

be independent enough, in the sense that unconfined trapped particles are forbidden

unless they are detrapped long before they depart significantly from the magnetic

surfaces. New^jninimization procedures^are proposed to_obtain **ntrr>py ?r\(\ cmi2Ey

production rate functionals expressed in terms of the profiles of density, etc., which drive

the Onsager relaxation of the profiles. Onsager relaxations are possible in the presence of

a turbulent field, either in an integrable situation (e.g. well separated magnetic islands) or

in a non integrable case (overlapping islands). The variational principle then involves the

characteristic frequencies of the turbulent field, on the same grounds to the profiles of

density, etc.



1. INTRODUCTION

Onsager (Onsager 1931) has proposed on the basis of time reversibility arguments

that the relaxation of an isolated system close to its thermodynamical equilibrium state, if

it is very slow, conforms to the following scheme: the small deviation from the

thermodynamical equilibrium is specified by parameters Aa, making the vector A = (Aa),

which determine the entropy S of the system with respect to the equilibrium as a negative

quadratic form

SabAaAb = 5 (1)

where of course S ^ = Sba ; the relaxation of the vector A(t) towards the equilibrium state

A = 0 is expressed by an equation of the form

dA b W_S Ab ( 2 )

with the key symmetry relations

Sab^Sfe (3)

The equation (2) implies that the variation in the course of time of the entropy

-TT— = 2Sab—jr-Ab is equal whatever A to the quadratic form SabA
aA . The latter is

therefore identified with the positive rate of entropy production within the system due to

the irreversible collisional process. It is usual to use the entropy SabAaAb as a metric in

the space A and to introduce the covariant coordinates Aa of A, namely Aa = SabAb. The

equation (2), written 2 a = SabAb, then gives the "fluxes" 2-gp = 2Sab~^- in terms

of the "forces" Aa, the dot product (fluxes, forces) being equal to -n-. Following the

ideas of Prigogine (Glansdorff and Prigogine 1971), one may put the scheme (1,2,3) in a

variational form. Let us use the two symmetric tensors Sab and Sab to generate the two

symmetric bilinear forms S(A^\)=S(A,A)=SabA
aAb and S(A,A) = S(A,A) = SabAaAb in

A and A. Here A is a working version of A to be varied around the physical A. The

equations (2,3) are equivalent to state that, at each time, one or the other of the two

functions of A

S(A,A) o r ^ S ( ^ , A ) + S(A,A) (4)
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is an extremum for all the variations of A around A. The vector A(t) is a sum of modes

^exp(-yt), where each vector A. minimizes the entropy production S(X,X) under the

constraint of performing a constant entropy S(k,K), and 7= ^ r • The goal of. this article

is to show, starting from the kinetic and the Maxwell equations, that the magnetically

confined toroidal plasmas conform under some conditions to the scheme (1-4).

The Onsager scheme typically applies in two kinds of situation. A first possibility

is that the isolated system is made of independent particles exhibiting stationary states,

and relaxes towards its thermodynamical equilibrium because a small resonant

hamiltonian perturbation induces a diffusion among the stationary states. For instance the

perturbation consists of weak hamiltonian interactions between the particles. In its

principle such a situation is easy to understand in a quantum mechanical framework. The

system formed by the unperturbed, independent particles exhibits eigenstates N of energy

h N . A small deviation from the thermodynamical equilibrium is specified at a given time

by the vector A representing the deviation of />#, the probability of finding the system in

the various states N, with respect to the maxwellian. Such a vector A determines of

course the entropy S of the system with respect to the thermodynamical equilibrium. A

slow relaxation of A takes place when a weak hamiltonian perturbation induces small

transition probabilities per unit of time W^^, ^ from a state A7 to a state M. Of course

hw = h/M if the perturbation is not oscillating in time, i.e. is static or quasi static. Under

some conditions, W ^ ^ M may be deduced from the classical perturbation theory for the

systems depending on time (Kemble 1937). A consequence of that theory is the detailed

balance equations WN_M =WM_A f which reflects the hermiticity of the interaction

hamiltonian. Van Kampen (Van Kampen 1954, 1957) establishes a master equation

giving the evolution in time of the probability /V in terms of the transition probabilities

WN_M . That equation gains of course a degree in symmetry if one takes into account

that W ^ ^ ^ =WW_>A, . It results, if the perturbation is quasi static, in an Onsager

relaxation (1-4) for the vector A (see Appendix 2). The obtained Onsager relaxation relies

on the hamiltonian behaviour of the system, without reference to the reversibility in time

of its trajectories which is the basis of the original argument of Onsager. The Van

Kampen line may therefore justify such a relaxation in a system which does not enjoy that

reversibility, for instance in a magnetized plasma. It must be stressed that it has a

counterpart in classical mechanics, namely the quasilinear diffusion theory. Let us

consider a classical hamiltonian system formed by N quasi independent particles whose

individual motion is integrable. The unperturbed system exhibits stationary states

specified by 3N action variables J, playing now the role of the quantum label N. A

resonant hamiltonian perturbation, if it is weak enough but however satisfies the Chirikov
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criterium, drives a quasilinear diffusion of the system in space J (Rosenbluth et al 1966,

Zaslavsky and Chirikov 1972, Rechester et al 1981). The quasilinear diffusion equation

is the continuous classical version of the quantum Van Kampen master equation when the

symmetries W ^ ^ ^ =W /W_ /V have been duly taken into account. If the perturbation is

static or quasi static, a relaxation (1-4) applies to the vector A representing the deviation

from maxwellian of the probability density of the system in the J space, or as well of the

distribution of the individual particles in their 3D action space J (see Appendix 2).

However, the most usual situations of Onsager relaxation have a different

character. The isolated system is a medium formed of particles which deviates from its

thermodynamivcal equilibrium because for instance the temperature and the densities of

the various particle species depend on the position. One may consider that the medium

consists of small cells which are nearly independent and individually close to a

thermodynamical equilibrium, and that it relaxes as a whole to its thermodynamical

equilibrium because of the exchanges between neighbouring cells (Kreuzer 1981, p 5).

The key of the situation is that these exchanges are small so that the relaxation of the

system is slow. Strong interactions between the particles are therefore necessary to

prevent a fast migration of the particles from a cell to its neighbours. This appparently

opposes the present situation to the situation of nearly independent particles considered

above. Nevertheless the two situations present a deep similarity, namely, the nearly

independence of the cells on one side and of the particles on the other. The vector A

specifying the deviation from thermodynamical equilibrium of the medium represents the

spatial variations of temperature, densities, etc, which indeed determine the entropy of the

system. The classical demonstration of the Onsager scheme (1-4) in that case relies on the

reversibility in time of the fluctuations of the vector A. The probability of finding the

system in the state A at a given time is determined by the entropy SabAaAb of the system

with respect to the thermodynamical equilibrium, namely, it is proportional to

exp(SabAaAb). The averages <Aa(t)Ab(t)> along the fluctuating trajectory A(t) are then

proportional to Sab- The first element of the demonstration is that the correlations

<Aa(t)Ab(t+T)> can be calculated for large positive x as if A(t+x) could be derived from

A(t) by simply applying the relaxation equation (2). That point, curiously presented as

obvious in many textbooks (Landau and Lifshitz 1958), is in fact not so easy to establish

(Kreuzer 1981, p 44, Krommes and Hu 1993). At that stage, it appears that the

symmetry (3) is insured if one may state that <Aa(t)Ab(t+x)> = <Ab(t)Aa(t+x)>. One then

introduces the second element of the demonstration: at thermodynamical equilibrium, the

fluctuating trajectories A(t) and A(-t) are equally probable, so that

<Aa(t)Ab(t+x)> = <Ag(t)Ab(t-x)> = <A^(t+x)Ab(t)>. This is justified, in the absence of

magnetic field, by the reversibility of the trajectories x(t),V(t) => x(-t), -V(-t), where x

represents the set of the particle positions and V the set of the particle velocities, under
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the condition that all the components of A reflects observables O{x,V) exhibiting the

same parity in V. It is no longer justified when the vector A mixes observables with odd

and even parity, or in presence of a magnetic field since the trajectory jc(t),V(t) does not

imply the trajectory x(-t), -V(-t). In those cases, the symmetry (3) cannot be justified by

arguments drawn only from the fluctuation analysis. Those arguments allow however to

relate the components S^ of the relaxation tensor, as it is defined by the equation (2), for

opposite magnetic configurations B and -B: assuming that each covariant component Aa

reflects observables with a definite parity ea = ±1 in V, one has S^(B)= eaeySte(-B)

(Casimir 1945, Onsager and Machlup 1953, Fitts 1962). Those relations, outside the

scheme (1-4), are often considered as forming the Onsager scheme itself. To establish the

scheme (1-4), i.e. the relations Sil(B) = Sba(B), via the A fluctuation analysis, one must

introduce by a way or another further informations allowing to relate the values of ^ ( B )

and S^,(-B). This line has been followed by Boozer for the tokamak case (Boozer 1992).

The two lines - nearly independent particles or nearly independent cells -

correspond to actual Onsager situations in magnetically confined toroidal plasmas. The

weakly collisional plasmas in axisymmetric tokamak configurations belong to the first

category with neariy independent particles, since each particle of the confined plasma has

individually an integrable motion close to the magnetic surfaces, described by 3 action

variables J. Weak hamiltonian interactions are then expected to induce a quasilinear

diffusion of the particle system in its action space, resulting in an Onsager relaxation

(1-4) for the deviation A from maxwellian of the distribution of the particles in the space

J. That line is underlying in the work of Mynick and Duvall in the framework of a

generalized Balescu-Lenard collision operator (Mynick and Duvall 1989). In the present

article, we derive a variational principle equivalent to the usual kinetic equation, which

determines the evolution in time t of the deviation U with respect to the maxwellian of the

particle distribution in the usual phase space x,p. In its final expression that principle

determines the relaxation of the field-plasma system formed by the plasma and the

confining field determined by the Maxwell equations. In a weakly collisional

axisymmetric tokamak, our general principle involving U directly results in the principles

(4) for the vector A representing the deviation with respect to the maxwellian of the

distribution of the particles in their J space. One may then show that the principles (4)

apply as well to a reduced vector A representing the variations of density and

temperature, the electric currents, etc, which determine the entropy of the isolated system.

The considered Onsager relaxations appear to be a mere consequence of the weakly

collisional regime, of the integrability of the individual trajectories and of the basic

symmetry of the Fokker Planck collision operator in the kinetic equation, which is itself

guaranteed as soon as the weak interaction between the particles is hamiltonian (see

Appendix 2). The situation is different in the general case of toroidal plasmas which are
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in a collisional regime, or which involves class of trapped particles that do not exhibit an

integrable individual motion close to the magnetic surfaces. These plasmas behave as

systems formed of quasi independent cells, which of course are now thin plasma layers

around the succesive magnetic surfaces. We still derive from our general variational

principle involving U the principles (4) for the vector A representing the density and

temperature variations, the electric currents etc (Nguyen 1992), but it appears that a

minimum collisionality is necessary when a class of trapped particles experience a

transverse drift across the whole of the configuration: these trapped particles must be

detrapped by collisions before they significantly depart from the magnetic surfaces. That

condition is precisely that which prevents a strong coupling through the unruly particles

between the layers around the successive magnetic surfaces. A nearly independence of

these layers is therefore necessary to insure an Onsager relaxation. Our demonstration of

the Onsager relaxations from the kinetic equation is not so general as in the weakly

collisional situations with integrable individual trajectories: we are now restricted to

interaction hamiltonians which are symmetric with respect to an inversion of the guiding

centre velocities along the flux lines. This recalls the basic role plaid by the reversibility

of the trajectories x (t),V (t) and x (-t), -V(-t) in the A fluctuation analysis. However it is

not at all proved that the restriction corresponds to a physical necessity.

At this point, our work complements the important studies of Balescu (Balescu

1991) and of Sugama and Horton (Sugama and Horton 1996). In these studies one

derives from the drift kinetic equation, at first order in the ratio "pof the Larmor radius to

the plasma scale, the structure of the particle distribution functions, being given the

gradients Vn, VT of the density n and temperature T as well as the inductive electric field

E. Such a structure then leads to the average particle and energy fluxes T, Fg across the

magnetic surfaces and to the electric currents I along these surfaces. It is shown that the

transport matrix linking those elements exhibits Onsager symmetries. The weakly

collisional situations with integrable individual trajectories are not considered. Because

Pcthe drift kinetic equation is treated only at first order in y-, the necessity of a collisional

detrapping of the unconfined trapped particles is not met. Interestingly, the demonstration

of the Onsager symmetries by Sugama and Horton clearly relies on the symmetry of the

collisions with respect to the inversion of the parallel motion. On the other hand our work

is consistent with the study of Boozer who has accurately pointed out the thermodynamic

constraints which apply to the Onsager forces and fluxes in toroidal plasmas (Boozer

1992). Within the scheme (1-4), the forces Aa are defined by the prescription that they

determine the entropy S = SabAaAb of the isolated system, the fluxes being then
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dAb

jr-- In our toroidal plasmas, materially and electromagnetically isolated, the forces

Aa must then represent the density and temperature variations, i.e. typically the gradients

Vn and VT, and also the currents I along the magnetic surfaces: indeed those currents

control through the Ampere law and the boundary conditions the magnetic energy, and

thereby the entropy of the isolated field-plasma system, since any increase or decrease of

the magnetic energy decreases or increases the part of the fixed total energy which

remains available for thermal motions. Since the forces Aa involve the currents I, the

dAb

fluxes 2Sab—^— must involve, in addition to the particle and heat fluxes F, FE

representing the time derivatives of the density and temperature profiles, the time

derivative of I, i.e. the time derivative of the relaxing magnetic field, i.e. finally the

inductive electric field E. Boozer has indeed proposed forces and fluxes with that

organization. On the contrary the matrix displayed by Balescu and by Sugama and

Horton links "conventional" forces and fluxes, namely, forces proportional to Vn, VT

and E, and fluxes to F, FE and I. The normalization is of course such that the dot product

(fluxes, forces) produces the time derivative "jirof the entropy S whatever Vn, etc, but it

is known that if a series of characteristics Xa, 4>a of the state of the system at each time

satisfy the identity (<J>aX
a) = -rr, this is not sufficient to guarantee that the quantities Xa

6Ab

and <J>a form a system of forces Aa conform to the prescription (1) and fluxes 2S

(Coleman and Truesdell 1960). In fact the matrix linking Vn, VT and E to F, F E and I is

not symmetrical and considerations involving the parity in the particle velocities are

necessary to reveal the Onsager symmetries. Let us remark that in a tokamak where the

plasma is rotating around the major axis, the corresponding rotational energy plays the

role of the magnetic energy above: the scheme (1-4) then designates the electric voltage

across the magnetic surfaces, which controls that energy, among the forces Aa; the time

dAb

derivative of the rotational velocity participates in the fluxes 2Sab-gr-- Generally it will

appear in this article that, through a variational principle of type (4), it is possible to cover

complex aspects of the collisional relaxation of toroidal plasmas, for instance the role of

the various electric fields, the deformation in time of the magnetic surfaces, etc.

Beyond the collisions, one may wonder whether the toroidal plasmas experience

an Onsager relaxation when the confinement triggers an electromagnetic turbulence. It has

been pointed out by Shaing (Shaing 1988) that, in weakly collisional regimes, if the

turbulent field induces a quasilinear diffusion of the particles, the symmetries of that

diffusion imply an Onsager matrix between the fluxes F , F E and appropriate Onsager

forces, consisting of linear combinaisons of Vn,VT and of the mode frequencies co.
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Similar conclusions may be driven from the works of Mynick and Duvall (Mynick and

Duvall 1989) and Morozov and coworkers (Morozov et al 1988). The fluxes F, FE are no

longer determined, as in the collisional transport case, by the friction forces between the

various class of particles, proportional to the differences between the corresponding

diamagnetic velocities, proportional themselves to Vn, VT: they are now determined by

the friction F exerted by the turbulent modes on the various classes of particles,

proportional to the differences between the phase velocities 77 of the modes and the

diamagnetic velocities. This explains the dependence on to of the Onsager forces

considered by Shaing. Sugama and coworkers (Sugama and Horton 1995, Sugama et al

1996) incorporate among the Onsager fluxes the heating power W = -r- F which is

produced by the modes for finite to values. By introducing an Onsager force of type ~ as

conjugate of W, they display an elegant Onsager matrix between the Onsager fluxes F,

Fg, W and Onsager forces of type Vn, VT, *?, independent of the frequencies to. In fact,

in the studied situation where the turbulent field at a finite to is imposed by external means

independent of the plasma, the latter is submitted to a constant heating power and

formally relaxes towards an equilibrium state where ~ = 0. In this article we take another

point of view, again inspired by the scheme (1-4). The slow relaxation at constant energy

of an isolated field-plasma system will be studied by treating the turbulent field as a

simple component of the consistent electromagnetic field. As that turbulent field is due to

the confinement, its frequencies to relaxes to 0 when the thermodynamical equilibrium is

reached. Indeed our variational formalism leads us to base the Onsager relaxations upon a

vector A representing the deviation U with respect to the maxwellian of the particle

distribution, together with the frequencies to. For a weak collisionality, a first possibility

is that the trajectories are integrable in presence of the turbulent field. This may be the

case for instance if the latter produces small, well separated magnetic islands. We then

find that the principle (4) applies to a vector A representing the density and temperature

variations, the electric cunrents, etc, and also the frequencies to representing the island

rotation velocities, which typically minimize the collisional entropy production rate. If the

integrability of the trajectories is destroyed since the magnetic islands overlap, one is led

to Onsager relaxations based upon a quasilinear expression of the entropy production

rate. In all cases, the various irreversible process induced by the turbulent field - friction

forces, heating power, etc - are naturally taken into account by the principle (4).
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2. PLASMAS IN AN IMPOSED CONFINING FIELD

2.1 VARIATIONAL PRINCIPLE EQUIVALENT TO THE KINETIC
EQUATION

The basic tool for the study of the slow relaxation of a magnetically confined

plasma is the kinetic equation which gives the evolution in time t of the distribution

function F(x,p,s,t) of the particles of each species s in the six dimensional phase space

x,p = (xi,X2,X3,pi,p2,p3) (see Appendix 1)

E-H-E
ax dx dp

where H(x,p,s,t)= ^ *£'S?'X" +e(s)y(x,t) is the hamiltonian created at time t by the
*.Tn{S)

confining field B= V x A ( x , t ) , E = - W ( x , t ) - dAj*>V , the Poisson bracket {H,Fj-

express the variation rate of F along the trajectories and C(F) is the Fokker-Planck

collision term. We assume that the system is isolated by proper particle and field barriers

and relaxes towards a well defined thermodynamical equilibrium, characterized by the

relaxed field Bo=VxAo(x), E o = - V % ( x ) , corresponding to the hamiltonian

HQ(X, p,s)= 2m7sT +e(s)x*'o(x) -anc^ by the maxwellian distribution function

x vo( s)

The basic constants vo(s) and To are determined by the initial content in particles of each

species and in energy of the isolated system. It appears convenient to characterize at each

time t the small deviation of the system with respect to that thermodynamical equilibrium

by the dynamical variable U(x,p,s,t) « To such that

- V c ( S )

The average velocity of the particles of species s at the position x is given by
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'S ' t )= * / F^d3P = n / F f d3P ; n= / Fd3p

It is worth noticing that the average at given x and s of the velocities V(x,p,s,t) = -*— is

also the average of the derivatives -5—. These derivatives will be met below as

macroscopic velocities, for instance as diamagnetic velocities, exhibited by the various

species or subspecies. The collision term C(F) in the kinetic equation is obviously

proportional to the deviation U at first order. At a given t we have C(F) = D(U) where D

is a well defined linear operator acting in the space formed by the dynamical variables

function of x,p,s: namely, D(U(x,p,s,t)) is obtained by replacing the differences

p, f\'a • p( < i t \a which are at the heart of the Landau collision integrals by

aU(x,p,s,t) dU(x,p',s',t) Qa th
v a n a t i o n rate /j^n, m a v

— {Hi]} • We introduce a working dynamical variable U(x,p,s, t), to be varied around
To

the physical deviation U(x,p,s,t). The kinetic equation is exactly equivalent to the

following principle: at each time the linear functional in U

is an extremum (null) for all the variations of U

Generally the deviation U determines the entropy S of the system with respect to

the thermodynamical equilibrium U = 0 and the rate of collisional production of entropy.

These quantities are related to the first and the third terms of the functional (7). We first

connect the third term to the collisional entropy production. The starting point is the basic

symmetry of the collision operator, resulting from the hamiltonian nature of the weak

interactions between the particles (see Appendix 2), which imposes that

(8a)

whatever U'(x,p,s,t) and U"(x,p,s,t). This allows to express the third term of the

functional (7) as S(U,U) where S is the symmetrical bilinear form in U', U" defined at a

given time t by

= - | ] f ^•D(U?)U"d3xd3p (8b)
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The rate of collisional entropy production is equal to S(U, U). Indeed, the entropy S

with respect to the thermodynamical equilibrium is given by

=-(lf

Therefore the rate of collisional entropy production is equal to

C(FXl+ln(F))d3xd3p , i. e. to -%f DQJ)(l+ln(^0 ^3a) + =iMl)d3xd3p . In

view of the conservation of particles and energy under collisions:

I D(U)d3xd3p=0andy| rXU)Hd3xd3p=0 , it becomes equal to

- 2 I T-~D(U)Ud3xd3p , i. e. to S(U,U). For reference we notice that

F(x,p,s,t)F(x,p\s\t)d3xd3pd3p'

au(x,p,s,t) eu(x,p',s',t) ,aU(x,P,s,t) aU(x,P',s',t)
( ) ( dpi " dpi }

X* = X lk = 2,e(S)2e(S-) 2 ln(A)W 6"^3W k W l ; W =

We will often use below that S(Q, U) is the sum of symmetric bilinear forms
d U ) u i ' ; u r „ -M A

for d l P° s s i b l e x and p's-

The second term of the functional (7) reflecting the motion of the individual

particles in the hamiltonian H may be expressed at a given t as 2(U,U) where

2(U\U")=2 f ^
* ' (23iTom

(10a)

It is readily verified by integrations by parts in space x,p that

- F ,
(10b)

so that 2(U,m cancels exactly if <HU}=0or{H,L!>=0 , i. e. if one of the dynamical

variables U or U, is a constant of motion for the hamiltonian H at the considered time t.

At first order in U, the functional 2(U,U) is an antisymmetrical bilinear form in U,U



- 12-

U) = I f ^<H,U>Ud3xd3p=2 f -^<U,

In view of the equations (8) and (10), the variational principle (7) reads (Samain and

Werkoff 1977)

m 1 'ir1

I Ud3xd3p+ 2(U,U) + S((J,y) extremum in U (11)
) To dt

As Z(U,H) =0 and S(U,H) = 0 we obtain by using the principle (11) with a variation of

U proportional to H

1 dF

For the sake of clarity, we will indeed in the rest of the present chapter 2 consider

isolated systems of particles confined in an imposed static field rather than field-plasma

systems. Namely, rather than letting the field B(x,t),E(x,t) to adjust to the electric

currents and charges developped by the plasma particles, we will impose a static, purely

magnetic configuration B = Bo = VxAo(x), E = 0 by fitting at each time electric currents

and charges independent of the plasma. The relaxation that we study then involves a

system of particles governed by the static hamiltonian H=H0 = ?f—-—'•, and of
m

_ms

course bv the interaction hamiltonian. As —- = 0, the derivative —- in the first term of
dt at

&J
the functionals (7) or (11) reduces to F—- . At a given time t, we have

where S(U',U") is the symmetrical bilinear form defined by
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',U")=2 (s '
S(U',U")=2 ( =fys'U"d3\d3p (14)

s ' 2T

We will find in the § 3.1 that the relation (13) is still applicable in the case of isolated

field-plasma systems, with a new definition of the symmetrical bilinear form S involving

the field perturbation created by the deviation U. In all cases the principles (11) or (7)

equivalent to the kinetic equation become

& y ) + 2(LJ,U)+S(U,y) o r 4 S & u j + 22(U,U)+S(y,U) (15)

is an extremum for all the variations of U around U.

ThefunctionalsS(Ul,U"))2(U',U"),S(U',U") defined by the equations(8,10,14)

depend on the state of the system, determined by the deviation U, at the considered time

t. The principles (15) then give the variation -̂ — exactly. However it is only if S(U',U")

is taken at zeroth order in U that the quantity S(U,U) is equal to the entropy S given by

the equation (9). Let us stress that this equality is not necessary for the exact principles

(15) to be valid. The equation S(U,U) = S at second order in U may be directly

established from the equations (9,14) by expressing that the number of particles and the

system energy is the same in the state U and in the relaxed thermodynamicaJ state U = 0.

One may as well notice that, at second order in U, we have

. Because of the symmetry S(U,U) = S(U,U) and of

the equation (13), we then have ^ L i J = 2 S ( - ^ , U ) = - 2 J ^-^Ud3xd^). On the

other hand, by taking into account the particle conservation I ^d3xd3p=O and the

equation (12), we obtain

•Cln(F)d3xd3p =-Y [ 5 =T^d3xd3p= -Y ( J -&d 3 xd 3 p (16)
oi J TT/ ct IQ sj 1 o

so that Q.S = ̂ j-S(U,U). That equation during any relaxation process leading to the

thermodynamical equilibrium state where S =0,S(U,U)=0 implies that S(U,U)=5 .
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2.2 WEAKLY COLLISIONAL, INTEGRABLE REGIMES

At a given time the functional Z(U,U) cancels if UorU is a constant of motion

such that (H,UorU}=0. If it is not the case, Z(U,U) is proportional to the variation rate

of UorU along the trajectories produced by H at time L These variations take place at a

characteristic frequencv =̂ = J =J- which, according to the structure of Uand U,
' xkinetic U o r U ~

vr
may be a Larmor frequency wc or a parallel transit frequency —p-of the guiding centre or

Vr ia still slower transverse drift frequency —^ • Roughly we have, N being the number of

particles

N

dU
The two other functional S(—,U)andS(U,U) which enter in the principle (15) are

m.

proportional to the relaxation rate and to a pertinent collisional rate
"̂ rela\ation "̂ collision

again depending on the structure of UandU

(^ ,U) ~ N - r ^ — and S(U,U) ~ N = r ^ — (17b)

Let us show that an Onsager relaxation automatically occurs in weakly collisional cases

where =— and =— are small enough compared to ———, if the motion in the
"•collision Lrelaxatior Tkinetic

hamiltonian H is integrable. The latter condition means that at each time t there exists

angular and action variables for the hamiltonian H, namely, 3 angular variables

<P(x,p,s,t)= (<t>i,02,03) defined modulo 2JI, canonically conjugate to 3 action variables

J(x,p,s,t) = (Jj, J2,J3), the hamiltonian H being a function h(J,s,t) of the action variables

J. The action variables J (and the variation rates {H,O}= —ry-2—) are constants of

motion. The trajectories in the 6 dimensional space x,p determined by H at the

considered time t are indefinitely drawn on 3 dimensional toruses labelled by the 3 values

J and univoquely parametrized by the 3 angular variables 0. Any constant of motion

Z(x,p,s,t) is a function z(J,s,t). With a static hamiltonian H = H(x,p,s), the dynamical

variables O and J are of course also static. In view of the estimations (17), a situation

where -—-— is large enough compared to -=— and •=— implies that the
Tkinetic lcolhsion 'relaxation

variations of 2(U,U) when one varies U largely dominate the variations of
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au
S{-—,U)andS(U,y), except if {H,U} #0. The principle (15) then effectively obliges that

ot

{H,U} # 0, i. e. obliges that U # u(J,s,t), F # f(J,s,t). We define f(J,s,t) at each time t

as the O average value <E>j of F(x,p,s,t) over the 3D torus in space x,p specified by J,

and use the relation (6) to define u(J,s,t) in terms of f(J,s,t) and h(J,s,t). Our basic trick

is to choose the working dynamical variable U(x,p,s,t) so that it is an exact function

u(J,s, t) and therefore (H,U}=0 . The functional 2(U,U) then cancels exactly and may

be discarded from the principle (15). If the collisionality and therefore the difference

U' = U - u(J,s,t) are weak enough, one may replace in the remaining functionals

S(^H U) and S(U,U) the dynamical variables U(x,p,s,t) and a U ( x ; P ' S ) t ) by the good
at ot

approximations u(J,s,t) and —-*;' ' . The principle (15) then determines at all orders in

U the relaxation of the function u(J,s,t) by imposing that at each time

(18)

is an extremum for all the variations of u(J,s, t) around u(J,s,t). The principle (18)

obviously implies an Onsager relaxation for the vector A(t) representing the function

u(J,s,t) of arguments J,s at each time. This is normal since we are in a Van Kampen

situation of a system of individually integrable particles relaxing towards a

thermodynamical state under the action of a small interaction hamiltonian. Putting

u(J,s,t) = A"(t)Ua(J,s) ; yas,O=Aa(t)ua(J,s) (19a)

where the functions Ua(J,s) form a proper basis, the vector A = (Aa) satisfies the principle

(4), with the symmetric tensors Sab and Sab given by

S*=S(ua(Js),ub(J,s)) , SA = S(uaUs),ubas)) (19b)

Let us notice that the notations of type u(J,s,t) have 2 different meanings according to the

context: at the considered time t, either u(J,s,t) is a dynamical variable function of x,p,s

via J(x,p,s,t), as for instance in S(u,u) and in the derivatives ^—that we will use below;

or u(J,s,t) is a simple function of arguments J,s, as in the equation (19a). We stress that
dA

the principle (18) exactly produces at a given time the derivative -TT- of the vector A

representing the function u(J,s,t): in other words it is not restricted to the linear range in

A. This is simply due to the fact that the bilinear forms SQ-F.U*) andS^'.U1) are defined

at each time tby taking into account the state of the system at that time, and will remain



- 16-

valid with the field-plasma systems considered in the chapter 3. The study of an Onsager

relaxation is of course greatly simplified if S(U',U") is taken at zeroth order in A, i.e. in

U. However the fact that the Onsager relaxation covered by the pnnciple (18) is not

restricted to the linear range in A is important in principle. It meets the preoccuppations of

several authors (Krommes and Hu 1993), even if the pnnciple (18) directly issued from

the kinetic equation introduces the non linearities in A by a very different way.

We notice also that, for the principle (18) to be applicable, the 3 dynamical

vanables J(x,p,s) need not to be really action variables: they may be as well 3

independent static functions of the action vanables, i.e. 3 independent static constants of

motion, that we will still note J(x,p,s). The condition of validity of the principle (18) is

that S(U,u) # S(u, u) or S(U', u) « S(u, u) . One may estimate U' = U - u # U - <U>j from

the principle (15): the latter approximately states that Z(U',LT) + SO^U1) is an extremum

in y submitted to the constraint <LT>j=O. Using the equations (8,10) it first appears

that the structure of U' reflects the variations W of the dynamical variable D(u(J,s,t))
1 {HW>

over each 3D torus J. Putting U-X.W and 1 MI- I , it then comes that
xkmebc

N -^ \- XS(u,W) is roughly an extremum in k, i. e. X ~ — —>,—>? T^uet^. The

validity condition is XS(W,u)«S(u,u) . In view of the Schwarz inequality

(S(u,u)S(

j_S(W,W)

IS(u,W)l < (S(u,u)S(W,W))L", it is satisfied if — L - » ^J— where
Tkinetic ""cdlisicn

Tcdlison

To be useful the vector A must involve a number of components Aa as reduced as

possible. We therefore abandon the definitions (19) representing the full structure ol~ the

function u(J,s,t), and try to build up a simplest A space. We will build up at each time,

within the vectorial space (u) formed by all the functions u(J,s,t), two complementary

subspaces (u\) and (un) such that, if one decomposes the functions u achieved during the

relaxations in the form u = uj + un, the entropy S(u,u) is close to S(UI,UI). The pnnciple
dui

(18) then nearly states that -4S(-^r-,uI)+ S ĵH- un,Ui+ UQ) is an extremum in u, around uj

within (ui) and in un around un within (un). The minimum value of Sdij + Un.Uj + Un)

when one varies un within the subspace (UQ) for given u, is a quadratic form

^ evolution of the function uj(J,s,t) is such that at each time

-4S(-^,uI>fSIEduoed(uI,uI) (20)
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is an extremum for all the variations of Uj(J,s,t' around ui(J,s,t)within the subspace (ui).

The new vector A represents the function ui(J,s,t). Being (uia(J,s)) a basis for the

vectorial subspace (u\), we replace the definitions (19) by

ui(J,s,t) = Aa(t)uia(J,s) ; Uj

Sab = S(uia(J,s),uib(J,s)) ; Sab = Sreduced(u]a(J,s),uIb(J,s))

A convenient starting point to build up the subspaces (q) and (un) is the working

assumption, to be verified a posteriori, that the values of S(u,u) achieved by the system

during the relaxation process are mainly determined by the values Aa(t) of some typical

characteristics of the deviation from thermodynamical equilibrium, for instance typical

temperature and density variations, typical average velocities, etc. Those values Aa will

appear below as the covariant components SabAb of the new vector A. At a given time,

by imposing the set of values Aa, one imposes constraints of the following form to the

function u(J,s,t)

U(u) = Aa (21)

where each La(u) is a linear form in u. We associate ui(J,s,t) to the set (Aa), namely, u\

is the function u which minimizes the entropy S(u,u) under the constraints (21). Our

working assumption means that the functions ui achieved during the relaxation process

are such that S(u,u) and S(UI,UI) are approximately equal. The accuracy of that equality is

in fact the accuracy of the principle (20) with respect to the principle (18). Of course the

minimization leading to u\ has not to be performed with a better accuracy. The basis

uia(J,s) introduced above is obtained from that minimization: using Lagrange

multiplicators, it appears that u\ = A^iia where each function uia(J,s) is determined by the

linear form L^ namely, is such that S(uia,u') # La(u') whatever u'(J,s). The quantities Aa

and Aa then appear as the contravariant and covariant components of the vector A since

Aa= La(ui) = AbLa(uib) # AbS(uia,uib) = SabAb. The vectorial subspace (un) is formed

by all the functions u(J,s,t) such that La(u) = 0 for all a values. It is "perpendicular" to

the subspace (UT) in the sense that S(u',u") # 0 whatever u1 within (UT) and u" within

(un). We therefore have S(ui+un,ui+un) # S(UI,UJJ + S(un,un) so that the working

assumption S(u,u) # S(UI,UI) may be written S(UTJ,UTJ) « S(UI,UI).

Let us apply the principle (20) in a fixed, purely magnetic, axisymmetrical

tokamak configuration. All the trajectories, either trapped or passing, are integrable and

close to the magnetic surfaces. We may form J with the 3 exact constants of motion

mV2

H,n,Rp<p where the hamiltonian H(x,p,s) is the kinetic energy —*— (since *P = 0), the
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mV I ̂  pn
magnetic moment u.(x,p,s) = 0Vr (1 + O(-p)) specifies the amplitude of the Larmor

motion and the angular momentum Rpq, in the direction (p around the major axis specifies

the magnetic surface occupied by the particle: indeed Rp<p = ReA^ _+ RmVq;

Pa
= eippoi(v(x))+ RmV(p = eij)poi(l + O(T~). where v(x) is the volume of the magnetic

surface passing through x and i|>pol(v) is —xthe magnetic flux embrassed by the major
2n

turns drawn on the magnetic surface of volume v. Any trajectory J = (H,n,M) is close to
M

the magnetic surface specified by the poloidal flux ippoi = —. That situation allows to a

weakly collisional plasma exhibiting F # f(J,s,t) and U # u(J,s,t) to be in quasi

thermodynamical equilibrium on each magnetic surface and at the same time to exhibit

any density and temperature profiles from the magnetic axis to the surrounding wall.

However, in the Onsager line that we follow, we assume a weak deviation U « To of

the plasma from its thermodynamical equilibrium. We assume the plasma delimited and

isolated by two hamiltonian particle barriers located on 2 relatively magnetic surfaces, so

that it relaxes at constant particle and energy contents towards a thermodynamical

equilibrium with finite particle densities no(s) and a finite temperature To. Since ^ o = 0,

the densities nrj(s) are the constants vo(s) in the equation (5). A deviation U « To means

in particular small variations of the density n and temperature T with respect to the values

no,To- In spite of this constraint, the practical gradients Vn, VT may be achieved by

bringing the barriers closer.

We make the working assumption that the entropy S(u,u), given by the equation

(14), is mainly determined by the average densities n(v,s,t) and temperatures T(v,s,t) on

each magnetic surface, labelled by its volume v. That assumption anticipates that the

macroscopic velocities of the various particle species or subspecies play a negligible role

in S(u,u). The situation will be quite different with the field-plasma systems considered

in the chapter 3, where the entropy will involve the macroscopic velocities through the

electric currents controlling the magnetic energy. We introduce the small differences

n(v,s,t) = n(v,s,t) - no(s), f (v.s.t) = T(v,s,t) - T o

We express that the deviation U = u(J,s,t) achieves given profiles n(v,s,t) andT(v,s,t)

by calculating from the distribution function (6) the particle and energy contents

n(v,s,t)dv and ^n(v,s,t)T(v,s,t)dv between 2 neighbouring surfaces v,v+dv. We obtain

at first order in U



- 19-

exp(-HAr0) n(v,s,t)

2 f gg H 3 W v r x , vv u d x d D_ T(v,s,t)

The equations (22) play the role of the equations (21). A deviation uj(J,s,t) which

approximately minimizes S(u,u) under the constraints (22) is given by

H 3
) To

where Vdrift(x,p,s) is any dynamical variable which is both constant of motion and close

to v(x). We choose the simplest Vdrift(x,p,s), namely that ippol(vdrift) = ~~ • Then

vdrift = v(x) + f"1^ + O(Lpc2) (23b)

The dynamical variable ui(J,s,t) produces a derivative •*-*• at given x consisting of 2

terms: an isotropic term i. $£± = >L V which reflects the temperature

variation T at each position x, and a directional term

(24)

It will be important below that ^ '» ' = RVcp is independent of p and
3 P a ^ / a

Pcat a given position x. That independence means that at lowest order in j-Vdrift(x,p,s) -

v ( x ) = eavdnft(x,p,s)rn_Vat l o w e s t Q r d e r .^ pc Equivalently, it means that, for all the

individual trajectories, the deviation with respect to the magnetic surfaces scales as

—g- ~ pc. The derivative (-^-)oi, properly averaged, represents the q) diamagnetic

velocities of the various species at various energies, producing via the poloidal field the

Lorentz forces balancing the pressure forces -V(nT). At a given x position, uj contains an

even part in V, proportional to the net values fiandT , and a odd part

When one calculates the negative entropy S(UI,UT) from the equations (14,23), it appears

that the dominant terms are produced by the even part of ur, the odd part producing a term
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pc2
which is smaller in a ratio ~ yy . ^n f~act t n e contribution of the even part of ui reflects the

structuration in space x of the densities and temperatures, while the little contribution of

the odd part reflects the fact that the small orderer kinetic energy associated to the

diamagnetism is no longer available for thermal motions. Introducing the working

profiles n(v,s,t)andT(v,s,t) to be varied around n(v\s,t)andT(v,s,t), which define

ui _D(vctefrM) , ,H
T ; - no(s)

 +%

one obtains

ff(v.s,Qn(v,s,t) , 3T(v,s,t)l(v,s,t) (25)

That expression gives the first term in the principle (20)

%.« =% / (^^B<^%^,t,)n0<stfv ( 2 6 )

The Onsager relaxation of the profiles n(v,s,t),T(v;s,t), equivalent to the function ui(J,s,t),
dui

is obtained by expressing that the functional -4S(-!jpUI)+Sre4joed(u[,uI) is an extremum

for all the variations of n(v,s,t),T(v,s,t around n(v\s,t),T(\\s,t). The problem of computing

that relaxation has thus been brought back to a minimization problem: the calculation of

the minimum value SredU0Bd(U[,u1) of the collisional entropy production rate

S(yi + yn>yi +yn) w n e n o n e varies UQ within the subspace (un). The latter is of course now

defined by the eqs (22) made homogeneous by cancelling the RHS. Minimizing the

entropy production rate is in fact a well known technique for determining the structure of

the distribution functions in weakly collisional confined plasmas (Robinson and

Bernstein 1962, Rosenbluth et al 1972). We notice that Uj enters into SO^ + U^UI + UJJ)

6u.
and therefore into Sj^jy^u j,u [) through differences of 2 derivatives -^- taken at the same

x with 2 different p,s. The differences of derivatives of type — j ' V expressing the

local temperature variations lead to collisional energy exchanges from a species to

another. To simplify we assume the same temperature for all species, T(v,s,t) =T(v,t),
duTso that such exchanges do not occur. Then only the derivatives -^± of the directional type
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(24) can be involved in S^i^jdJj.U]). It first results that Uj enters into Sreduoed(uI,uI)

u u J • „• dfi(V,S, t) . 5T(V,t) _r TU
through denvatives ~\ V and ~ \ taken on the same magnetic surface v. The

functional Sreduoed(U[,uI) has therefore the form

S r e d u o e d(u I ,u I)= J

with of course ass- = as>s. If we now take into account that ^ ' " ' in the equation

(24) depends only on the position x, it appears that the profile n(v,s, t) enters into the

differences of 2 -^ taken at the same x with 2 different p,s through differences of two

—?\ '> U taken at the same v with two different s. Therefore the expression (27) must

be invariant if one changes ~\ W, into i U' + e(s) x a constant. This imposes

that

= 0 (28)

Using the equations (26,27), we express that the functional -4S(- !JT^UJ)+ Srecij0Bd(U[,uI) is

an extremum for all the variations of n(v£,t),T(v,s,t) around fi(v,s,t),T(v,s,t) and thus obtain

the relaxation equations

. i^ i / M_ , ^ dfi(v,s,t), 3n(v^,t) . afl(vAt), 3n(v^,t) ,
where we could replace no(s)by n(v,s,t), —^-^- by —^-^- and — ^ - L by — ^ p - ' , and

• -i -i T i. TV rt 3T(v,s,t) 3T(v,s,t) 3T(v,s,t) 9T(v,s,t) _
similanly To by T(v,s,t), —^— - by —^—- and — ^ — by —^—i . The Onsager

symmetries consist of the symmetry ass< = as<s and of the presence of the same

coefficient p s in the two equations (29). With respect to the principle (15), they result

from the weak collisionality and from the existence of the constant of motion



Vdnft(x,p,s) # v(x), meaning that all the individual particle trajectories are integrable and

close to the magnetic surfaces. The equations (28), which impose 2e ( s )— \ l ' - 0 ,

i.e. the ambipolarity of the particle fluxes, do not represent Onsager symmetries. They

result from the independence of } '"'— with respect to p,s at given x, meaning

that all the integrable trajectories deviate from the magnetic surfaces by a distance scaling

aspc .

We still have to justify our working hypothesis S(u,u) # S(UI,UI) or equivalently

S(un,un) « S(UI,UI). The basic element which determines un complementing uj given by

the equation (23) is that the tp diamagnetic velocities (3-^dir given by the equation (24)

B VnT R
are relatively large, namely represent 5 5" o r — x t n e Pfirsch Schluter velocities. In

bpoj net) rorder to decrease the collisional frictions reflected by S(U[ + U[[,U[+ u(I) , the function

un(J,s,0 then opposes as much as possible to the odd component ~ (-^)dinp rn ĉp of u\.

In the trapped domain, there is no constant of motion with such an odd structure and in

fact un = 0. On the contrary, in each of the passing domains V,, > 0 and < 0, an effective

opposition to the odd component of uj is possible by an un(J,s,t) related to the constant
V,"

of motion rrr^ (H - fiBmax(v(irift))
1'2, Bmax(v) being the maximum B value on the

magnetic surface v, which behaves as VQU in the bulk of these domains. Finally un

reduces the derivative — ^ 2. to the level of the Pfirsch Schluter velocities in the bulk

of the passing domain, by taking values ~ (-5—-)dtcp nW,p. Such an un has a small

influence in the entropy S(uT+un,ur+un): the quantity S(un,un) appears to be smaller than

0/ • Pc2 1 . . ,, > - dm + un ,d\ih B VpS(ui,ui) in a ratio ~ —— Incidentally the derivative — ^ ~ (-^-^ctr ~ 5 5"

which subsists whithin and in the neighbouring of the trapped domains, averaged at each

point x in p space, i.e. multiplied by ~(-tr) » represen

along cp of the various species, i.e. the bootstrap velocities.

point x in p space, i.e. multiplied by ~(-tr) » represents the macroscopic velocities

2.3 COLLISIONAL OR NON INTEGRABLE SITUATIONS

We now consider toroidally confined plasmas without imposing a weak

collisionality. We assume that the flux lines generate nested magnetic surfaces of volume

v(x); more generally the individual passing particles have integrable trajectories close to

the magnetic surfaces, the deviation being then of course ~ pc. We cannot extend that

assumption to the trapped particles in rippled tokamaks or in stellarators, where the drift
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velocity VQ± largely displaces some class of trapped particles across the magnetic

surfaces. In fact we will hereafter consider 2 possibilities:

1/ The configuration is axisymmetric, or exhibits a constant B on each magnetic

surface so that all the particles are passing. All the particles have integrable trajectories

close to the magnetic surfaces, the deviation scaling as pc. There exists, besides H and [x,

a constant of motion vdrift(x,p,s) # v(x) such that ^ ' " ' at a given x is

independent of p,s. In those situations, it will appear that the Onsager relaxation (29) and

the equation (28) implying the ambipolarity hold true at any collisionality.

2/ The configuration is general, but we assume a simplified behaviour of the

trapped particles: some class of trapped particles have integrable individual trajectories

close to the magnetic surfaces, the deviation being much smaller than the radial scale ~ r

of the configuration, but not necessarily ~ pc; the particles in the other trapped domains

experience large displacements ~ r across the magnetic surfaces at a velocity ~ VQI- It

will appear that the Onsager relaxation (29) is only insured if the latter particles are

detrapped by collisions long before they have completed a radial excursion comparable to

the radial scale r, i.e. if the detrapping rate is such that
Tdetrapping

(30)

PcThe condition y - « 1 implies the possibility of the Kruskal separation (Kruskal

1962) of a fast cyclotron phase <pc(x,p,s) from 5 independent slow dynamical variables,

that we may form with H(x,p,s), ^x,p,s) and the three coordinates

X(}(x,p,s) = x + rnVj^x—y+ O(pc
2) of the guiding centre. Any dynamical variable

Z(x,p,s,t) is a function Z(cpc,H,n,XG,e,t) which is 2JI periodic in cpc; the sign E of VQ//

Pcincluded in the argument will play an important role below. At all orders in -r~, \i is a

constant of motion, i.e. {H,n} = 0, and on the other hand the cyclotron frequency

o>c = {H,cpc}, the guiding centre velocity VG = {H.XQ}, the jacobian %=tv™ N •• v \

are functions of H,H,XG,£,S independent of cpc. The condition coc >> and
iccollision

together with the principle (15) imply that U and F are nearly independent of
"^relaxation

qpc: U # u(H,jA,XG,e,s,t) and F # f(H,[i,XG,e,s,t). We precisely define the function
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t*31 d(p
f(H,(.i,XG,E,s,t) as the cpc average j F-^-^ of F and the function u(H,^,XG,e,s,t) by

Jo -K

applying the relation (6) between H,u,and f. We choose the working dynamical variable

U(x,p,s, t) so that it is exactly a function U(H,JLI,XG, e,s,t) independent of qpc. It then
appears that the kinetic functional Z(U,U) given by the equations (10) is equal to 2(u, u)

Pc
at all orders in j - , and no longer involves the cyclotron motion but only the guiding

centre motion

(31)

where Fd3xd3p may be replaced by f 3 2jt dH d|x d3xG independent of cpc. With a small

1 1 dU du
error of order and , we replace S(—,U) by S(—,u) and S(U,U)

by S(u,u). The principle (15) then determines an autonomous relaxation of the function

u(H,|^,XG,e,s,t) by imposing that at each time

^ or-4S(-,u)+2Z(u,u)+S(u,u) (32)

is an extremum for all the variations of UCH.M^XQ, e,s,t) around u(H,|i,XG,e,s,t). The

principle (32) is equivalent to a gyrokinetic equation (Hazeltine and Meiss 1992) valid at

1 1 Pc
first order in , and at all orders in j - .

Again, we make the working assumption to be verified a posteriori that the

entropy S(u,u) given by the equation (14) achieved during the relaxation process is

approximately determined by the profiles n(v,s, t)=n(v,s, O-n^s) and

T(v,s,t)=T(v, s,t)-T0 . The equations (22) still express that the deviation u, now a

function u(H,(.i,XG,e,s,t)), achieves such profiles. At each time t, we associate to the

profiles n(v,s,t),T(v,s,t) the function ui(H,(i,XG,e,s,t) which approximately minimizes

S(u,u) under the constraints (22). Our working hypothesis means that S(u,u) # S(UI,UT).

We find that ui is still given by the equation (23a), but of course only if the constant of

motion v ^ ^ x ^ s ) # v(x) exists everywhere in space x,p. In fact we now write

^ n(w,s,t) H 3j(w,s,t)
T nJsT {T~^'~T— ( '
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where w is any dynamical variable which is both independent of q>c and close to v(x).

The equations (25,26) are then applicable. We have 2 possible situations

1/ In the axisymmetric or V//B = 0 configurations, we may take

w = vdrift(x,p,s) (33b)

For an axisymmetric configuration, the constant of motion V(Mt is given by the equation

(23b). In a V//B = 0 configuration, we have, TT— being the curvature of the flux lines

; a(x)=J* ( ( - ^ x | , ) • Vv(x))dx,, (33c)

For both configurations, —*% depends only on x and

2/ In all cases we may take

w = v(xG) = v(x) + ( V v ( x ) x ^ ) - mVi + O(Lpc2) (33d)

Let generally Ueven and u ^ be the even and odd components in e of a function

u(H,fi,XG,e,s,t). It will be important below that in all cases

H 3ft(frGX)
T " ~ 7 > T ' U l o d d "^"^ uIevenTo

Within the vectorial space (u) formed by the functions u(H,^i,XQ,E,s,t), the functions u\

associated to the various profiles n\v,s, t),T(v,s,t) via the equations (33) form a vectorial

subspace (uy). Within (UT), we define Uj to be varied around ui by changing

fi(v,s, t),T(v,s,t) in the equation (33a) into ff(v,s, t),f(v,s,t)

Ui_n(w,s,t) . ,H 3j(w,s,t)
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ai,
The functionals S(UJ,UJ) and ^-^-.U!) are then still given by the equations (25,26). We

define also the vectorial subspace (un) formed by the functions U(H,H,XG,£,S,0 which

satisfy the equations (22) made homogeneous by cancelling the RHS. We decompose u

and u in the form uj + UJJ and Uj + un , where the functions un and un belong to the

subspace (un). Under our working assumption S(u,u) # S(UI,UT), equivalent to IS(un,un)l

« IS(UI,UJ)I, the principle (32) states that at each time

/dU[ \
-2SI -^-.yij + 2(UI+UII,UI+UH) + S(UI+UH.UI+UH) (34)

is an extremum for all the variations of Uj and of un . Because the antisymmetrical form

2 superimposes to the symmetrical form S, we do not recover the easy way of the

weakly collisional, integrable situations, where the extremalization with respect to

un(J, s,t) was immediatly leading to the principle (20) implying an Onsager relaxation for

the function uj and thereby for the profiles n(v,s, t),T(v,s,t). The principle (34) gives a

priori no guarantee for such a relaxation: the sum 2 + S in the expression (34), once it

has been extremalized with respect to un(H,|i,xG, e,s,t), becomes a bilinear form

Sjgjjm^uj ,Uj) in u [andu I, but, because of the presence of 2, there is no obvious reason

for that bilinear form to be symmetrical. We will show that it is however the case under

the condition (30). The principle (34) will then become effectively equivalent the principle

(20) foru iorn , f .

One may verify by using the equations (31) and (33a33b33d) that S(uJ,uI)=0.

The bilinear form Sretjucet̂ uj ,iij) is then the value of the bilinear form in U],un and Uj,un

(35)

when it has been made extremum with respect to un within (un) (Nguyen 1992). That

extremalization means that (Z+S)(uI1,uII) + (Z+S)(uI,u1I) cancels whatever u n , which

imposes a linear relation UQ = Tui allowing to derive un from uj. It remains

Sred^Uj.u,) = Stuj.u^+^r+SXyi.Tuj). Generally, it may be shown that such an

extremalization in un of a bilinear form A(Uj.Uj) + B(un ,un) + C(uI,un) + rj)(uI ,un), if the

latter is symmetrical in u ^ and Uj,un, leads to a bilinear form in u[anduI which is also

symmetrical. On the other hand, the result of the extremalization process is obviously

unchanged if one changes un into Oun where O is a linear operator transforming the

subspace (un) into (urj) bijectively. Therefore the extremalization in un of a bilinear form

A^pU^ + B^Q ,un)+C(uI,un)+D(u! ,un) leads to a symmetrical bilinear form in U[ andU[ if

A(u[.U[) + B(uI1,Oun)+C(uI,OuII) + D(uI,un) is invariant when one exchanges Uj,un and
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Uj,un. Applying that result to the bilinear form (35), it appears that a sufficient, but not at

all necessary, condition for having Sreduoed(uI,uI)=SIEducecj(uI,uI) is that there exists an

operator O which insures

uj, u,) + (2 + S)(u n, Oun) + (2 + SXu,, Oun) + (-2 + SX^ , un) (36)

for the various components of U^UJJ and Uj.Uu. Our strategy to demonstrate the symmetry
Vf//

i'ui) 1S based on the parity operator P in E = [ v '., such that

,n,XG,e,s,t) = U(H,H,XG,- e,s,t

We will indeed show that the equation (36) holds true with O = -P under the condition

(30). For that we have to show that the various components of uj, urj and yn verify

#2(u I ,un) and|S(Ui,Pun) + S(u, ,un) |«S(u I ,u I) (37)

and

2(un,Pun)+S(un,PuD)#2(un,Pun)+S(un,Pun) (38)

In view of the equation (31), we write 2 = 2//+2i, where 2// and 2 i represent

respectively the parallel and the much slower transverse motion of the guiding centre

,u)=£ f -LvG/^-ud3xd3P; 2x(u,u)=J j l

We will use the fact that

2//(u,Pu') = - 2//(Pu,u' ) = +2//(u',Pu) , while 2±(u,Pu f) * 2x(u',Pu) (39a)

On the other hand, we will use the symmetry of the coulombian collisions with respect to

an inversion of the parallel velocities, which is expressed by the equation :

S(u,u') =S(Pu,Pu') or, by taking into account that PP is the identity

S(u,PuI)=S(Pu,ur)=S(ul,Pu) (39b)

equivalent to state that S(u,u') cancels if u and u1 have opposite parities in e.
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The first relation (37) is readily verified in view of the relations (33e). As

S(u,u') = 0 if u and u' have opposite parities in e, the relation |S(uj,Pun) + S(U[,un)| «

SCUJ.UJ) is satisfied if we have |S(ufev.en,uIIevai)|«S{ufcvrai,ufeven). We then notice that

S(u,u') couples functions u(H,n,XG,s,t) and u'(H,u.,XG,s,t) through products of the

same type, namely, either of the type J^- J^ - or of the type ^Ju V p — . By using

again the structure (33e) it then appears that the relation

l^uIevm'unevai)l < < : ^uleven'uieven^ l s sausfied ^ a similar relation holds through the

entropy (14), namely if IS(iuievenUunevenOI « IS(uieven.uIeven)l- The latter relation is a

consequence of our basic working assuption IS(un,un)l « IS(UJ,UJ)I.

In view of the relations (39), the relation (38) is verified if SKu^uu) or Z/:{un,un)

Vp i Pc
largely dominates Z_L(UJJ,UU) . As the ratio 2j_/2// reflects the ratio v ~ y-, the

PcOnsager character of the relaxation is formally insured at lowest order in —,

independently of the collisionality (Sugama and Horton 1996). However problems arise

when the functions UQ, un exhibit very low derivative ^ — - The key difficulty occurs, at

low collisionality, when there exists trapped particles performing displacements ~ r

across the magnetic surfaces at the velocity VQI- Such large radial displacements

combined with the radial temperature and density gradients produce an enhanced

perturbation un localized within the considered trapped domain. For a collision rate

smaller than the bounce frequencies, that enhanced un is independent of the bounce

phases. This means that Z/Xu^Un) cancels so that the relation (38) now demands that

S(un > Un) largely dominates 2^0^,un) .The considered un is not a constant of motion if
1 Vr i

we exclude the extremely low detrapping rates « allowing to the
"tele trapping

particles to complete an excursion ~ r without being perturbed by collisions. This
V r | UnUn

means that Zx(un,un) cannot cancel: per particle, we have in fact Z_L(un,un) ~ -j=- 5 .
To

UnUn

Then for S(un,un) ~ 2 — t o ^ar8eb' dominate 2x(un,un) , the condition (30) must
'O^ielrapping

be fulfilled.

With a bilinear form S ^ ^ U j ,U[) in UJ.UJ now symmetrical, the principle (34)

becomes equivalent to the principle (20). The first entropy term is given by the equation
(26). The quadratic form Si^^^u^ ,Uj) in Uj is the value of the expression (35) with

u[=uI, namely ^U^UJJ+^+SXUQ ,-Pun)+(2+SXuI,-Pyn) + (-S+SXyi,un), made

extremum with respect to un within the subspace (UQ). AS that expression is symmetrical
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in UJJ^U , the value of Sretjuce^uI ,U[) is the minimum value with repect to un of

^(uj.u^+CS+SXun.-Pu^+CI+SXu^-Pu^ + C-S+SXuLUn). Since -Pu = -ueven + "odd,

2(u,u') = -Z(u',u) and S(u,u') = 0 if u and u' have opposite parities, we find that

tei -Ui) ' s the minimum in un within (un) of the expression

S^ui ) +S(uIIodd,uIIodd)-S(unemi)uIIev.ai)+224ineVen'ynodd) + QUi.Un) (40a)

where Qyi,yn)=2S(uIocjd,un(Xjd)- 2Z(u{, u^e^)- We recover our two basic possibilities:

1/ We consider an axisymmetric or V//B = 0 configuration and Uj is expressed in

terms of the constant of motion v drift via equationsof type (33a,33b).Then S(U],uneven) =0

and

QuI,un)=2S(ufcdd,u]Iodd) =2S(uI.uIIodd) (40b)

The fact that Uj enters into Sretjuce(̂ Ui ,Uj) via a bilinear form of type S(uj ,u') implies that it

enters by the differences of 2 derivatives (-^)<jjr of the type (24) , if we still assume the

same temperature for all species. As furthermore — } ' " ' depends only on x, we

have all the ingredients to recover the equations (27,28,29).

2/ We use for ur the expresion of type (33a,33c) in terms of V(XQ), which is

applicable in all cases. Then Uj is even in e and it comes

uj, u^ = - 22(u t, u Deval) = - 22x(u x, unemi) (40c)

The profiles n(v,s, t) andX(v.t) enter into S^jm^Uj ,Uj) by derivatives —jj- and —•=- and
~ ~ noc 'v Toav

we still recover the equations (27,29). However the equations (28) are no longer insured.

The strongly collisional Pfirsch-Schliiter regimes are an exception from that point of

view. Indeed the minimization of the expression (40a,40c) with a strong collisionality

imposes that Unevm cancels S(unev«i-Uneven), which means that unevm has the form

a(xo,s) + b(xo)H. At each x point, a and b make extremum
22//4}nevai.yncdd) "22:J-(yievm 'unevm) • T h i s imposes that unodd produces at each point the

Pfirsch Schluter parallel particle and energy fluxes due to the gradients UJQ^ . The value

of Sj^ju^UpUi) is finally Ŝ UpUi) plus the minimum value of S^nodd-yiicxkl) w ^ Ĥodd

submitted to that constraint. The Pfirsch Schluter parallel particle and energy fluxes and
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, c , • • • , 3n(v,s,t)therefore that minimum are invariant if one changes —,• ... intono(s)dv

/ ,~', + e(s)xconstant. This is true also of S(Ui,U]) since—^ ° depends only on x.

The equations (28) result from these two invanances.

A striking point is that to derive the Onsager behaviour of the relaxation from

the kinetic equation in collisional or non integrable situations, we have been

obliged to use the symmetries of the individual motions and of the collisions with

respect to an inversion of velocities along the magnetic lines, so that the equations

(39) hold true. Typically our demonstration demands that the interaction

hamiltonian is invariant when one changes the sign of the parallel velocities. We

have seen on the contrary in the § 2.2 that in weakly collisional and integrable

situations the Onsager behaviour occurs whatever the weak interaction as long as it

is hamiltonian. One must stress here that the relations (37,38) derived from the

relations (39) are sufficient, but not at all necessary to insure the symmetry

SreducKj(uI,uI)=Sreducec^iI,uI) implying an Onsager relaxation. It remains possible

that the latter may be established via another line whatever the interaction

hamiltonian. The fact that in all cases an Onsager relaxation demands that the

plasma layers on the successive magnetic surfaces are independent enough

suggests the following line. At the starting point, one would decompose the plasma

into layers of width D « r delimited by a set of successive magnetic surfaces and

fully isolated from each other by thin barriers of width d « D localized around

each of these surfaces. In a magnetically confined toroidal plasma, such barriers do

not represent a huge perturbation: they may be obtained by suppressing the

interacions between the particles and also the variations of the magnetic intensity B

within the thin intervals d, assumed » pc. The presence of the barriers allows

stationnary states of the plasma, where the temperature and the densities are

constant within each interval D but are allowed to vary from an interval to the next.

The suppression of the barriers, i.e. the reintroduction of the interactions and B

variations, would then be considered as an hamiltonian perturbation responsible for

a diffusion of the plasma in the space of these stationnary states towards its

thermodynamical equilibrium. It is conceivable that the considered hamiltonian

perturbation is weak enough so that it finally induces transition probabilities

verifying the detailed balance equations leading to an Onsager relaxation of the Van

Kampen type.
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3. HELD-PLASMA SYSTEMS

3.1 VARIATIONAL PRINCIPLES

We now assume that the confining field B =VxA, E=-Vty-^ is coupled to

the plasma by the Maxwell equations and study the slow relaxation of the system formed

by that field and the plasma For the system to be isolated, we surround it by an

hamiltonian particle barrier which is also perfectly conducting, so that it forbids any

transfer of energy through the Poynting vector 7—ExB. Over the barrier the tangential

component At of the vector potential A is then frozen and the potential W is assigned a

null value. In a toroidal plasma, the 2 barriers are of course installed on 2 frozen magnetic

surfaces flanking the plasma. Under those boundary conditions, the field A,1? in the

plasma is determined by the densities of electric current I(x,t)=2 I FeVd3p and charge

p(x,t)= 2 I FedsP developped by the distribution of the plasma particles. We use the

gauge divA = 0. As the field is slowly evolving, we may assume the "electrostatic" field
-dA

much larger than the "inductive" field -5—. The Maxwell equations then reduce to

VxVxA = [xo(I + E0"~~5T"~) and to the Poisson equation eoA*? = -p and are equivalent to

state that, at each time, the field A,W under the above boundary and gauge constraints

makes extremum the lagrangian

f (^(W?-1L(VxA)2y3x + f (I-A-p^x (41)

(p-eA)2
I(x,t) and p(x,t) being kept constant when A, *F is varied. Since H = i*-^—— + eW, a

variation 5A,6l{/ induces a variation 6H = **- • (-e6A) + e&W = - eV. 6A + e&W

so that the variation I (l-bA-pbW)d3x may be replaced by - Y I F6Hd3xd3p. In fact,

the dynamical variable H(x,p,s,t) at a given time t is a functional of the field A(x,t),
(p-eA)2

^(x.t) at that t (since H = ^^—— + eW), a situation that we will express by the notation

H(x,p,s,t) = H(x,p,slA,W). The principle (41) is equivalent to state that the field A ,¥

makes extremum
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-Mo

+ y( V Q ( S ) T O ,.„exp (~H-—— —-' --T->-'}d x d p ( 4 2 )

U(x,p,s,t) being kept constant when A,^ is varied.

When the system reaches its thermodynamical equilibrium, the field A,W takes the

value A0(x),lP0(x) satisfying the static boundary conditions but corresponding to the

electric currents and charges Ig(x),po(x) produced by the maxwellian distribution (5).

Obviously Io = O so that the magnetic field B0 = VxA0 is the vacuum field achieving the

fixed magnetic fluxes ® At-dx across the various contours drawn over the field-plasma

barrier. By positioning close enough the 2 tone barriers flanking a toroidal plasma, the

practical magnetic configuration may be reproduced. The relaxed electric potential Wo,

assumed to cancel on both barriers, is determined by the Poisson equation -e0AxI;
0=p0

with the charge density Po=Sevoexp( ~ ) resulting from the distribution (5).

Assuming that 5]evo=O' the solution is Wo = 0. implying constant relaxed densities

no(x,s) = vo(s) and po = 0.

At a given time, the deviation U entirely determines through the principle (42) the

field A,1? and the hamiltonian H, which are therefore functionals of U. We express that

situation by writing

H(x,p,s,t) = H(x,p,slU)

A(x,t) = A(x,t) -A^x) =A(xlU) ; W(x,t) = W(x,t) -W^x) = W(x,t) = W(xlUX43a)

The functionals A(xlU), W(xlU),H(xp,slU) depend only on the constants vrj(s) and To in

the equation (6) and on the boundary conditions imposed to the field A^. A differential

variation dU induces variations dA=A(xlU+dU)-A(xlU), dW = W(xlU+dU)- %xlU)

and also a variation dH = H(x,p,s I U+dU) - H(x,p,s I U) = -eV. dA + edW. There

exists at each time t a well defined linear operator G acting in the space of dynamical

variables functions of x,p,s at that t , such that, whatever the dynamical variable dU

dH=G(dU) (43b)

The kinetic equation is still equivalent to the principles (7) or (11). However, the set

(13,14) is no longer valid in the present case where the hamiltonian H(x,p,s,t) depends
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on t, since dF(***x)
 i s n o w g i v e n b y ^E= F(pdU__ ^H_) instead of F ^ . We have

in fact ~ = G ( ^ ) so that ^ = ̂ ( | ^ - G ( ^ ) ) . The equation (13) becomes again

valid if we replace the definition (14) of the bilinear form S by the new definition

(44)

The principles (15) then give exactly at each time t the variation -3--. It is crucial at this

point that the deviation U imposes a each time the state of field-plasma system, via the

principle (42) for the field A(x,t),W(x,i) and the hamiltonian H(x,p,s,t), and then via the

equation (6) for the distribution function F(x,p,s,t). On the other hand, for principles of

type (4) to be eventually recovered, it is essential that S(U',U") = S(U",U'). It is the

case because of the principle (42). Indeed, the latter implies that in the space of dynamical

variables at a given time, a variation dU induces variations dA, d^ and dH = G(dU)

such that the differential element 5] I ° y> exp( ~ j yMdyidjp is integrable, since
» J (2jiTom) " Ao

it is equal to d(J (y(VW)2- ^L.(Vx\f)d3x) . That integrability means that 2 different

variations dU', dH' = G(6LP) on one hand and dU", dH" = G(dU") on the other must

produce equal values of Y f V° ^ e x p ( 4 ^ ) " ^ ^ dU'dHHd3xd3p and

v ° CTpFSft^)~dHr,f ^"dRdgxdgp . The symmetry S(U',U") = S(U",U')

results. It is worth stressing that it results from the lagrangian structure of the Maxwell

equations, expressed by the principles (41,42), and not simply from the conservation in

time of the energy of the field-plasma system. An important consequence of the

symmetry S(U\U") = S(U",U') is to allow to identify S(U,U) at second order in U with

the entropy S of the system with respect to the thermodynamical equilibrium U = 0, by

using the same argument as at the end of the § 2.1, namely, the fact that

) and the equations (13,16).

Again an Onsager relaxation is immediately recovered in the weakly collisional

regimes where 7 — -— and T—i are small compared to -=-^—, if at each time t the
••collision ^relaxation xkinetic

motion in the hamiltonian H(x,p,s,t) is integrable, i.e. if at each t there exists 3 angular

variables <^(x,p,s,t) and 3 action variables J(x,p,s,t), with H(x,p,s,t) = h(J,s,t). The

arguments used in the § 2.2 (namely, the low collisionality implies U # u(J,t,s),
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F # f(J,t,s) and the choice U = u(J,t,s) cancels Z(U,U)) still allow to pass from the

principle (15) to the principle (18). At this point the fact that the dynamical variables

J(x,p,s,t) are no longer static but depend slowly on time could make an important

difference with respect to the static situation of the § 2.2. Indeed — ;P ' . ' in the

• • i n n u u i A • .u • • i /icn * dll(J,S,t) du(J,S,t) dJ(X,D,S,t)
pnnciple (15) should lead in the pnnciple (18) to — -^—- + — a i * —Hsf

and not simply to \f(du(J,s,t);dt). However, we may safely use the principle (18) with

— "w ' as it stands. This is important since the vector A(t) representing at each time t

the function u(J,s,t) of argument J,s then satisfies the principle (18), on the basis of the

equations (19). To establish that point, one first notices that at a given t the 3 dynamical

variables J(x,p,s,t) are fully determined by the field A(x,t),V(x,t) at that time t, or in

other words: J(x,p,s,t) = J(x,p,slA,W). Similarity the function h(J,s,t) is a functional

h(J,slA,lI/). Of course those notations imply that A,*P belongs to the set E of the fields

creating integrable trajectories. The key element is then the form of the variation

dj(x,p,s) = J(x,p,slA+dA,lI/+dlI;) - J(x,p,slA,W) corresponding to a variation

dA(x),d*P(x) of the field \,W within E: namely, the dynamical variable dj is a sum

2Xn(J,s)exp(i n-<I>) over the triplets n of integers (ni,n2,n3), where the term X O _/QQQ\

cancels (Rebut and Samain 1969, Samain 1970). This particular form of dj , together

with the fact that d3\d3p = d3<W3J, makes that ^-r • T - disappears when one passes from

the principle (15) to the principle (18). It also allows to replace in the principle (42) the
-H(x,p^lA,W) + U(x,p^,t) -h(J,slA,W)+u(J,s,t). 3functional exp( T —)d3xd3p by exp(—— T-^— )(2JI) d^.

That principle then guarantees a direct link from the function u(J,s,t) of argument J,s to

the field A(x,t), W(x,t), and thereby to the structure in x,p of J(x,p,s,t). The knowledge

of that structure allows in turn to calculate the coefficients S^andS^, given by the

equations (19b). Finally the Onsager scheme for the vector A(t) representing the function

u(J,s,t) relies on the principle (18) equivalent to the principle (4) through the equations

(19), but as well on the pnnciple (42) which allows to know what sort of bilinear forms

S ^ A ^ andSjfcA^ must be employed.

We now derive convenient expressions of S(U',U") at zeroth order in U, i.e. of

S(U,U) at first order in U. We remark that if U = u(Z(x,p,s,t),s,t) and if Z at given x,p

has a relative vanation ~ U during the relaxation, ~^r- "3r (1+O(U)). This will allow

below to identify S ^ . U ) wilh S(^,u) for U =u(H,n,Vdnft or XG,S,0) .At first order in

U, the current and charge densities I(x,t), p(x,t) at time t are linear functionals I(xlU),

p(xlU) given by the equation (6) (where W =W, 2evo=O)
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I(x,t)=I(x)U)=Zj eFV^dgp (45a)

p(x,t) =p(xRJ)=2j eF(-U

The functional A(xlU) andW(xlU) also become linear in U, and

G(U)= -eV« A(xlU) + eW(xlU), so that the expression (44) becomes

S(U,U)=-2 f ^2FUU
s J 2T 0 Q

- 1 ^(A(xlU) • I(x|J)- tyxlU) pCxy^x (46)

In principle the electric potential ijr is determined from the charge density p via the

Poisson equation. If the spatial scales in the plasma structure are much larger than the

Debye length, one may a priori impose p = 0, divl = 0. This implies that p(xlU) = 0,

and, in view of the equation (45b), the functional W(xlU) is determined in terms of U by

the equation

Fe2d3p
(47)

Putting p(xlU) = 0 in the expression (46), where W(xlU) is now given by the equation

(47), we obtain

S(U,U)=-2[ -F-2(U-e$(xlU))(U-e#(xlU))d3xd3p
s J 2T0

- J - ( A(x IU)- I(x IUXI3X (48)

When one builds up a deviation U(x,p,s,t) in practise, one starts from a set of values of

densities ii , temperatures, macroscopic velocities, etc, and one fits U to these values

through the equation (6). The equation (47) leads to use the values of the electric potential

\|f as a similar ingredient for building U. The potential ijr and its working version ¥ then

enters into the functional of the principles (15,18,32), which must be extremalized with

respect to W on the same grounds as with respect to n , etc. That extremalization with
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respect to W around xy will express the neutrality constraint p = 0 within the evolution of

the system, and therefore will express that divl = 0. Let us notice that, with divl = 0,

the Maxwell equations now reduce to VxVxA = \IQ1: for a given U, the current density

I(xlU), provided by the equation (45a), creates the field A(xlU) via the Ampere law

VxVxA = û )I and the boundary condition A t=0. The symmetry S(U,U) = S(U,U)

based on the expression (48) then implies the "reciprocity theorem" (Landau and Lifshitz

1960)

j (A(xlU) -I(xlU))d3x = ( (A(xlU) -I(xlU))d3x= t ^-(

In a toroidal configuration the field A(x,t) imposes at each time the form of the magnetic

surfaces, i.e. the volume v(x,t) of the magnetic surface passing by x. Via the integrals

<j> A-dx , it then determines the poloidal flux 2jnppoi(v,t) embrassed by the major turns

drawn on the magnetic surface of volume v, and the toroidal flux 2n;iJ)tor(v,t) embrassed

by the minor turns. At a given t, the deviation U, since it entirely determines the field

A(x,t), determines as well the functions typoi(v,t) and ^tor(v»t) of v. At the

thermodynamical equilibrium, the volume function v(x,t) has taken the relaxed form

vo(x) and the flux functions T|>poi(v,t) %or(v,0) the forms i|>0pol(v), V0tor(v)- We

introduce the functional in U

^d(vlu)=$piv>o=^vj)-W

which are linear at first order in U. We will transform the second term in the expression

(48) by taking into account that we know a priori that

divl = 0 ; IxB # Vp ; p # p(v(x,t),t) (49)

p being the plasma pressure. The equations (49) imply that the current density I(x,t)

produces well defined amperages 2jUpoi(v,t) and 2jtitOr(v,t) across the minor and the

major turns. We define

n - dlpol(v,t) . . j ._ dltQr(v,t)
t) - —"37 , ltor(v,t) - ^ r

The mechanical equilibrium IxB = Vp imposes that (Mercier 1974, p 33)
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We base the topology of our minor and major turns, which then detennines the functions

"»jWv,t), Itor<v,t) and typoi(v,t), Ipoi(v,t), on Hamada angular coordinates 6Ha(x,t),

cpHa(x,t) defined modulo 2JI, parametrizing each magnetic surface v. We define the minor

turns Fniin on a surface v by varying OHa^Ha by 2JI,0 and the major turns rm a j by-

varying 8Ha5<PHa by 0,2JI. The use of the Hamada coordinates allows to write (Mercier

1974, p 37)

I(x,t) = Wv,t)VvxV8Ha + Ipol(v,t)VvxV(pHa

W v , t ) = - ^ I ( x , t ) . VcpHa(x,t) ; Ipol(Wt) = - J -^ I (x , t ) . V9Ha(x,t) (50b)

where v,0Ha,<PHa stand for v(x,t), etc. By taking into account the equation (45a) we then

obtain

The equation (50a) links Itor and Ipoj to the profile of the pressure

p(v,t)= Xn(v, s,t)T(v,s, t), expressed in terms of U via the equation (6)

ftv.t) = p(v,t)- Po(v,t)=|:n0T0(ni + T t) =%j |FHUd3p='P(v1U) (51b)

Let us stress that, for a given U, the functional Itor(vIU) and Ipoi(vlU), defined by the

equations (51), determines I via the eqs (50b) , then A(xlU) via the Ampere law

VxVxA = n0I and the boundary condition A t =0, and thus finally the functional

^fVr(v 'U)'^'pcf(v 'U)- A ^ey P°*nt ( see Appendix 3) is that the last term in the

expression (48) may be written

so that

S(U,U)=-2f ^(U-eW(xlU))(U-e^(xlU))d3xd3p
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U))iv (53)

3.2 NEOCLASSICAL TRANSPORT

With respect to the imposed field situations considered in the § 2.2 and 2.3, the

main difference is that the entropy S(U,U), now given by the equation (53), is influenced

by the average velocties of each species through the electric current densitiy I which

controls the magnetic energy of the field plasma system. Our working assumption that

S(U,U) is simply determined by the average density and temperature profiles

n(v,t,s) = no(s) + 'n(v,s,t) and T(v,t,s)=T0 + T(v, s,t) is no longer realistic. We must add the

poloidal and toroidal current profiles Ipol(v,t) and Itoi{v,t), and of course also the average

electric potential ^(v, t) = *P(v, t) over each magnetic surface v. In fact we have to add only

one of the profiles Ipoi, ItOp because of the equations (51b), we may consider the profile

Ipol, for instance, as determined by the profiles n,T,andI(cr . Accordingly, we will take as

working assumption to be verified a posteriori that S(U,U) is determined by the profiles

n(v,s, t),T(v,s, ,t), vI/(v,t)ardI([X(v,t). The equations expressing that the deviation U

achieves at a given time t the profiles n(v,t,s) andT(v,t,s) are driven from the equations (6)

and are quite similar to the equations (22). Those expressing that U achieves the profiles

W(v, t) and Itor^t) are driven from the equations (47) and (51). The whole set has the

form

noexf<-H.T0)

exp(-HAr0) 3 U p H , ( , k
^ ) 1 1 * ^ ^ 1 1 8 ( 5 4 )

In the last integral, x is a position (arbitrarily chosen) on the magnetic surface of volume

v, of equation v(x,t) = v.
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Let us first consider an axisymmetric tokamak in a weakly collisional regime. At

each time the deviation U is nearly a function u(J.s,t) of 3 action variables J(x,p,s,t) for

the hamiltonian H at the considered t, which then satisfies the principle (18). With

S(U,U) taken at first order in U, we may in fact express U as u(J,s,t) with J meaning the
mV2

3 constants of motion H = —— + e ^ x . t ) , \i and the constant of motion

vdrift(x>P.s>0 # V(x,t) given by the equation (23b). We will pass of course from the

principle (18) to the principle (20). The first step is to associate to the profiles

fi(v,s,t),T(v,s,t),vP(v,t)andIter(v,t) a deviation ui(J,s,t) which approximately minimizes

S(U,U) given by the equation (53) under the constraints (54). The second term of

S(U,U) is directly imposed by the given profiles n,T,andI((T which determine Ipoi via the

equations (51b) and then ty^^Li from ItOr. Ipoi via t n e Ampere law. Therefore ui has

only to minimize the first term S' = 2 j ^ ^ ( U - e ^ ^ i j ^ p . Accordingly UT contains a
~J 2TQ

term of type (23a), namely UT.1 = jj- + j ^T~ ~ ̂ ' T " g

as the ordered kinetic energy associated to average velocities of the various species is

small, the odd part of UT.' has a small influence on S'. To obtain the actual UT, we add to

ui' a further odd constant of motion, which again does not influence S', but allows to

satisfy the last constraint (54) involving Itor- That term is built up from e(H -

M'Bmax(v(jrift,t)), where Bmax(v,t) is the maximum value of the magnetic field B over the

magnetic surface of volume v and e is either 0 in the trapped domain H - (xBmâ  < 0 or
V//

j - ^ in the passing domain H - nBma^ > 0. We are in fact led to take

% 55 + T̂  + (T0 2}

+e(s)£ H z i ^ v ^

giving rise to a derivative -^- at a given x which, besides the isotropic term

J, '' ' 'V, exhibits the following directional term



- 4 0 -

The functions a(v,t), b(v,s,t), c(v,s,t) are found by substituting the expression-(56) in the

constraint (54) involving I. An important point is that, if l\ ' " ' ' is independent

of p,s, the function b(v,s,t) appears to be independent of s. It is indeedthe case in

tokamaks, where a=nv2Bnm(^,noe
1 - ^ p V ^ ^ , ) " (with vthermal = (=^)1'2) and b = c

1 • We build up U!(J,s,t) by replacing the

profiles n\v,s, t),T(v,s, t),W(v .ty.I^v.t) in the expression (55) by the working profiles

Q(v,s, t),T(v,s,t),W(v,t), l ^ v . t ) , to be varied around n(v,s,t),f(v,s,t),^(v ,0,1^.^,0 .

After insertion of Ujandiij in the expression (53) and elimination of Ipoi by using the

equations (51b), one finally obtains the first term of the principle (20) in the form

+2J Z?-(-

1 5'v^ v, t) v a g(v, s, t) _ T(v, s, t)

The second step to apply the principle (20) is to minimize S(ui+un,U] + un) for given ui

when one varies un(J,s, t) submitted to the constraints (54) made homogeneous by

cancelling the right hand side. We still obtain the structure of the corresponding minimum

Sredl)Ced(uI,u1) by using the fact that U[(J,s,t) enters into S{u[ + un,uI+ un) and therefore
dU]

into Sj^jy^Uj ,U|) through differences of 2 -^- for 2 different p,s at the same x. In

view of the expression (56) one first finds, assuming T(v,s,t)=T(v,t), that
Sreduced(u1,uI) is a sum for all possible v of quadratic forms in

dfl(v,s,t) , e(s)djg(v,t) v aT(v,t)

+ Y(v,t)YY ^ ^

v. 0 XSY + 2 £ KS(v, t) X sl te + 2Hy, t)Y I t t ) dv (58)
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, r T • i i edvdrift̂ PiS.t) . . , ,where of course ass' = as's. In axisymmetnc tokamaks, ^ ^ — c is independent

of p,s, which implies that b(v,s,t) is independent of s. Taking also into account that

2no(s)e(s)=O, it then appears that the differences of 2 - ^ for 2 different p,s at the same

• , ., . 3n(v,s,t) e(s)dP(v,t)
x are invariant if one changes / \a + T"5 i n t o

n^s^v igoiv

-J W + j~7 ' + e(s) x a constant. This means that S^jy^dij ,u r) is invariant

when one changes Xs into Xs+ e(s) x a constant, that is to say

| ] ^ s ) K s = 0 (59)

We then apply the principle (20) by extremalizing -4S(-^-,uI)+Sreduced(u1,uI) as it

appears from the equations (57,58) with respect to the working profiles

3(v,s, t),T(v,s, t),W(v,t), I ^ v , t) around the actual profiles fi,T ,Wand 1^. It comes

^ v ^ 1 s+n°(s)a'MJIDr(v,ty3v)
afi(y,s,t)_
— — ^ v ^ 1 s+n°(s)a'MJIDr(v,ty3v)

e(s')d%v,t)A _ 5T(v,t) T , .

O ^ ^ ^ l ^ ) (60a)

_ 8 ( y jffiCvAt) e(s)a%v^,t)

(60b)

(60c)

(2JI)2 E _ / v ^ / * ' s > 0 ^ ^ ^ ( v . s , t ) ,
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Since the ratio - r — , \ ,, is the safetv factor -—-—, the quantity -r , ,,-, is
3%i(vt)/av - v 8 * ^ ( v o / a v

readily identified with — x the inductive voltage I E;/dx; along the flux lines per major

turn. The equations (60) express the relaxation of the profiles

v t)
n(v,s, t),T(v,t),^(v,t)andItor(v,t) if one uses the Ampere law to relate ^

an(v,s,t) af(v,t)pd(,) a^v.t)
to — ^ - — . — ^ 7 — and ^ n , via the equations (51b), to — V , — l _ L i ; _ ^ i — .

The considered situation is general in the sense that the shape of each magnetic surface of

volume v and the flux functions ippcj(
v.O»'Vtor(v>t) m a y e v o ' v e i n the course of time.

However, since we have used an expression of S(U,U) at first order in U, some effects

are absent in the eqs (60): for instance the energy transfer from the field to the particles,

namely t E I d 3 x = | ( — ^ 1 ^ + ^ M l ^ j i ^ d v , being of order U2, does not

appear in -^-; it may be introduced by using the general expression (44) of the bilinear

form S(U',U"). The minor turns r^nor along which the Hamada coordinates 0Ha><PHa

vary by (2;t,0), rather than the major turns rmajo r along which 6Ha><PHa var>' by (0,2jt)t

have been chosen to play a preferential role in the equations (60), whose sructure must be

invariant if one changes of Hamada coordinates, passing from B^a and cpna to

9'Ha = I 0Ha+w (PHa and <P'Ha = P QHa+^^Ha where the integers / , m , p , q are such

that Iq - mp= 1 (see Appendix 3). The integers p and q determine the new minor turns

r'minor = q r m i n o r - p r m a j o r along which 0'Ha.cp'Ha vary7 by (2K,0), embrassing the

new "toroidal" flux V t O r = ^ Vtor - P ^pol and the new "toroidal" current

I 'tor = <7 Itor - P Ipol- ^ appears that the quantity E given by the equation (60c) is

invariant. The new coefficients cc'ss', (3's, etc are readily derived from the invariance of

the entropy production rate (58) expressed in terms of XS,Y,.I ̂  on one side and of

Xg.Y.X^ on the other, by taking into account the relation

dp/dv
=

JVj dp/dv
Ytrr = qltrr- pltrr—, rr D 7= derived from the equations (51b). It
-tor ^ -KT r-tx Qy^fc y

i2KfdWtx/dv ^

appears that for a given safety factor -——** ;• the new equations (60) are determined by

the integers p and q which determine the new minor turns T^nor. The structure of the

equations (60) is therefore fully determined by the topology of the flux lines and that of

the minor turns.

The above analysis may be extended to the collisional or non integrable situations.

Of course the dynamical variables UandU are now functions

U ^ . H . X Q , e,s,t)andu(H,H, XQ,e,s,t) and one must start from the principle (34) rather than
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from the principle (20). The analysis of the § 2.3 allowing to pass from the principle (34)

to the principle (20) is still applicable. The function ui is now given by the equation (55)

in the axisymmetric configurations or the V//B = 0 configurations for which the constant

of motion v ^ exists. In all cases one may use the equation (55) by replacing Vdrift by
duf

V(XG). The functional -4S(-3-i,uI) is given by the equation (57) and S ^ ^ ( U T , U T ) is the

minimum of the expression (40a) with respect to UJJ , now submitted to the constraints

(53) made homogeneous by cancelling the RHS. Finally, the equations (58,59,60) apply

in the axisymmetric or V//B = 0 configurations. In the general case, where one cannot

state that all the trajectories are integrable and close to the magnetic surfaces by a distance
~ pc, the equation (59) does not apply. The ambipolarity of the particle fluxes, i.e. the

equation (60c), is then introduced by the extremalization with respect to ^(v,t) when

applying the principle (20). Sugama and Horton have shown that the ambipolarity allows

to build up an Onsager matrix which does not involve the electric potential (Sugama and

Horton 1996). This is quite clear in a variational presentation of the Onsager relaxation:

the working potential W(v,t), since it does not appear in the expression (57) of

—4S(-TJT-I,UI) , must minimize the expression (58) of Sjgjm^fej, Uj), which then becomes a

quadratic form in n(vJs,t),T(v,t),ltr(v,t) only.

In an axisymmetric configuration, where the equations (59) hold true, W(v,t) is

involved neither in -4S(-TT-I,U|) nor in Sretjuced(uI, Uj). When one applies the principle

(20), the extremalization with respect to lP(v,t) gives no information . The ambipolarity

(60c) results from the equation (59) directly. The electric potential W(v,t) and the

associated rotation of the plasma along <p around the major axis are let free by the

principle (20). However this is only true as long as the inertia and the viscosity effects

v,t)
associated to that rotation are not taken into account A strong potential gradient

which represents the rotational velocity at a given x of the various subspecies p,s. of the
duTplasma. That gradient enters into Sreduced(uI,uI) by the differences of 2 (-jr^)tSrrot taken at

the same x for 2 different p,s , i. e. by the differences of
dQ(V0 dQfvt) RroYn1:(vA-v(x,t)) = — ^ - — T— . For reasons of parity in V, there is no

nt Qv edtypj/dv

dUi
coupling between such differences and the differences of 2 (-^) ( j r due to
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7H' "a .•' ' -tcr^v' ^ • Therefore the rotation enters into ^ j ^ ^ y ^ U ] ) by a decoupled

quadratic form I av̂ 3Ccsit>, (v, t) ~f, ~>, ,' dv, On the other hand the term (3-^dir

rot* mV = RQmVq; of \x\ contributes to S(UI,UI), given by the equation (53), by a quantity

I TVTT-QC2^2d3x , equal to ~ - x the rotational kinetic energy. It then contributes to

-OS^'.u,, by 2 5 / ^ . When

one applies the principle (20), the extremalization with respect to I£(v,t) around W(v,t), or

equivalently to Q(v,t) around Q(v,t), provides the relaxation equation

inertia "3r = ^-<aviscosity 3~)- This expresses the the balance of the inertia and

viscosity forces along cp, but as well the ambipolarity of the particle fluxes: the radial

polarization current due to the variation in time of the radial electric field is compensated

by the radial current due to the viscosity forces.

3.3 TURBULENT SITUATIONS

We will now try to extend the above results when our isolated toroidal field-

plasma system involves a saturated turbulence, whose level relaxes towards 0 together

with the general deviation from the thermodynamical equilibrium. That saturated

turbulence is the consequence of the initial situation, either directly or through an

enhancement by instability. We will assume hereafter weakly collisional regimes. Let us

begin by a situation where the consistent field A(x,t) W(x,t) remains quasi static,

although it involves a complex component perturbing the configuration. It is convenient

to take as a guiding example a perturbation creating magnetic islands on a set of resonant

magnetic surfaces. A first possibility is that the island chains are well separated so that,

between the island chains and within each island, a magnetic surface passes through each

point x, by embrassing the volume v(x,t) and the fluxes 4Wv>0, VpoK^O- Of course

the magnetic surfaces exhibit a different topology between the island chains, where they

are nested around the main magnetic axis, and within each island where they surround a

secondary magnetic axis. The situation remains similar to those studied above: one may
AT *** ^ *

expect an Onsager relaxation for the vector A(t) representing the profiles n.T.Wand 1 .̂

on the successive magnetic surfaces between and within the islands, if the plasma layers

around these surfaces are independent enough. In our weakly collisional regime, such an

independence of the layers demands that the particle motion is integrable and close to the

magnetic surfaces. This is typically the case if we neglect V,/B so that all the particles are

passing. We may then assume the existence of 3 angular variables <I>(x,p,s,t) and 3
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action variables J(x,p,s,t) for the Hamiltonian H = h(J,s,t): for passing particles and a

large safety factor we have Ji = —\i, J2 # etptor(v(xG,t),0,

J3 # eTppoi(v(xG,t),t) + RraVo//. Of course, the action variables J(x,p,s,t) changes of

structure with respect to x,p when one passes in the phase space x,p from a type of

trajectory topology to another, i.e., in our guiding example, when one passes from an

island to a space between 2 island chains. The weak collisionality imposes that, in each

domain DJ corresponding to a type of trajectory topology, the deviation U(x,p,s,t) is

nearly a function u(J,s,t). The function u(J,s,t), continuous in space x,p, changes of

structure with respect to J when one passes from a domain DJ to another. This does not

prevent that function to satisfy the principle (18) implying an Onsager relaxation on the

basis of the equations (19). One may indeed show that the principle (18) may be applied

at a given time by freezing the various domains DJ. Within or near small islands, one

must really use the 3 action variables J to express U as u(J,s,t): if one expresses U as
u(J,t) with J meaning the 3 constants of motion H, \i and Vdrift widely used above, it is

not guaranteed that S(9U(Xj{>>S>t),U(x,p, s,t)) is safely replaced by ^ p

when one goes from the principles (15) to the principle (18). In each domain DJ the

function u(J,s,t) then reflects the profiles ri.T.Wandl^ , expressed versus %or rather

than versus v (since J2 # etytOi{xG,t)). With that small change, the principle (20) is still

applicable on the basis of equations of type (55,57,58).

Another regime occurs when the resonant surfaces are close to each other so that

the magnetic islands overlap. The particle trajectories are no longer integrable. We will

consider the actual hamiltonian H as a sum Hint(x,p,s,t) + H'(x,p,s,t), where Him is

integrable and H1 is a small resonant term destroying the integrability. In the simplest

approach, H^t is the hamiltonian of the unperturbed configuration in the absence of the

turbulent field creating the islands and H' is the hamiltonian perturbation associated to

that field. In the presence of the hamiltonian Hint only, the trajectories are described by 3

angular variables 4>(x,p,s,t) and 3 action variables J(x,p,s,t)) such that Hint = h(J,s,t).

The quasi static perturbation H' is expressed in terms of the dynamical variables O, J as

H-=£hnas,t)exp(in-<D) (61)

where n is a set of 3 integers ni,n2,n3. For a small H' and a weak collisionality, the

dynamical variables H, F, U are approximately functions h(J,s,t), f(J,s,t), u(J,s,t)

representing the average of H, F, U over O at given J. However, the change from the

principles (15) to the principle (18) is now impossible since the dynamical variables J are

not constants of motion for the actual hamiltonian H: the basic relation 2(U,u(J,s, t)) = 0
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does not hold. Nevertheless F and U tend to be constant along the trajectories in the

presence oi the actual hamiltoruan H. Because of the non integrability of these trajectories

and of their resulting stochasticity, such a large scale of U along the trajectories imposes

fine scales to U in the transverse directions. The adjustment is such that the fine

transverse scales are at the limit of being felt by the particles in view of the collisional

diffusion they experience during their transit over the large longitudinal scale (Rechester

and Rosenbluth 1978). From the point of view of the principle (15), we first notice that

the structure of U and of U around their averaged u(J,s,t) and y(J,s, t) over <J> at given J

disappears by integration in the entropy functional S(U,U) ,S(^=-,U), that we may write

as well S(u,u),S(^pU) . On the other hand we notice that the large longitudinal scale of

U, U tends to decrease the functional 2(U,U) while the fine transverse scales enhance

S(U,U) , since they correspond to large gradients in p space. By this mechanism, S(U,U)

is reaching the level of 2(U,U) in spite of the assumed weak collisionality. The principle

(15) leads to extremalize the bilinear form 2(U,U) +S(U,U) in UandU under the

constraint that U and U exhibit the averages u(J,s,t) and y(J,s, t) over <t> at given J. This

changes 2(U,U)+ S(U,U) into a finite bilinear form SQL(U,U) in uandu . For a weak

enough H', satisfying however the Chirikov criterium (the magnetic islands overlap in
our guiding example), the quasilinear theory allows to calculate that S^(u,u) via a formal

development at second order in H', as it allows to establish the diffusion equation of the

particles in space J. One finds

SQL(u(J,s,t),u(J<s)t)) = S(u,u) +

^ <62)

The bilinear form S^(u,u) is symmetrical, i.e. S(^(u,u)=S(^(u,u), by virtue of the basic

Dy = Dik- The principle (18) becomes applicable by replacing S(u,u) by SQL(U,U) .

Let us apply that principle (18) in a tokamak, by neglecting the collisional term S
in SQL- We assume that the turbulent field has its wave numbers mainly perpendicular to

the flux lines, so that the friction forces that it exerts on the species or subspecies are also
perpendicular. This means that the quasilinear entropy production rate SQL(U,U) is

mainly influenced by the transverse diamagnetic velocities of the various species and

subspecies. The action variable ' " ' ' is close to ^poi(v(x,t)), the poloidal flux

embrassed by the unperturbed magnetic surface of volume v(x,t). For given J3, the

action variables Ji and J2 determine the transverse and parallel motions. We define
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as the function of J3 close to v(x,t) such that ^pol(vdrift) = —rr. It appears that the values

.u] and of SQL^U) are correctly produced by taking

The principle (18) in its quasilinear version then states that the functional

)2 dt 2T

f y f a n eflf h ^ ) 3, df , n3T0 f( f yfan eflf

(64)

with J3 identified with e^ik^v,!) , is an extremum for all the variations of the working

profiles n ,^ ,T around the actual profiles n ^ . T . The term -p(n- -rr) disappears from

the functional (64) because it is multiplied by 6(n- ^=) . Accordingly, the extremalization

of the latter with respect to 5»T around fi,T, leads to Onsager relations between

^ and 4 r on one hand and dlt + ̂ 3 - and ~2-i- on the other hand involving particleof dt nodv lodv lodv fe K

and energy fluxes but no heating power by the turbulent field. This is normal since the

latter is a quasi static, non oscillating field. The extremalization with respect to W around

W insures the ambipolarity of the fluxes. It may be used to eliminate W from the

functional (64), which then involves only the density and temperature profiles.

Let us now assume that the turbulent perturbing field is no longer quasi static but

exhibits oscillations in time, meaning in our guiding example a rotation of the islands. We

assume the oscillations of the system quasi periodic: the consistent field A.W involving

the turbulence and the dynamical variables H,F,U linked by the equations (6) are periodic

functions of period 2JI of a set of q phases a = (a 1,... ,ctq)
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A , ^ = [A,*P](x,a,s,t) and H.F.U = [H,F,U](x,p,a,s,t) (65)

In addition, the phases a have at each time a variation rate

da
-j— = a)(t) = (u)i(t),...,u>^(t)), assumed of course much larger than the relaxation rate,

and uncommensurable so that the useful cell of extension (2rc)q in space a is ergodically

covered at each t. The explicit dependence on time t in the functions (65) and in to(t)

reflects the slow relaxation of the isolated field-plasma system towards its

thermodynamical equilibrium, namely the relaxation of [A,*I;](x,a,s,t) towards

[Ao^oK^s), of [H,F,U](x,p,a,s,t) towards [Ho,Frj,Uo](x,p,s) and of the frequencies

co(t) towards a null value. A convenient way to generalize the results obtained above with

a quasi static turbulence is to consider the dependence of [A,W](x,a,s,t) and

[H,F,U](x,p,a,s,t) on the phases a on the same grounds as the dependence on x or

x,p. This means that we install our field A, W and our particles in an extended space x ,a

of dimension 3+q. To preserve the hamiltonian nature of the particle motion, we use the

well known trick of introducing an artificial set j = (jl,.. jq) canomcally conjugate to a =

(ai,...,aq). The particles are thus installed in an extended phase space of dimension

2(3+q), namely x,a conjugate to p,j. We choose as hamiltonian in that extended phase

space

H (x,p,a,j,s,t) = H(x,p,a,s,t) + a)(t). j (66a)

This extended hamiltonian indeed produces variation rates ^ = 4r^ of the phases a
r dt o j r

which coincide with the actual variation rates co. Also the variation rate

yW. = £W + {H,W) of any dynamical variable W(x,p,ct,s,t) which is "natural" - i.e.

independent of j and 2JI periodic in a i , . . . , a q - coincides with the actual

—j— = -rr- + -',—•co + {H,W). It is convenient to impose hamiltonian barriers preventing

the particles to escape from a large box in space j . The distribution F (x,p,a,j,s,t) of the

particles in the extended phase space x,p,a, j verifies the kinetic equation

-5- + {H, F} = C(F), with C being the usual collision operator differential in p. The

natural distribution F(x,p,a,s,t) verifies that kinetic equation. In fact it may be shown

that F coincides with F ( except in an irrelevant zone near the boundaries of the large

allowed box in space j ; also F and F differ by a mutiplicative constant, omitted in what

follows). The relaxation of the natural, oscillating system and that of the quasi static

extended system are therefore equivalent. The entropy of the extended system at a time t
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is - 2 I F ln(F )d3xd3pd^ad^ = - 2 I Fln(F)d3xd3p—*—, equal to the natural entropy

- 2 I Fln(F)d3xd3p since the useful cell of extension (2n)cl in space a is ergodically

covered at each time t. We are led to define the deviation of the extended system from the

thermodynamical equilibrium by the dynamical variable U linked to H and F by the

equation (6). As F= F is independent of j , we obtain

t/(x,p,a,j,s,t) = U(x,p,a,s,t) + <o(t). j (66b)

This means that the extended deviation £/(x,p,a,j,s,t) of our system from the

thermodynamical equilibrium is specified by the natural deviation U(x,p,a,s,t) and by

the frequencies <u(t). At this point it is essential to the consistency of the scheme that at a

given time t the extended deviation U (x,p,a,j,s,t) fully determines the state of the

extended field plasma system. Indeed an extended version of the principle (42) allows to

calculate A(x,a,t),*P(x,a,t) together withH(x,p,a,s,t) at a given time t if one knows

U(x,p,a,s,t) and <o(t) at that t. The equation (6) then determines F(x,p,a,s,t).

Introducing the working deviation U_ =U(x,p, a,s, t)f <o(t)- j , where Uanda) are to be

varied around U and u>, one readily establishes extended versions S ,S and 2" in

U,U of S, S and 2 in U,U. The relaxation of U , i. e. of U(x,p,a,s,t) and co(t), is

then obtained from the extended version of the principles (15). We find in fact that

,U)=( SW,]])^ and S(U,U)= f S ( U , U ) - ^ (67)
J (2^) • J (^c)

S(U,

At second order in U the quadratic form S (U,U) is the entropy of our isolated field

plasma system with respect to the thermodynamical equilibrium. Of course the

antisymmetrical functional 2 (U ,U_) cancels exactly if U or U_ commutes with H .

Again a first possibility is that the extended hamiltonian H (x,p,a,j,s,t) frozen at

a given time t produces integrable trajectories in the extended phase space x ,p ,a , j ,

described by 3+q angular variables 4>(x,p,a,j,s,t) canonically conjugate with 3+q action

variables J (x,p,a,j,s,t) such that H = h(J, s,t). It appears that, if it exists, the set <2>, J

has a well defined structure with respect to the phases a and the artificial dynamical

variables j : it is readily shown that there exists at each time time 3 natural variables <P of

angular type, 3 natural variables J of action type and q natural dynamical variables K,

such that
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<P consists of 0 = (<X>k(x,p,a,s,t)) and of a = (ar)

J consists of J = (Jk(x,p,a,s,t)) and of j + K = (jr +Kj<x,p,a,s,t))

k = 1,2,3 ; , r = 1, ... ,q

In view of the equation (66a), H (x,p,a,j,s,t) = h (J ,s,t) must then have the form

h(J,s,t) + (o(t). (j + K), the normal hamiltonian H(x,p,a,s,t) being then identified with

h(J,s,t) + a). K. We now introduce the point that, in our very weakly collisional

regime, the extended deviation U (x,p,a,j,s,t) must be nearly a function u (J ,s,t). The

structure of J with respect to j and the equation (66b) then imposes the following forms

of that function and of the natural deviation U(x,p,a,s,t)

u (J ,s,t) = u(J,s,t) + co(t). (j + K) ; U(x,p,a,s,t) = u(J,s,t) + w(t). K(x,p,a,s,t)

while F = F(x,p,a,s,t) # f(J,s,t). The extended deviation U = «(/,s,t) is now

characterized by the function u(J,s,t) and the frequencies (o(t). One may change from the

extended principles (15) involving U and U_ to the extended principle (18) involving the

function u(J,s,t) = u(J,s,t) + tu(t). (j+K) and its working version

u(J,s,t)= u(J, s,t) + to(t)* j . Taking into account the eqs (67), the extended principle (18)

states that

j S(u(jAt) + (o(t) • K, uUAt) + co(t) • K) ^ (68)

is at each time t an extremum for all the variations of u(J,s, t) and of oj(t) around u(J,s,t)

and aj(t). This implies of course an Onsager relaxation for the vector A representing at

each time t the function u(J,s,t) of argument J,s and the frequencies co(t). In a magnetic

configuration containing magnetic islands where a magnetic surface passes through each

point x between and within the islands, by embrassing the volume v(x,a,t) and the

fluxes i|>tor(v>t)> typol(v.0> the 3 action variables J(x,p,a,s,t) are roughly equal to the 3

action variables for the hamiltonian H(x,p,a,s,t) with frozen a and t (namely, for

passing particles and a large safety factor: Ji = —\i, h # e^'tor(v(xG.a»t),t).

J3 # eippoi(v(xG,ci,t),t) + RmVQ,,). The function u(J,t) is roughly given by a formula

of type (55) in terms of the various profiles n.T.^and I^ versus î tor- On t n e other

hand, the q dynamical variables K(x,p,a,s,t) reflect the quasi MHD displacement of the

magnetic surfaces, taking place at the velocity V\iHD(x>a>0 perpendicular to B: the



- 5 1 -

d(<o« K)
derivative —^ is roughly identified to VyjHD(x>a.O- Writing V\_IHD =

(a)*—)DMHD(x>a>t)>tne derivative — ^ — - is then identified to (uv -r-) DiVJHD. The
6a "P da - '

dynamical variables -^—• K and to-K in the entropy term S of the functional (68)

introduce inertia effects due to the displacement of the magnetic surfaces. On the other

hand, co-K in the entropy production rate term S introduces the friction and viscosity

effects due to that displacement. Generally the inertia effects are negligible so that the

frequencies <o around co minimize that entropy production rate. Such a minimization is

analogous to the minimization with respect to the electric potential 3?.

Another possibility is that the extended hamiltonian H = H int + H' where

#in t= Hint(x,p,a,s,t) + a), j produces integrable trajectories, while H'(x,p,a,s,t) is a

small resonant perturbation destroying the integrability, to which the quasilinear theory

may be applied. In the simplest approach Hint is the hamiltonian of the unperturbed

configuration in the absence of the turbulent field and H1 is the perturbation due to the

latter. The 3+q angular variables 0 and the 3+q canonically conjugate action variables J

for H im = h (J ,s,t) are then formed by the 3 angular and action variables

0(x,p,s,t) = (0 i , 02, 03) and J(x,p,s,t) = (Ji, J2, J3) for the unperturbed hamiltonian

Hint(x,p,s,t) = h(J,s,t), together with the q phases a = (ai,..., ctq) and the q artificial

momentaj = (ji,..., jq)

0 = ( 0 (x,p,s,t) and a ) ; J = (J(x,p,s,t) and j) ; h (J ,s,t) = h(J,s,t) + o>. j

The perturbation H' takes the following form, which extends the expression (61)

W= I ^h n v ( J , s , t )exp( i (n-0+ v a ) ) (69)

n and v meaning 3 integers (ni,n2,n3) and q integers (vi,...,Vq), respectively. The

extended particle distribution function F = F(x,p,a,s,t) and the extended deviation

U = U(x,p,a,s,t) + a)(t).j are approximate functions of J. This means that

F = F # f (J,s,t) and U # u (J ,s,t) = u(J,s,t) + <o(t). j . One extends the formula (62).

by replacing n by n - (n and v), n* ajby n 'jj~= n ' J T + v-^-and of course h(J,s,t)

byh(J,s,t) + o)(t). jand u(J,s,t) byu(J,s,t) + (o(t)' j . It comes
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(u(J^,t),w ; u(J,s,t),u)) = S(u,u) +

2 / X ! i ^ ( n . - | + v«))(n-0+vco)|hnv|227i6(n-U+ vo>)(2^d3J (70)

Still applying the equations (63), one extends the principle (64), which becomes a

pnnciple of type (4) for the vector A(t) representing the profiles n(v,s, t), W(v, t),T(v,s, t)

and the frequencies co(t): at each time t the functional

22 f(—Ufji+J,^)
s j \no(s))- dt ~ W-K-}

+. v • 00) (Cbi)3 dJj dJ2 l e d ^ v . t ) / dvl dv (71)

with J3 identified with e(s) TJL^V, t) , is an extremum for all the variations of the profiles

n(v, s, t), $(v, s, t), f(v, s, t) around n(v, s, t), ^(v, t),T(v, s, t) and of <o(t) around co(t). The

extremalization with respect to the profiles n,T leads to an Onsager matrix of the type

proposed by Shaing (Shaing 1988), relating the particle and energy fluxes to differences

between diamagnetic velocities and phase velocities. The term -f-(n--r-r) does not

/̂
disappear from the functional (71): it introduces in the expression of *' ' for each

species s the heating power by the turbulent field, or in other words the energy transfers

between the various species via the turbulence. There is of course no reason in the

present view for those transfers to be Onsager fluxes, as proposed by Sugama and

Horton in another context (Sugama and Horton 1995). The minimization of the second
term of the functional (71) with respect to each working frequency o)j, ...,co around the

actual frequency 001, ..., a>q gives a set of equations determining the latter. These

equations express the energetic balance of the turbulent field. One may also use the

minimization with respect to o» to transform the second term of the functional (71) into a

quadratic form in the profiles n,^,T only, the functional (71) thus becoming independent

of a). A first possibility is that the component of the turbulent field (A,^) ! which is

influenced by the frequency 001 is localized very near a well defined magnetic surface

v = v"i, and so on with a>2, etc. This means that the coefficients f(J,s,t)lhnv(J>s^)l2

J3 identified to ei|>poi(v,t)) cancel except for specific volumes v, namely for v = vi if
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* 0, etc. In that case the fluxes, friction forces, heating powers on a magnetic surface v

are determined by the profiles n.'P.T on the same surface. In fact that situation is not

likely to occur the principle (71) after elimination of eg then relates the fluxes, friction

forces, heating powers on a surface v to the profiles at some distance of that surface.

We stress again that the consistency of the above scheme demands that the

knowledge at a given time t of the function u(J,s,t) of argument J ,s and of the

frequencies w(t) allows to calculate the field A(x,a,t),^(x,a,t) (involving of course the

turbulent component) at that L Such a calculation must take into account the non linear

resonances of the turbulent field with the particles, which play a leading role in the

saturation of the turbulence. These non linear resonances should also be taken into

account in the quasilinear entropy production (70). However it is not the case if our basic

partition of H into Him + H' makes use of the unperturbed hamiltonian as integrable

hamiltonian Him, t n e perturbation H1 then representing the naked effect of the turbulent

field: the fact that the functional (70) is simply quadratic in H' then implies that the non

linear resonances involving beatings between the various components of the turbulent

field are excluded. To take into account those non linear resonances, and at the same time

be justified in using the quasilinear entropy production rate (70) and its transparent

Onsager symmetries, one must build up a special integrable hamiltonian Hint which

properly incorporates a clothing of the particles by the non resonant components of the

turbulent field. The construction of that hamiltonian Hint and of the associated dynamical

variables <J>, J, H\ h, hnv is possible if one gives only the function u(J,s,t) and the

frequencies ou(t) (Garbet et al. 1993). Interestingly, it is only justified if the width of the

spectrum of the resonant frequencies Q n v = n . — -.'. + v . co for all the useful n,v

such that f(J,s,t)lhnv(J»s,t)l2 * 0, is muvch larger than the Kolmogorov broadening of

oQny dQnv
the resonances YK ~ IDkl -gjr jr— I1'-5, the Dkis being the particle difusion

coefficients in space J. It is plausible that this condition gives the upper limit of the

turbulence level which induces an Onsager relaxation.

4. CONCLUSION

Our main conclusion is that the relaxation towards its thermodynamical

equilibrium of an isolated toroidal plasma tends to conform to the Onsager scheme (1-4)

based on the entropy metric. That scheme is conveniently expressed by the variational

principle (4) which carries the physical idea that the vector A(t) representing the deviation
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of the system from the thermodynamical equilibnum relaxes in the form of modes

minimizing, at constant entropy, the collisional entropy production rate. The appropriate

vector A(t) at the starting point is the deviation U(x,p) of the particle distribution in phase

space x,p from maxwellian. Our basic tool is the variational pnnciple (15) involving U,

equivalent to the kinetic equation. That principle anticipates the pnnciple (4) implying an

Onsager evolution, in the sense that it contains two symmetrical functionals S and S

representing respectively the entropy and the entropy production rate. The symmetry7 of

the functional S reflects the symmetry of the Fokker-Planck collision operator in the

kinetic equation, i.e. the hamiltonian character of the interactions. For a field-plasma

system the symmetry of the functional S reflects the Lagrangian character of the Maxwell

equations. However, the principle (15) differs from the pnnciple (4) by an

antisymmetrical functional Z reflecting the individual trajectory effects.

When the particle trajectories are integrable and close to the magnetic surfaces

(e.g. in axisymmetric tokamaks), and in weakly collisional regimes, it is straightforward

to pass from the principle (15) to the principle (4). Indeed the antisymmetrical functional

2 is eliminated since the dynamical variable U(x,p) is nearly a function u(J,t) of 3 action

variables J, constants of motion. The principle (4) automatically applies to the vector

A(t) representing the function u(J,t). That type of Onsager relaxation results from the

hamiltonian nature of the system and from the weak collisionality. It could have been

anticipated from Van Kampen arguments without using the kinetic equation. One may

then pass to a principle (4) for a reduced vector A representing the profiles of density,

temperature, electric potential, electric current density on the successive magnetic

surfaces, which determine the entropy S of the field-plasma system. The entropy

production rate functional S J ^ J ^ for that reduced vector A is obtained by minimizing the

general entropy production rate functional S under the constraint that the considered

profiles of density, etc are achieved. It covers all the aspects of the neoclassical evolution.

In the case of a collisional regime or of non integrable trajectories, the deviation U

is no longer a constant of motion, but simply a function of the slow Kruskal dynamical

variables. The antisymmetrical functional 2 is not automatically eliminated. However,

one may still arrive to the principle (4) for the vector A representing the profiles of

density, etc which determine the entropy of the field-plasma system provided that the

trapped particles which are not confined are detrapped long before they depart

significantly from a magnetic surface. Starting from the general principle (15), the

extremalization of 2 + S, when the profiles of density, temperature, electric potential,

electric current density are imposed, leads to a functional S^^d^ which is shown to be

symmetrical. This proves that a principle (4) applies to the vector A representing the

profiles of density, etc. The entropy production rate functional S^^^ for that vector A
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may be again obtained by a well posed minimization calculus (the minimization of the

expressions (40)), and again covers all the aspects of the neoclassical evolution. The

toroidal geometry is involved by the topologies of the flux lines and of a single closed

contour drawn on the magnetic surfaces. If one neglects the viscosity effects, the

ambipolarity of the particle fluxes across the magnetic surface is insured independently

of the electrical potential if all the particle trajectories are intregrable and deviate from the

magnetic surfaces by a disatance scaling as pc. In the other cases the ambipolarity is

expresesed by the minimization of the entropy production rate functional with respect to

the eletric potential profile. The derivation from the kinetic equation of the Onsager

behaviour of the relaxation is not so general as in the weakly collisional, integrable

situations: it is only valid if the hamiltonian interaction is symmetrical with respect to an

inversion of the velocities along the magnetic lines. However that restriction could be not

physical. From that point of view another approach in the van Kampen framework,

where the system would be considered as a set of weakly interacting plasma layers

around the successive magnetic surfaces, could be interesting.

Finally, we propound the possibility of Onsager relaxations in turbulent, weakly

collisional situations, on the basis that the turbulent field is a component of the isolated

field-plasma system. We first consider the case of a quasi static turbulent field. The

extension of an Onsager relaxation poses no new problem if the trajectories remain

integrable and close to the magnetic surfaces. If the trajectories are no longer integrable

but the quasilinear theory is applicable, we recover Onsager relaxations reflecting the

symmetries of the quasilinear diffusion. If the turbulent field exhibits finite frequencies to

the latter are considered as an aspect of the deviation of the field-plasma system from its

thermodynamical equilibrium. One is led to consider the oscillating phases a (such that

da
-jT- = w) as new coordinates forming with the 3 usual coordinates x an extended space,

in which the field and in fact the field-plasma system are installed in a quasi static state.

The variational techniques applicable to the neoclassical relaxations of collisional may

then be extended to the considered turbulent case. This extension leads to Onsager

relaxations conform to the scheme (1-4), the vector A now representing the frequencies to

together with the usual profiles of density temperature, electric potential, electric current.

APPENDIX 1: NOTATIONS

The notations concern functions and functional defined at a given time t during

the relaxation of the isolated field-plasma system. The substrict 0 means that a function is
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taken at the thermodynamical equilibrium. The tilde indicates the difference of a function

with respect to its version at the thermodynamica] equilibrium. The underlining indicates

a working version of a function, to be introduced in a functional and varied around the

physical version of the function in the course of a variational calculus.

Binclions

A(x,t), W(x,t) = vector and scalar potentials of the electromagnetic field (see

beginning § 2.1); I(x,t), p(x,t) = current and charge densities; v(x,t) = volume of the

magnetic surface passing through x; 0Ha(x>O, ^HaCx.O = Hamada coordinates (see

appendix 3); Tj>tor(v,t), typol(v>0 = — X t n e magnetic fluxes across the minor, major turns
2

on the magnetic surface of volume v; itor(v\t), ipol(v»0 = — X the corresponding
2n

T , . ditor{v,t) ^ipol(v\t)
amperages; Wv. t ) = — ^ , Ipol(v,t) = — ^ .

H(x,p,s,t) = hamiltonian of a particle in the field A,W; we call constant of motion any

dynamical variable Z(x,p,s,t) such that {H,Z} = 0; V(x,p,s,t) = -3— = velocity of a

particle in state x,p; vo(s),To = basic constants in the equation (6); F(x,p,s,t) = particle

distribution function in phase space x,p; U(x,p,s,t) = deviation of the field-plasma

system with respect to the thermodynamical equilibrium (see equation (6)).

f.i(x,p,s,t) = magnetic moment; xo(x,p,s,t) = guiding centre position;
Vr,\'

Vo(x,p,s,t) = guiding centre velocity; e = [ v '/, (see § 2.3);

O(x,p,s,t) = (<I>i,02,03), J(x,p,s,t) = (Ji,J2,J3) = angular and action vanables for the

hamiltonian H(x,p,s,t) frozen at time t then equal to h(J,s,t) (see § 2.2). J(x,p,s,t) may

designate also the 3 constants of motion H, ^ and vdrift(x,p,s,t) = constant of motion

close to v(x,t)

u(J,s,t), = form of the deviation U(x,p,s,t) in a weakly collisional, integrable situation;

u(J,s,t) is decomposed as ui(J,s,t) + un(J,s,t) so that uj(J,s,t) determines the entropy of

the system. Similarily, u(H,n,XG,e,s,t) = form of U in the general magnetized case.

n(v,s,t), T(v,s,t), *P(v,s,t) = average density, temperature, electric potential on the

magnetic surface of volume v.

Functional

S(U',U") (see equation 8), S(U',U") (see equations 14,44,53), 2(U',U") (see

equations 10) associate a scalar to any 2 dynamical vanables U'(x,p,s,t),U"(x,p,s,t);

S(U,U) is the collisional entropy production rate; S(U,U) is (at second order in U) the

entropy with respect to the thermodynamical equilibrium ; 2(U',U") = 0 if U' or U" are a

constant of motion.
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At a given time t, the fields A(x,t),W(x,t) and I(x,t),p(x,t), the hamiltonian

H(x,p,s,t), the functions t |Wv,t), i|)poi(v,t), Itor(v,t)> Ipol(v'.0 are fully determined by

the deviation U(x,p,s,t) and are thus functional of U. This is expressed by the

notations: A(x,t) = A(xlU), etc, H(x,p,s,t) = H(x,p,slU), iptor<v,t) = i|>tOr(vIU), etc.

Similarily, at a given time t, H(x,p,s,t) is fully determined by A(x,t),1P(x,t) and may be

written

APPENDIX 2: VAN KAMPEN AND QUASILINEAR
DIFFUSION

Van Kampen starts from the master evolution equation for the probability ffy (t)

of finding the system in state TV, namely: - ^ p = 2 W M _ A ,P M -P A , , or

FtP
^ 1 ^ ^ ? ) by taking into account that VJ N_>M = W M _ ^ and that

->w = 1 - Because of the symmetry WN_M =WA/_A , , one has,

whatever the auxiliary set (QN)

dP
Q

The key point is that the last expression is invariant when one exchanges (PN) and (Q N).

At thermodynamical equilibrium, PN has relaxed to a maxwellian value

—j ). At a given time, a small deviation of the system from the

thermodynamical equilibrium is specified by the set u (t) = (UN (t)) such that

PMO = *0 exp ( ~hN j U N ( t ) ). By using the certainty equations YPN =XP0N
 = 1

and the equation lLPNhN =5]/Joiv'IAr expressing the energy conservation during the

relaxation, the entropy 5 =-'Tl(PN \n(PN) - P0N \n(P0N)) is readily identified at second

order in u with S(M,M), where S(M,M) is the symmetrical bilinear form
_p
—r-uNu_N in u = (uN) and M = (M^V) . At first order in u , one may
2T

replace in the equation (A 1-1) —^- by P0N w ^ . Taking into account the energy

conservation h^ = h\f for the allowed transitions W ^ _ w ^0, one may replace also
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W/V-^M (PM - PN) by - ^ W ^ M (uM -uN) . We put Q N = =£- and define the

p
b i l i n e a r f o r m S(« , « ) = Y - ^ - W A , _ W ( w w - U N ) ( U M - y N ) i n « , w , w h i c h is

iVM 2TQ

symmetrical since POjV W /V_w=/J
OjW W w _, v . The equation (A2-1) finally means that

- 2 S ( ^ - , H ) + S(H,M) (A2-2)

is an extremum for all the variations of u . It thus appears that the vector A(t)

representing the set u (t), verifies the variational principle (4). The quadratic form S(« ,w)

is of course identified to the entropy production rate induced py the transitions.

The quasilinear theory leads to similar results for a classical system of N particles,

numbered I,II, ..., whose individual unperturbed motion is integrable, described by 3

angular variables 4> conjugate to 3 action variables J. The 3 action variables J label the

various stationary states of an individual particle. The unperturbed system of the particles

is descibed by the 3N angular variables 0 = (<J>i,<l>n,...) conjugate to the 3N action

variables J = (Ji.Jn,.-)- The unperturbed hamiltonian is h(J) for a particle and

h (J ) = h(Ji) + h(Jn) + ... for the system. A small resonant hamiltonian perturbation

induces a diffusion of the system in its action space J = (7* , k = 1,...,3N). The

quasilinear theory, if it applies, predicts that the probability density P (J ,t) of finding the

system in state J satisfies the autonomous evolution law
dP(J,l) i a / n , r.dP(J,l\

o JJ~\uki (J)—jj—) , with the symmetry DM = D/* . Multiplying by

the auxiliary function Q (J ,t) and integrating, one obtains that at each time

=/ y^|r!f-d3N/ (A2-3)

That equation, where the RHS is invariant when one exchanges P and Q since

Dkl ~ D^ , is the classical version of the equation (A2-1). The coefficients D /̂ ,

identifiable with the diffusion coefficients <6/^ 67/ > in the space J, are given for a static

resonant perturbation Y,Hn(/)exp(in - 0 ), where n is a set of integers (n* , k =

1.....3N), by the well known formula Dkl -Ynknl \hn fcxbinpjj-) . For a static

perturbation the diffusion preserves the energy, so that Dy —TJ = 0. A small

deviation of P (J ,t) from the maxwellian distribution P o(7 ) = X n exp(—^—-) which

applies at the thermodynamical equilibrium is specified by the function « (/ ,t) such that
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p(/ , t) = Xoexp(—(^)+M(^' t) one readily pass from the equation (A2-3) to the

principle (A2-2), where the symmetrical bilinear forms S(U,M) and S(M,W) are now
( -P • f P Atj d«

S(«,w) = J —SUM d3N7 and S(uju.) = I - ^ Du w ^ / d3N7 . In fact the state of
J 2TQ ' J 2TQ

 aj k 0J i

the system (assuming to simplify a single particle species) is determined by the

distribution function f(J,t) of the N particles in the 3 dimensional action space

J = (Jl.J2.J3) » and the deviation from the thermodynamical equilibrium is determined

by the function u(J,t) such that f(J,t) = Xoexp("h(J) * u ( J ' \ if XoexpC1^-) applies

at the thermodynamical equilibrium. The probability density P (J ,t) of the system in the

space/ = (Ji.Jn,—) is the normalized product f(Ji,t) f(Jn,t)... and the deviation u (J ,t)

is the sum u(Ji,t) + u(Jn,t) + .... The symmetrical bilinear forms S(w ju_) and S(M JU_) are

readily rewritten as symmetrical bilinear forms S(u ,u) and S(u ,u) in u(J,t) andu(J, t).

The principle (A2-2) then means the principle (4) for the vector A(t) now representing at

each time the function u(J,t). The scheme may be used to build the Fbkker-Planck

collision term expressing in the kinetic equation the collisional diffusion of the particles in

momentum p at each position x. One then isolates at the considered time the plasma

particles located within a small box centered on x. One applies the usual periodicity trick

identifying the opposite sides of the box so that the particles indefinitely travel the 3

dimensions of the box. An individual particle is described by 3 angular variables 4>

giving its position within the box and 3 action variables J identified to its momentum p.

The Fokker-PIanck diffusion coincides with the quasilinear diffusion of the system of the

particles within the box due to the interaction hamiltonian. The basic symmetry of the

Fokker-PIanck operator expressed by the equation (8a) express the above symmetry

,u) = S(u,u).

APPENDIX 3: j bA-id^=f

At a given time t, the Hamada angular coordinates 0Ha(x), <PHa(x) form with the

volume v(x) a coordinate system for the space (x) such that

^ x f x ^ f =(VeHa(x)xVq)Ha(x))-

and that

B=VxA;A(x)=ip|a.(v(x)) VeHa(x)+^pol(v(x)) Vcp^x) (A3-2)



-60-

They are not unique: any set 0' Ha = I ©Ha + w <PHa, <p' Ha = P ©Ha + q tpHa where l,m,p,q

are 4 integers such that I q - m p = 1 is receivable as well. An important point is that a

formula of type (A3-2), namely the first equation (50b), applies to any vector I(x) as

soon as it satisfies the equations (49). Let us consider a field B' = VxA' close to B,

producing magnetic surfaces with a volume function v'(x) # v(x). If 9*Ha(x) # 9na(x)

and (p'Ha(x) # (jpHa(x) are the Hamada coordinates for the field B', we have

A'(x) = ̂ t
t |(v I(x)) V0'Ha(x)+-i|)'pol(v'(x)) Vcp'^x) (A3-3)

We introduce the differences Stytor(v) = Vtor(v) - tytor(v)

&H>pol(v) = ty'pol(v) • 1l'pol(v) of the flux functions for the same argument v. We

introduce also at given x the differences 60(x) = 6'HaQO - 0Ha(x).

6cp(x) = q)'Ha(x) - qpHa(x), 6v(x) = v'(x) - v(x). Those differences are single valued

over a magnetic surface, and we may accordingly write, in terms of the coordinates

v = v(x), 0Ha= 0Ha(x), <PHa = (RHa(x)

(A3-4)

where m ,n are integers. We put 6A(x) = A'(x) - A(x) and use the equation (50b) and

the equations (A3-1, A3-2, A3-3) to obtain

I 6A(x)-I(x)d3x= I (iji^S^p^v^I^v^-Sii^^OIpcj^O^dv + X + Y (A3-5)

where

X = f (Vfcr(v) Wv) (V56(x)) • (Vv xVO^) + Vpd(v) I^v) (VStp(x)) • (Vv xVO^) +.. .)d^

and again v stands for v(x), etc. It appears that X cancels after that 60 and 6cp have been

replaced by their expressions (A3-4), by taking into account that the equation (A3-1)

allows to replace d3X by . In view of the equations (50a,A3~4)), we have
(2JI)2

Y = j —^p— 6v(x)d3x= I - > . coo(v)dv . We may consider the quantity coo(v) as the

average of v'(x) - v(x) = 6v(x) for x equally distributed in the space between the

neighbouring magnetic surfaces of equation v(x) = v and v(x) = v + Av. It is not difficult
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to show that such an average, for given Av, is of order 2 in 6v(x), i.e. in 5A. Therefore

the equation (A3-5) is valid at first order in 6A with X = 0, Y = 0. This establishes the

equation (52). The equation (A3-5) allows to transform the principle (41) as follows: for

given functions Itor(v)> Ipol(v)> the field A(x) makes extremum the -functional
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