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Abstract

The slow relaxation of isolated toroidal plasmas towards their thermodynamical

cqu111br1um is studied in an Onsagcr framework based on the entropy metric. The basic

tool is a variational principle, equwalcnt to the kinetic cquatlon 1nv01v1ng the profiles of

e e —

density, temperature, electric potential, electric current. These proflles enter in two

functionals reflecting respectively the cntropy of the field plasma-plasma system and the
entropy production rate. These functionals are symmetrical. By themselves, they would
drive an Onsager evolution of the system. However the variational principle contains also
an antisymmetrical functional reflecting the trajectory effects. The latter is eliminated, so
that the Onsager relaxation is automatically established in the situations of low
collisionality where the trajectories are integrable and close to the magnetic surfaces (e.g.
in axisymmetric tokamaks). In such situations the Onsager character of the slow
relaxation is a mere consequence of the hamiltonian nature of the field-plasma system. In
the collisional or non integrable cases, an Onsager evolution may be still derived from the
variational principle, but the plasma layers around the successive magnetic surfaces must
be independent enough, in the sense that unconfined trapped particles are forbidden
unless they are detrapped long before they depart significantly from the magnetic

surfaces. New minimization procedures are proposed to obtaj ntro

production rate functionals expressed in terms of the profiles of density, etc., which drive

the Onsager relaxation of the profiles. Onsager relaxations are possible in the presence of

a turbulent field, either in an integrable situation (e.g. well separated magnetic islands) or
in a non integrable case (overlapping islands). The variational principle then involves the
characteristic frequencies of the turbulent field, on the same grounds to the profiles of

density, etc.



1. INTRODUCTION

Onsager (Onsager 1931) has proposed on the basis of time reversibility arguments
that the relaxation of an isolated system close to its thermodynamical equilibrium state, if
it is very slow, conforms to the following scheme: the small deviation from the
thermodynamical equilibrium is specified by parameters A3, making the vector A = (A3),
which determine the entropy S of the system with respect to the equilibrium as a negative
quadratic form

SapA2AP = § (1)

where of course Sy = Spa ; the relaxation of the vector A(t) towards the equilibrium state
A =0 is expressed by an equation of the form

dAP(1)
ab dt

28 =§,, A (2)

with the key symmetry relations

The equation (2) implies that the vanation in the course of time of the entropy

daa . . : : .
(-%St— = 2Sab—(—ﬁ-Ab is equal whatever A to the quadratic form SabAaAb. The latter is

therefore identified with the positive rate of entropy production within the system due to |
the irreversible collisional process. It is usual to use the entropy S ;pA2AP as a metric in
the space A and to introduce the covanant coordinates A, of A, namely A, = S.bAb. The
dA (t) . o . ~dAa dAb |

di = §,,A®, then gives the "fluxes" 2—= = 2Sab—gr— in terms

equation (2), written 2 5
of the "forces” A3, the dot product (fluxes. forces) being equal to %‘? Following the

ideas of Prigogine (Glansdorff and Prigogine 1971), one may put the scheme (1,2,3) in a
vanational form. Let us use the two symmetric tensors Sab and S, to generate the two
symmetric bilinear forms S(A,A)=S(A,A)=S,A’A® and S(A.A) = SA.A) = S, AA® in
A and A . Here A is a working version of A to be varied around the physical A. The
equations (2,3) are equivalent to state that, at each time, one or the other of the two
functions of A

2SR + S(AL) or—4s(IR.A) +8A.A) @



is an extremum for all the varations of A around A. The vector A(t) is a sum of modes

Aexp(-yt), where each vector A minimizes the entropy production S(A,A) under the

constraint of performing a constant entropy S(A,}), and y= :'STS The goal of. this article

1s to show, starting from the kinetic and the Maxwell equations, that the magnetically

confined toroidal plasmas conform under some conditions to the scheme (1-4).

The Onsager scheme typically applies in two kinds of situation. A first possibility
is that the isolated system is made of independent particles exhibiting stationary states,
and relaxes towards its thermodynamical equilibium because a small resonant
hamiltonian perturbation induces a diffusion among the stationary states. For instance the
perturbation consists of weak hamiltonian interactions between the particles. In its
principle such a situation is easy to understand in a quantum mechanical framework. The
system formed by the unperturbed, independent particles exhi bits eigenstates N of energy
h 5 . A small deviation from the thermodynamical equilibrium is specified at a given time
by the vector A representing the deviation of Py, the probability of finding the system in
the various states N, with respect to the maxwellian. Such a vector A determines of
course the entropy S of the system with respect to the thermodynamical equilibrium. A
slow relaxation of A takes place when a weak hamiltonian perturbation induces small
transition probabilities per unit of ime Wy,_,, from a state N to a state M. Of course
hy = hp if the perturbation is not oscillating in time, i.€. 1s static or quasi static. Under
some conditions, Wy, _, ,, may be deduced from the classical perturbation theory for the
systems depending on time (Kemble 1937). A consequence of that theory is the detailed
balance equations Wy _, ,, =W;,, ., which reflects the hermiucity of the interaction
hamiltonian. Van Kampen (Van Kampen 1954, 1957) establishes a master equation
giving the evolution in time of the probability Py in terms of the transition probabilities
W . - That equation gains of course a degree in symmetry if one takes into account
that Wy _, o =Wy, n - It results, if the perturbation is quasi static, in an Onsager
relaxation (1-4) for the vector A (see Appendix 2). The obtained Onsager relaxation relies
on the hamiltonian behaviour of the system, without reference to the reversibility in time
of its trajectories which is the basis of the onginal argument of Onsager. The Van
Kampen line may therefore justify such a relaxation in a system which does not enjoy that
reversibility, for instance in a magnetized plasma. It must be stressed that it has a
counterpart in classical mechanics, namely the quasilinear diffusion theory. Let us
consider a classical hamiltonian system formed by N quasi independent particles whose
individual motion is integrable. The unperturbed system exhibits stationary states
specified by 3N action vaniables J, playing now the role of the quantum label N. A
resonant hamiltonian perturbation, if it is weak enough but however satisfies the Chirikov
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criterium, drives a quasilinear diffusion of the system in space J (Rosenbluth et al 1966,
Zaslavsky and Chirikov 1972, Rechester et al 1981). The quasilinear diffusion equation
is the continuous classical version of the quantum Van Kampen master equation when the
symmetries Wy, _, ,, =W;, .\ have been duly taken into account. If the perturbation is
static or quasi static, a relaxation (1-4) applies to the vector A representing the deviation
from maxwellian of the probability density of the system in the J space, or as well of the
distribution of the individual particles in their 3D action space J (see Appendix 2).

However, the most usual situations of Onsager relaxation have a different
character. The isolated system is a medium formed of particles which deviates from its
thermodynamivcal equilibrium because for instance the temperature and the densities of
the various particle species depend on the position. One may consider that the medium
consists of small cells which are nearly independent and individually close to a
thermodynamical equilibrium, and that it relaxes as a whole to its thermodynamical
equilibrium because of the exchanges between neighbouring cells (Kreuzer 1981, p 5).
The key of the situation is that these exchanges are small so that the relaxation of the
system is slow. Strong interactions between the particles are therefore necessary to
prevent a fast migration of the particles from a cell to its neighbours. This apppa}enﬂy
opposes the present situation to the situation of nearly independent particles considered
above. Nevertheless the two situations present a deep similarity, namely, the nearly
independence of the cells on one side and of the particles on the other. The vector A
specifying the deviation from thermodynamical equilibrium of the medium represents the
spatial variations of temperature, densities, etc, which indeed determine the entropy of the
system. The classical demonstration of the Onsager scheme (1-4) in that case relies on the
reversibility in time of the fluctuations of the vector A. The probability of finding the
system in the state A ata given time is determined by the entropy SapA2AP of the system
with respect to the thermodynamical equilibrium, namely, it is proportional to
exp(SabAaAb). The averages <Ag(t)Ap(t)> along the fluctuating trajectory A(t) are then
proportional to Sz, The first element of the demonstration is that the correlations
<Aa(t)Ap(t+T)> can be calculated for large positive T as if A(t+t) could be denived from
A(t) by simply applying the relaxation equation (2). That point, curiously presented as
obvious in many textbooks (Landau and Lifshitz 1958), is in fact not so easy to establish
(Kreuzer 1981, p 44, Krommes and Hu 1993). At that stage, it appears that the
symmetry (3) is insured if one may state that <Ax(t)Ap(t+71)> = <Ap(t)Aa(t+T)>. One then
introduces the second element of the demonstration: at thermodynamical equilibrium, the
fluctuating trajectories A(t) and A(-t) are equally probable, so that
<Aa(DAp(t+T)> = <Aa()Ap(t-T)> = <Ag(t+T)Ap(t)>. This is justified, in the absence of
magnetic field, by the reversibility of the trajectories x(t),V(t) = x(-t), -V (-t), where x
represents the set of the particle positions and V the set of the particle velocities, under



the condition that all the components of A reflects observables O(x,V) exhibiting the
same parity in V. It is no longer justified when the vector A mixes observables with odd
and even parity, or in presence of a magnetic field since the trajectory x(t),V(t) does not
imply the trajectory x(-t), -V(-t). In those cases, the symmetry (3) cannot be justified by
arguments drawn only from the fluctuation analysis. Those arguments allow however to
relate the components S, of the relaxation tensor, as it is defined by the equation (2), for
opposite magnetic configurations B and -B: assuming that each covariant component A,
reflects observables with a definite panty €53 = 1 1n V, one has Sat)(B): sasbsm(—B)
(Casimir 1945, Onsager and Machlup 1953, Fitts 1962). Those relations, outside the
scheme (1-4), are often considered as forming the Onsager scheme itself. To establish the
scheme (1-4), 1.e. the relations Sab(B):Sba(B) , via the A fluctuation analysis, one must
introduce by a way or another further informations allowing to relate the values of S,(B)
and Sab(—B). This line has been followed by Boozer for the tokamak case (Boozer 1992).

The two lines - nearly independent particles or nearly independent cells -
correspond to actual Onsager situations in magnetically confined toroidal plasmas. The
weakly collisional plasmas in axisymmetric tokamak configurations belong to the first
category with nearly independent particles, since each particle of the confined plasma has
individually an integrable motion close to the magnetic surfaces, described by 3 action
varniables J. Weak hamiltonian interactions are then expected to induce a quasilinear
diffusion of the particle system in its action space, resulting in an Onsager relaxation
(1-4) for the deviation A from maxwellian of the distribution of the particles in the space
J. That line is underlying in the work of Mynick and Duvall in the framework of a
generalized Balescu-Lenard collision operator (Mynick and Duvall 1989). In the present
article, we derive a varational principle equivalent to the usual kinetic equation, which
determines the evolution in time t of the deviation U with respect to the maxwellian of the
particle distnbution in the usual phase space x,p. In its final expression that principle
determines the relaxation of the field-plasma system formed by the plasma and the
confining field determined by the Maxwell equations. In a weakly collisional
axisymmetric tokamak, our general principle involving U directly results in the principles
(4) for the vector A representing the deviation with respect to the maxwellian of the
distribution of the particles in their J space. One may then show that the principles (4)
apply as well to a reduced vector A representing the vanations of density and
temperature, the electric currents, etc, which determine the entropy of the isolated system.
The considered Onsager relaxations appear to be a mere consequence of the weakly
collisional regime, of the integrability of the individual trajectories and of the basic
symmetry of the Fokker Planck collision operator in the kinetic equation, which is itself
guaranteed as soon as the weak interaction between the particles is hamiltonian (see

Appendix 2). The situation is different in the general case of toroidal plasmas which are
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in a collisional regime, or which involves class of trapped particles that do not exhibit an
integrable individual motion close to the magnetic surfaces. These plasmas behave as
systems formed of quasi independent cells, which of course are now thin plasma layers
around the succesive magnetic surfaces. We still derive from our general variational
principle involving U the principles (4) for the vector A representing the density and
temperature variations, the electric currents etc (Nguyen 1992), but it appears that a
minimum collisionality is necessary when a class of trapped particles experience a
transverse drift across the whole of the configuration: these trapped particles must be
detrapped by collisions before they significantly depart from the magnetic surfaces. That
condition is precisely that which prevents a strong coupling through the unruly particles
between the layers around the successive magnetic surfaces. A nearly independence of
these layers is therefore necessary to insure an Onsager relaxation. Our demonstration of
the Onsager relaxations from the kinetic equation is not so general as in the weakly
collisional situations with integrable individual trajectories: we are now restricted to
interaction hamiltonians which are symmetric with respect to an inversion of the guiding
centre velocities along the flux lines. This recalls the basic role plaid by the reversibility
of the trajectories x (t),V (t) and x (-t), -V (-t) in the A fluctuation analysis. However it is
not at all proved that the restriction corresponds to a physical necessity.

At this point, our work complements the important studies of Balescu (Balescu
1991) and of Sugama and Horton (Sugama and Horton 1996). In these studies one

derives from the drift kinetic equation, at first order in the ratio ptc-of the Larmor radius to

the plasma scale, the structure of the particle distributton functions, being given the
gradients Vn, VT of the density n and temperature T as well as the inductive electric field
E. Such a structure then leads to the average particle and energy fluxes I', I'g across the
magnetic surfaces and to the electric currents I along these surfaces. It is shown that the
transport matrix linking those elements exhibits Onsager symmetries. The weakly
collisional situations with integrable individual trajectories are not considered. Because

the drift kinetic equation is treated only at first order in Ptc_ the necessity of a collisional

detrapping of the unconfined trapped particles is not met. Interestingly, the demonstration
of the Onsager symmetries by Sugama and Horton clearly relies on the symmetry of the
collisions with respect to the inversion of the parallel motion. On the other hand our work
1s consistent with the study of Boozer who has accurately pointed out the thermodynami«
constraints which apply to the Onsager forces and fluxes in toroidal plasmas (Boozer
1992). Within the scheme (1-4), the forces A2 are defined by the prescription that they

determine the entropy § = Sa;pA2AP of the isolated system, the fluxes being then



AP : . : :
ZSabT In our toroidal plasmas, materially and electromagnetically isolated, the forces

A2 must then represent the density and temperature variations, i.e. typically the gradients
Vn and VT, and also the currents | along the magnetuc surfaces: indeed those currents
control through the Ampere law and the boundary conditions the magnetic energy, and
thereby the entropy of the isolated field-plasma system, since any increase or decrease of

the magnetic energy decreases or increases the part of the fixed total energy which

remains available for thermal motions. Since the forces A2 involve the currents I, the
b

fluxes 25@%— must involve, in addition to the particle and heat fluxes I', Tg
representing the time derivatives of the density and temperature profiles, the time
denivative of I, i.e. the time derivative of the relaxing magnetic field, i.e. finally the
inductive electric field E. Boozer has indeed proposed forces and fluxes with that
organization. On the contrary the matrix displayed by Balescu and by Sugama and
Horton links "conventional” forces and fluxes, namely, forces proportional to Vn, VT
and E, and fluxes to ", I'g and I. The normalization is of course such that the dot product

(fluxes. forces) produces the time derivative %of the entropy S- whatever Vn, etc, but it

is known that if a series of characteristics X3, @, of the state of the system at each time

satisfy the identity (P, X3) = %%mis 1s not sufficient to guarantee that the quantities X2
b

oA
and ¢, form a system of forces A? conform to the prescription (1) and fluxes 253"—5{—

(Coleman and Truesdell 1960). In fact the matrix linking Vn, VT and Eto I', I'g and I is
not symmetrical and considerations involving the parnty in the particle velocities are
- necessary to reveal the Onsager symmetries. Let us remark that in a tokamak where the

plasma is rotating around the major axis, the corresponding rotational energy plays the
role of the magneuc energy above: the scheme (1-4) then designates the electric voltage

across the magnetic surfaces, which controls that energy, among the forces A2, the time
b

N : . . . dA L
derivative of the rotational velocity participates in the fluxes 2Sabd_t' Generally it will
appear in this article that, through a vanational principle of type (4), it is possible to cover
complex aspects of the collisional relaxation of toroidal plasmas, for instance the role of

the various electric fields, the deformation in time of the magnetic surfaces, etc.

Bevond the collisions, one may wonder whether the toroidal plasmas experience
an Onsager relaxation when the confinement triggers an electromagnetic turbulence. It has
been pointed out by Shaing (Shaing 1988) that, in weakly collisional regimes, if the
turbulent field induces a quasilinear diffusion of the particles, the symmetries of that
diffusion imply an Onsager matrix between the fluxes I',I'g and appropriate Onsager

forces, consisting of linear combinaisons of Vn,VT and of the mode frequencies w.
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Similar conclusions may be driven from the works of Mynick and Duvall (Mynick and
Duvall 1989) and Morozov and coworkers (Morozov et al 1988). The fluxes I', I'g are no
longer determined, as in the collisional transport case, by the friction forces between the
various class of particles, proportional to the differences between the corresponding
diamagnetic velocities, proportional themselves to Vn, VT: they are now determined by
the friction F exerted by the turbulent modes on the various classes of particles,
proportional to the differences between the phase velocities % of the modes and the
diamagnetic velocities. This explains the dependence on w of the Onsager forces

considered by Shaing. Sugama and coworkers (Sugama and Horton 1995, Sugama et al
1996) incorporate among the Onsager fluxes the heating power W = % F which 1s

produced by the modes for finite w values. By introducing an Onsager force of type ,}— as

conjugate of W, they display an elegant Onsager matrix between the Onsager fluxes T,

I'e, W and Onsager forces of type Vn, VT, % independent of the frequencies w. In fact,
in the studied situation where the turbulent field at a finite w is imposed by external means
independent of the plasma, the latter is submitted to a constant heating power and

formally relaxes towards an equilibrium state where ,IT = 0. In this article we take another

point of view, again inspired by the scheme (1-4). The slow relaxation at constant energy
of an isolated field-plasma system will be studied by treating the turbulent field as a
simple component of the consistent electromagnetic field. As that turbulent field is due to
the confinement, its frequencies w relaxes to O when the thermodynamical equilibrium is
reached. Indeed our variational formalism leads us to base the Onsager relaxations upon a
vector A representing the deviation U with respect to the maxwellian of the particle
distribution, together with the frequencies w. For a weak collisionality, a first possibility
is that the trajectories are integrable in presence of the turbulent field. This may be the
case for instance if the latter produces small, well separated magnetic islands. We then
find that the prninciple (4) applies to a vector A representing the density and temperature
variations, the electric currents, etc, and also the frequencies w representing the island
rotation velocities, which typically minimize the collisional entropy production rate. If the
integrability of the trajectories is destroyed since the magnetic islands overlap, one is led
to Onsager relaxations based upon a quasilinear expression of the entropy production
rate. In all cases, the various irreversible process induced by the turbulent field - friction
forces, heating power, etc - are naturally taken into account by the principle (4).
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2. PLASMAS IN AN IMPOSED CONFINING FIELD

2.1 VARIATIONAL PRINCIPLE EQUIVALENT TO THE KINETIC
EQUATION

The basic tool for the study of the slow relaxation of a magnetically confined
plasma is the kinetic equation which gives the evolution in time t of the distribution
function F(x,p,s,t) of the particles of each species s in the six dimensional phase space
X,P = (X1,X2,X3,p1.P2,p3) (see Appendix 1)

aﬁ"p’“) + LB =CH

_a_H oF _oH.oF
<H’P}_6p X 0x op

2
where H(x,p,s,t)= (p—ej(f;z?s(;,t)) +e(s)¥(x,t) is the hamiltonian created at time t by the

confining field B=VxA(x,t),E=-V¥(x,t)—- -QA—éx—t-)- the Poisson bracket {HP

express the variation rate of F along the trajectories and C(F) is the Fokker-Planck
collision term. We assume that the system is isolated by proper particle and field barriers
and relaxes towards a well defined thermodynamical equilibrium, characterized by the
relaxed field Bgy=VxAyx), Eg=—VW¥y(x), corresponding to the hamiltonian

. Ho(x, p, —(l:%?%(ﬂ +e(s)W(x) , and by the maxwellian distribution function
—Ho(x P-S)
Folkp. 9= — (S))m xp( ) ()

The basic constants vo(s) and T are determined by the initial content in particles of each
species and in energy of the isolated system. It appears convenient to charactenze at each
time t the small deviation of the system with respect to that thermodynamical equilibrium
by the dynamical vanable U(x,p,s,t) << Tg such that

Fix,p,s,t)= —-Hx,p.s, l) +U(x,p s, t))

6
(”nTom(s))” i ©

The average velocity of the particles of species s at the position x is given by
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du .
Vm,aage(x, s,t):%[ F%%d_gp:%f de:;p ,n:[Fd3p

: . . . oH .
[t is worth noticing that the average at given x and s of the velocities V(x,p,s,t) = P 1S

also the average of the denvatives % These denvatives will be met below as

macroscopic velocities, for instance as diamagnetic velocities, exhibited by the various
species or subspecies. The collision term C(F) in the kinetic equation is obviously
proportional to the deviation U at first order. At a given t we have C(F) = D(U) where D
is a well defined linear operator acting in the space formed by the dynamical variables

function of x,p,s: namely, D(U(x,p,s,t)) is obtained by replacing the differences
dF(x,p,s.t) JdF(x,p',s',t)
F(x,p.s.t)dp F(x,p'.s'.t)dp

oU(x,p,s,t) al(x,p',s',t) o ' .
Todp ~ Todp - On the other hand the variation rate {HF may be written

F
T{H,L} . We introduce a working dynamical varniable U(x,p,s,t), to be varied around
0

which are at the heart of the Landau collision integrals by

the physical deviation U(x,p,s,t). The kinetic equation is exactly equivalent to the

following principle: at each time the linear functional in U

3 [ '115 %Eudgxd;wE f %g{,wgd3xd3p—§ [ -I'BD(U)LJdaxdap %

1s an extremum (null) for all the varations of U

Generally the deviation U determines the entropy S of the system with respect to
the thermodynamical equilibrium U = 0 and the rate of collisional production of entropy.
These quantities are related to the first and the third terms of the functional (7). We first
connect the third term to the collisional entropy production. The starting point is the basic
symmetry of the collision operator, resulting from the hamiltonian nature of the weak

interactions between the particles (see Appendix 2), which imposes that
;[ D(U')U"d3xd3p=§f D(U™)U'd 3xd;p (8a)

whatever U'(x,p,s,t) and U"(x,p,s,t). This allows to express the third term of the
functional (7) as S(U,U) where S is the symmetrical bilinear form in U', U" defined at a

given time t by

_ . 1
SULU) =8U,U)=-F f T, DU)U" dyxdzp (8b)
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The rate of collisional entropy production is equal to S(U,U). Indeed, the entropy S
with respect to the thermodynamical equilibrium is given by

S =-(zsj f Hn([:)d3xd3p-§. f Foln(Fy)d3xdp) )

Therefore the rate of collisional entropy production is equal to

-3 f CEX1+In(F)dydp , i. e 10— ] D(U)(IHD((E%H@H'T'(:U)d:;xd:;p_ n

view of the conservation of particles and energy under collisions:
ID(U)d3xd3p=Oard§: f D(U)Hd x d3p=0, it becomes equal to

1 )
- z] T(;D(U)Ud3xd3p , 1. €. to S{U, V). For reference we notice that

1
2To?
alx,p,s,) aU(x,p',s',1),

S ok
W - WikW
w13

S(U,b) = gf F(x,p.s,t)F(x,p',s',t)d3xd3pd3p’

ol(x,p,s,t) ] ol(x,p',s',t)
op1 ap1
w = 0HGGps,Y)  dH(X,p's'Y)
T dp p

X (

Y
J

X = Xik = 27we(s)2e(s")2In(A)-

We will often use below that S(U,U) is the sum of symmetric bilinear forms
aUxpsh aUxps) (GLJ(x,p,s,t) _oU(xp's'y)
0Pk oPy op op

Xl ) for all possible x and p,s.

The second term of the functional (7) reflecting the motion of the individual
particles in the hamiltonian H may be expressed at a given tas XUU) where

V,

1] "y O —}_I"FU' ’ " .
XU ,U)—Zf p—— -Ige’“’( T, RHUDU" daxdip (10a)

[t is readily verified by integrations by parts in space X,p that
ZUy) =); J' :E{I—LU)d}wd@ (10b)
9} T U

so that Z(U,U) cancels exactly if {HU} =0or{H,U}=0, i. e. if one of the dynamical
variables U or U, is a constant of motion for the hamiltonian H at the considered time t.
At first order in U, the functional £(U,lJ) is an antisymmetrical bilinear form in U,U



20D = 3f SHD U3 [ 7 U Dexip=-3UL)
0

In view of the equations (8) and (10), the vanational principle (7) reads (Samain and
Werkoff 1977)

1 oF -
;f :r_%?_t_jd3xd3p +2(U,U) + S(U,U) extremum in U (11)
0

As Z(UH) =0 and S(U,H = 0 we obtain by using the principle (11) with a variation of
U proportional to H

“™M

1 oF
f 5 Hlandsp =0 (12)

For the sake of clarity, we will indeed in the rest of the present chapter 2 consider
isolated systems of particles confined in an imposed static field rather than field-plasma
systems. Namely, rather than letting the field B(x,t), E(x,t) to adjust to the electric
currents and charges developped by the plasma particles, we will impose a static, purely
magnetic configuration B = Bg = VxAg(x), E = 0 by fitting at each time electric currents

and charges independent of the plasma. The relaxation that we study then involves a

(P—eAp(x)

system of particles governed by the static hamiltoman H=H;=————, and of
- S
) ) . . oH .. oF .
course by the interaction hamiltonian. As o =0, the derivative 3 in the first term of

aJ . .
the functionals (7) or (11) reduces to F—’I:(Ft . Ata given ume t, we have

S | +Eudxdp=-2522 1) (13)
| Ty 3

where S(U',U") is the symmetrical bilinear form defined by
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SULU)=Y f =EuUrd xdyp (14)
S ZTO

We will find in the § 3.1 that the relation (13) is still applicable in the case of isolated
field-plasma systems, with a new definition of the symmetrical bilinear form S involving
the field perturbation created by the deviation U. In all cases the principles (11) or (7)
equivalent to the kinetic equation become

- 25(%%,11) + ZUU)+SUY  or -45(%(],1;) +22UY) +SLY (19

is an extremum for all the vaniations of U around U.

The functionals SU', U"),Z(U,U"), S(U,U") defined by the equations(8,10,14)
depend on the state of the system, determined by the deviation U, at the considered ume

t. The principles (15) then give the variation aaU exactly. However it is only if S(U'\U")

t
is taken at zeroth order in U that the quantity S(U,U) is equal to the entropy S given by
the equation (9). Let us stress that this equality is not necessary for the exact principles
(15) to be valid. The equation S(U,U) = § at second order in U may be directly
established from the equations (9,14) by expressing that the number of particles and the
system energy is the same in the state U and in the relaxed thermodynamical state U = 0.

One may as well notice that, at second order in U, we have
dI(S(UU)) S( U)+S(U-a—) Because of the symmetry S(U,U) = S(U,U) and of

the equation (13), we then have dS(UU) ”S( U) ;f 1 al:Ud3xd3p. On the

other hand, by taking into account the particle conservation f Ed3xd3p=0 and the

equation (12), we obtain

~—S ——;f ln(F)d3Xd3P-‘§:f F=- H+Ud3"d3P —z [ 161:Ud37(d3p (16)

so that 4 =%S(U,U). That equation during any relaxation process leading to the

dt
thermodynamical equilibrium state where § =0,S(U,U)=0 implies that SU,U)=S .
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2.2 WEAKLY COLLISIONAL, INTEGRABLE REGIMES

At a given time the functional Z(UU) cancels if UorU is a constant of rotion
such that {H,Uor U}y =0. If it is not the case, Z(UU) is proportional to the variation rate
of UorU along the trajectories produced by H at time t. These vanations take place at a

characteristic frequency = i;mc ~ {HEJU(I(IUU} which, according to the structure of Uand U,
Y Ve

may be a Larmor frequency wc or a parallel transit frequency T of the guiding centre or

astill slower transverse dnift frequency VE’L. Roughly we have, N being the number of

particles

S(UU) ~N ?U—u— if ¢H,Up and {H Uy = 0; E(UW) =0if (HUp or {H Uy =0 (17a)
0 Yinetic

oU : . . :
The two other functionals S(E,L_J)and S(UU) which enter in the principle (15) are

: . 1 ‘ . 1
proportional to the relaxation rate ———— and to a pertinent collisional rate

Trelaxation Teollision

again depending on the structure of Uand U

oU Uy . Uy
S(-U) ~N m——— and SUU) ~N ———— (17b)
a T4 Tetamation T0 Teattison

. Let us show that an Onsager relaxation automatically occurs in weakly collisional cases

T 1_ — and 5 1 — are small enough compared to 1 —, 1f the motion in the
collision relaxatior T

kinetic

where

hamiltonian H is integrable. The latter condition means that at cach time t there exists
angular and action vanables for the hamiltonian H, namely, 3 angular vanables
O(x,p.s,t)= (P1,P2,P3) defined modulo 2x, canonically conjugate to 3 action vanables
J(x,p.s.t) = (J1,J2,33), the hamiltonian H being a function h(],s,t) of the action vanables

J. The action variables J (and the variation rates {H,b}= aL(g-j—sﬁ) are constants of

mouon. The trajectories in the 6 dimensional space x,p determined by H at the
considered time t are indefinitely drawn on 3 dimensional toruses labelled by the 3 values
J and univoquely parametrized by the 3 angular vanables ®. Any constant of motion
Z(x,p.s,t) is a function z(]J,s,t). With a static hamiltonian H = H(x,p,s), the dynamical
variables ® and J are of course also static. In view of the estimations (17), a situation

1 . 1 1
Tkinetic 15 large enough compared o Teollision d Trelaxation

where implies that the

vanations of Z(U,U) when one varies U largely dominate the vanations of
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ou .
S(-E,Ll)andS(U,l_J), except if {H,U} # 0. The principle (15) then cffectively obliges that

{H,U} # 0, 1. e. obliges that U # u(J,s,t), F # f(J,s,t). We define f(J,s,t) at each time t
as the @ average value <F>j of F(x,p,s,t) over the 3D torus in space x,p specified by J,
and use the relation (6) to define u(J,s,t) in terms of f(J,s,t) and h(J,s,t). Our basic trick
is to choose the working dynamical variable U(x,p,s,t) so that it is an exact function
u(J,s,t) and therefore {H,UY=0 . The functional £(U,U) then cancels exactly and may
be discarded from the principle (15). If the collisionality and therefore the difference

U= U - u(J,;s,t) are weak enough, one may replace in the remaining functionals
au ;
S(-é-t-,_t_]) and S(U,U) the dynamical vanables U(x,p,s,t) and 6U(xét SR by the good

Ju(/J,s,t)
ot

approximations u(J,s,t) and . The principle (15) then determines at all orders in

U the relaxation of the function u(J,s,t) by imposing that at each time

-44&(‘;& ’ u(ls, r)) +S(ud.s.0.ud.s 1) e

is an extremum for all the variations of u(J,s,t) around u(J,s,t). The principle (18)
obviously implies an Onsager relaxation for the vector A(t) representing the function

u(J.s.t) of arguments J,s at each time. This is normal since we are in a Van Kampen
situation of a system of individually integrable particles relaxing towards a
thermodynamical state under the action of a small interaction hamiltonian. Putting

u(J,s.t) = A¥tua(Js) 5 uls,H=AWud.s) (19a)

where the functions ug(J,s) form a proper basis, the vector A = (A3) satisfies the principle
(4), with the symmetric tensors S, and S,;, given by

Sa =S ) uyJ.9) . Sz =S,k s),uylJ.s) (19b)

Let us notice that the notations of type u(J,s,t) have 2 different meanings according to the

context: at the considered time t, either u(J,s,t) is a dynamical variable function of x,p,s

via J(x,p,s,t), as for instance in S(u,u) and in the derivatives g—;—mat we will use below;

or u(J,s,t) is a simple function of arguments J,s, as in the equation (19a). We stress that
the principle (18) exactly produccs' at a given time the denvative % of the vector A

representing the function u(J,s,t): in other words it is not restricted to the linear range in
A. This is simply due to the fact that the bilinear forms S(U', U") and (U',U") are defined

at each time t by taking into account the state of the system at that time, and will remain
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valid with the field-plasma systems considered in the chapter 3. The study of an Onsager
relaxation is of course greatly simplified if S(U',U") is taken at zeroth order in A, i.e. In
U. However the fact that the Onsager relaxation covered by the principle (18) is not
restricted to the linear range in A is important in principle. It meets the preoccuppations of
several authors (Krommes and Hu 1993), even if the principle (18) directly issued from

the kinetic equation introduces the non linearities in A by a very different way.

We notice also that, for the principle (18) to be applicable, the 3 dynamical
varnables J(x,p,s) need not to be really action variables: they may be as well 3
independent static functions of the action variables, 1.e. 3 independent static constants of
motion, that we will still note J(x,p,s). The condition of validity of the principle (18) is
that S(U,u) # S(w, u) or S(U', 4 << Su,u) . One may estimate U'= U - u # U - <U>j from
the principle (15): the latter approximately states that Z(U'\U") + S(u,U') is an extremum
in U submitted to the constraint <U'>;=0. Using the equations (8,10) it first appears
that the structure of U' reflects the variations W of the dynamical variable D(u(J,s,t))

over each 3D torus J. Putting U~AW and {Hw>|

~I-—W—— , 1t then comes that

Tianetic
MW '
N ——— + AS(u,W) is roughly an extremum in A, 1. e. A ~ L M Tkinetic- 1 he
T0 Ginesic N W T,

validity condition is AS(W,u)<<S{u,u) . In view of the Schwarz inequality
ISuW) < (SuuwSWW)'?, it is satisfied if =1 L

>>
] 1 'S(W,W).

where
Tkinetic Tedlision
" ~ T
Tedllision N W-/'[‘a

To be useful the vector A must involve a number of components A2 as reduced as
possible. We therefore abandon the definitions (19) representing the full structure of the
function u(J,s,t), and try to build up a simplest A space. We will build up at each time,
within the vectonal space (u) formed by all the functions u(J,s,t), two complementary
subspaces (uy) and (uy) such that, if one decomposes the functions u achieved during the

relaxations in the form u = uy + uy, the entropy S(u,u) is close to S(ur,ug). The principle
Ju . , .
(18) then nearly states that —4S(—5—I,1_11)+ S(u;+ ug,u;+up) 1s an extremum in y; around uj

within (up) and in yy around up within (ug). The minimum value of S(u;+ug,u;+up)
when one varies up within the subspace (up) for given u; 1s a quadratic form

Seecduced(U P - The evolution of the function ug(J,s,t) is such that at each time

0 .
~ 48 0 S gy (20)
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is an extremum for all the vanations of y(Js,t around uy(J,s,t)within the subspace (ur).
The new vector A represents the function up(J,s,t). Being (up,(J,s)) a basis for the

vectonal subspace (uy), we replace the definitions (19) by

ui(Js.) = AXOUI.S) 5 udsH= A% OuLU.9
Sab = S(ua(J,8) . um(J.5)) ; Sy =Sreced(Ua (-9 up(J.5)

A convenient starting point to build up the subspaces (uj) and (up) is the working
assumption, to be verified a posterion, that the values of S(u,u) achieved by the system
during the relaxation process are mainly determined by the values Ay(t) of some typical
characteristics of the deviation from thermodynamical equilibrium, for instance typical
temperature and density variations, typical average velocities, etc. Those values A, will
appear below as the covariant components S AP of the new vector A. At a given time,
by imposing the set of values A, one imposes constraints of the following form to the

function u(J,s,t)
La(u) = Aa (21)

where each [,(u) is a linear form in u. We associate uj(J,s,t) to the set (A,), namely, ug
is the function u which minimizes the entropy S(u,u) under the constraints (21). Our
working assumption means that the functions uy achieved during the relaxation process
are such that S(u,u) and S(uy,uy) are approximately equal. The accuracy of that equality is
in fact the accuracy of the principle (20) with respect to the principle (18). Of course the
minimization leading to uj has not to be performed with a better accuracy. The basis
up(J,s) introduced above is obtained from that minimization: using Lagrange
multiplicators, it appears that uy = A2uj, where each function ug,(J,s) is determined by the
linear form L,, namely, is such that S(ugy,u') # L,(u") whatever u'(J,s). The quantities A2
and A, then appear as the contravariant and covariant components of the vector A since
Aa = La(up) = AL (up) # AbS(upy,up,) = SapAP. The vectorial subspace (up) is formed
by all the functions u(J,s,t) such that La(u) = O for all a values. It is "perpendicular” to
the subspace (up) in the sense that S(u',u") # O whatever u' within (uf) and u" within
(up). We therefore have S(uj+up,up+up) # S(up,up) + S(up,up) so that the working
assumption S(u,u) # S(up,up) may be written S(up,up) << S(u,uy).

Let us apply the principle (20) in a fixed, purely magnetic, axisymmetrical
tokamak configuration. All the trajectories, either trapped or passing, are integrable and
close to the magnetic surfaces. We may form J with the 3 exact constants of motion

2
H,u,Rpg where the hamiltonian H(x,p.s) is the Kinetic energy EZV_ (since ¥ = 0), the
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2
magnetic moment w(x,p,s) = m,,yg’L—-(l + O(%)) specifies the amplitude of the Larmor

motion and the angular momentum Rpg in the direction ¢ around the major axis specifies

the magnetic surface occupied by the particle: indeed Rpg = ReAg + RmVg
= ePpol(V(X))+ RmVy = eypol(l + O(%) where v(x) 1s the volume of the magnetic

surface passing through x and Ypol(V) 1S :thhe magnetic {lux embrassed by the major
n

turns drawn on the magnetic surface of volume v. Any trajectory J = (H,u,M) is close to

the magnetic surface specified by the poloidal flux ypoj = %. That situation allows to a

weakly collisional plasma exhibiting F # {(J,s,t) and U # u(J,s,t) to be in quasi
thermodynamical equilibrium on each magnetic surface and at the same time to exhibit
any density and temperature profiles from the magnetic axis to the surrounding wall.
However, in the Onsager line that we follow, we assume a weak deviation U << Tg of
the plasma from its thermodynamical equilibrium. We assume the plasma delimited and
1solated by two hamiltonian particle barmiers located on 2 relatively magnetic surfaces, so
that it relaxes at constant particle and energy contents towards a thermodynamical
equilibrium with finite particle densities ng(s) and a finite temperature Tg. Since Wg = 0,
the densities ng(s) are the constants vo(s) in the equation (5). A deviation U << T means
in particular small vanations of the density n and temperature T with respect to the values
no,To. In spite of this constraint, the practical gradients Vn, VT may be achieved by
bringing the barriers closer.

We make the working assumption that the entropy S(u,u), given by the equation
© (14), is mainly determined by the average densities n(v,s,t) and temperatures T(v,s,t) on
each magnetic surface, labelled by its volume v. That assumption anticipates that the
macroscopic velocities of the various particle species or subspecies play a negligible role
in S(u,u). The sttuation will be quite different with the field-plasma systems considered
in the chapter 3, where the entropy will involve the macroscopic velocities through the

electric currents controlling the magnetic energy. We introduce the small differences
H(v.5.0 = n(v.8,0) — ng(s) , T(v,8,0) = T(v,s,t) =T

We express that the deviation U = u(J,s,t) achieves given profiles fi(v,s,t) and T(v,s,t)
by calculating from the distribution function (6) the parucle and energy contents

n(v,s,t)dv and %n(v,s,t)T(v,s,t)dv between 2 neighbouring surfaces v,v+dv. We obtain

at first order in U
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(v,s,0)
f ———3775(V(X) V)T-d ¥dyp= F*OR
exp(~HTo) H \u _ Tev.st)
W(—-;)&V(X)-‘)Tadﬁdﬁ— Ty ) (22)

The equations (22) play the role of the equations (21). A deviation uy(J,s,t) which

approximately minimizes S(u,u) under the constraints (22) is given by

u  fi(vye,st) T(\ s,t)
T = e (- (232)

where vgrifi(X,p,S) is any dynamical variable which is both constant of motion and close

to v(x). We choose the simplest vrifi(X,p,s), namely that Ypol(vdrif) = ng. Then

Vo
wm=wm+197;+qw& (23b)
l v

The dynamical variable uy(J,s,t) produces a derivative g_l;,l at given x consisting of 2

. _ Tvx),0) gl TO(x), 1) .
terms: an Isotropic term = V which reflects the temperature
P T, op T, pe

variation T at each position x, and a directional term

du o8 eov 3 edv e(Vie—V(X, 1))
(p)ar=Tol e v~ + nﬁﬁ% DY) 9

€0V drife( X, P, s) _ R
P Gypal/dv

It will be important below that RV is independent of p and s

at a given position X. That independence means that at lowest order in Pljcvdﬂ-ﬂ(x,p,s) -

€9Vdrif(X,p,S) . mV
ap e

v(x) = at lowest order in PL_,C Equivalently, it means that, for all the

individual trajectories, the deviation with respect to the magnetic surfaces scales as

%]_BX ~ p¢- The denvative (—)din properly averaged, represents the ¢ diamagnetic

velocities of the various species at various energies, producing via the poloidal field the
Lorentz forces balancing the pressure forces -V(nT). Ata given x position, uj contains an
even part in V, proportional to the net values #andT , and a odd part ~ (%%)dirq) mV,.
When one calculates the negative entropy S(ug,up) from the equations (14,23), it appears
that the dominant terms are produced by the even part of uy, the odd part producing a term
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2
which is smaller in a ratio ~ BL%- In fact the contrnibution of the even part of uj reflects the

structuration in space x of the densities and temperatures, while the little contribution of
the odd part reflects the fact that the small orderer kinetic energy associated to the
diamagnetism is no longer available for thermal motions. Introducing the working
profiles ﬁ(v,s,t)arxi'f(v,s,t) to be varied around ﬁ(v,s,t)and'T"(v,s,t), which define

U _ﬁ'(vchﬁ,s,t) T(\(ilft s,t)
T, 0,8 (T *)_T—

one obtains

That expression gives the first term in the principle (20)

aul’_l) ,,Zf( (S)_an( S.t) s+ 3_6T(\’St)T(\,st))n (sKdv 26)

The Onsager relaxation of the profiles 'f'](v,s,t),?(v,s,t), equivalent to the function uy(J,s,t),
. . . ) du . .
is obtained by expressing that the functional —4S(-5—I,gl)+ Seded(UpYy) 1S an extremum

for all the variations of 'r_’f(v,s,t),T(v,s,t around ﬁ(\'s,t),ﬁ'(v,s,t). The problem of computing
~ that relaxation has thus been brought back to a minimization problem: the calculation of
the minimum value S4Uu) of the collisional entropy production rate
S(u;+ug, 4y +up) when one varies uy within the subspace (up). The latter is of course now
defined by the eqs (22) made homogeneous by cancelling the RHS. Minimizing the
entropy production rate is in fact a well known technique for determining the structure of
the distnibution functions in weakly collisional confined plasmas (Robinson and
Bemnstein 1962, Rosenbluth et al 1972). We notice that y; enters into S(u;+uy,u; +up)

ay;
and therefore into Sy 4k through differences of 2 derivatives — T L taken at the same

. . . o Tev,p .
x with 2 different p,s. The differences of derivatives of ty VY expressing the
p Ype —To— p g

local temperature variations lead to collisional energy exchanges from a species to

another. To simplify we assume the same temperature for all species, T( v,s,t) :T(v,t),

0 .
so that such exchanges do not occur. Then only the derivatives -5‘3151 of the directional type



(24) can be involved in Smm(gl,gl). It first results that u; enters into Sg4.q(upuyp

through denvatives ‘_337(2'_5_[) arrli?)%(—}-[) taken on the same magnetic surface v. The

functional Sgy,eq(uply) has therefore the form

én(v s,t) ofi(v,s' t)

Srecheent (U1, U0) = f(g v) NSV NSV

\O0(v,s, ) a_'l'(v, 1) T(\ ) BT(V t)
+2§BS(V’ nyspv Tedv ) Toov  Toov v (27)

with of course agg = agg. If we now take into account that %ﬂin the equation
(24) depends only on the position X, it appears that the profile fi(v,s,t) enters into the

differences of 2 -a— taken at the same x with 2 different p,s through differences of two

IXv,s, )

RN taken at the same v with two different s. Therefore the expression (27) must
(o]

be invariant if one changes %’s%v_t) nto %ﬁ(ﬁ;wt) + €(s) x a constant. This imposes

that
z:e(s)ass.z 0 ;z:e(s)Bsz 0 (28)

Using the equations (26,27), we express that the functional —48((—9(;141])4- Sredusd U 4p) 18

an extremum for all the variations of 'r:{(vs,t),T(vs,t) around ﬁ(vs,t),"f‘ (vs,t) and thus obtain
the relaxation equations '

on(vs, d T
n(vs,h =_a‘_,.(§a$,( n(vs t) B (V)2 (V,[))

ot ny(sHov Toov
3 aT(v b an(vs,t) aT(v b
5(3d9) 750 =5 (T8 Fagsy YT ) (29)
where we could replace ny(s) by n(v,st), aﬁ(gf ) by an((;f Y and aﬁg;s,t) by ang;/s,t) , and
similarily Toby T(vs,t), aT(VSt) by aT(a‘;’S’t) and aTg‘;fs’t)by aTg;’S’t) . The Onsager

symmetries consist of the symmetry oge = ogs and of the presence of the same
coefficient B in the two equations (29). With respect to the principle (15), they result

from the weak collisionality and from the existence of the constant of motion
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Vnf(X,p,s) # v(xX), meaning that all the individual particle trajectories are integrable and

close to the magnetic surfaces. The equations (28), which impose zsle(s)g%tsi[l =0,

i.e. the ambipolanty of the particle fluxes, do not represent Onsager symmetries. They

result from the independence of eavdﬁg;x, :5) with respect to p,s at given X, meaning

that all the integrable trajectories deviate from the magnetic surfaces by a distance scaling

as pC.

We still have to justify our working hypothesis S(u,u) # S(up,uy) or equivalently
S(uyr,upy) << S(ug,uy). The basic element which determines ujf complementing uj given by

the equation (23) is that the ¢ diamagnetic velocities (g—ll;l)dir given by the equation (24)

) Vvn R ..
are relatively large, namely represent -B——-or — x the Pfirsch Schluter velocities. In
’ / Bpol neB r

order to decrease the collisional frictions reflected by S(u; + uy,u;+ uy) , the function

up(J,s,t) then opposes as much as possible to the odd component ~ (%%)dmp mVg of ur.

In the trapped domain, there is no constant of motion with such an odd structure and in
fact uy = 0. On the contrary, in each of the passing domains V,; >0 and < O, an effectuve
opposition to the odd component of uy is possible by an ug(J,s,t) related to the constant
of motion m (H - uBmax(Vaift))!'2, Bmax(v) being the maximum B value on the

magnetic surface v, which behaves as Vg, in the bulk of these domains. Finally up

reduces the derivative a‘”a%‘l to the level of the Pfirsch Schluter velocities in the bulk

of the passing domain, by taking values ~ (%)dmp mV¢. Such an ug has a small
influence in the entropy S(up+uy, ur+uy): the quantity S(uj,uj) appears to be smaller than

2 \%
S(ug,up) In a rauo ~ %C,E- Incidentally the derivative -aﬂ(—;l;—ﬂ ~ (5 dir ~ -BB— ~bB

pol neB
which subsists whithin and in the neighbouring of the trapped domains, averaged at each
point X in p space, i.e. multiplied by ~({z)m , represents the macroscopic velocities

along @ of the vanious species, i.e. the bootstrap velocities.

2.3 COLLISIONAL OR NON INTEGRABLE SITUATIONS

We now consider toroidally confined plasmas without imposing a weak
collisionality. We assume that the flux lines generate nested magnetic surfaces of volume
v(x); more generally the individual passing particles have integrable trajectories close to
the magnetic surfaces, the deviation being then of course ~ p.. We cannot extend that

assumption to the trapped particles in nppled tokamaks or in stellarators, where the drift



-23.

velocity vg) largely displaces some class of trapped particles across the magnetic

surfaces. In fact we will hereafter consider 2 possibilities:

1/ The configuration is axisymmetric, or exhibits a constant B on each magnetic
surface so that all the particles are passing. All the particles have integrable trajectories
close to the magnetic surfaces, the deviation scaling as p¢. There exists, besides H and n,

a constant of motion vgrifi(X,p,s) # v(x) such that gi‘—‘hl——é(px’ﬂ at a given Xx IS

independent of p,s. In those situations, it will appear that the Onsager relaxation (29) and
the equation (28) implying the ambipolarity hold true at any collisionality.

2/ The configuration is general, but we assume a simplified behaviour of the

trapped particles: some class of trapped particles have integrable individual trajectories
close to the magnetic surfaces, the deviation being much smaller than the radial scale ~ r

of the configuration, but not necessarily ~ pc; the particles in the other trapped domains
expertence large displacements ~ r across the magnetic surfaces at a velocity ~ vg, . [t
will appear that the Onsager relaxation (29) is only insured if the latter particles are
detrapped by collisions long before they have completed a radial excursion comparable to

the radial scale r, i.e. if the detrapping rate R is such that
Tdetrapping

1 >> V?J“ 30

Tdetrapping

B

The condition T~ << 1 implies the possibility of the Kruskal separation (Kruskal

1962) of a fast cyclotron phase g¢(x,p,s) from 5 independent slow dynamical variables,
that we may form with H(x,p,s), wm(x,p,s) and the three coordinates

Xxg(x,p,s) =x + mle%+ O(pc2) of the guiding centre. Any dynamical variable
Z(x,p,s,t) 1s a function Z(g¢,H,u,xG,€,t) which is 2x periodic in q; the sign € of Vg
included in the argument will play an important role below. At all orders in BLE nis a

constant of motion, i.e. {H,n} = 0, and on the other hand the cyclotron frequency

D(x,p)

wc = {H,pc}, the guiding centre velocity Vg = {H,xg}, the jacobian J=
' Dl H n.x5)
are functions of H,u,XG,€,s independent of ¢¢. The condition we >> S — and
Teollision

together with the principle (15) imply that U and F are nearly independent of
Trelaxation ‘

¢ U # u(H,n,xgG,e.s,t) and F # f(H,u,xG,¢,5,t). We precisely define the function
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2
f(H.i,xG,€,5,t) as the @, average f F""? of F and the function u(H,u,xg,¢,s,t) by
O —

applying the relation (6) between H,u,and {. We choose the working dynamical variable
U(x,p,s,t) so that it is exactly a function u(H,pu,xgs, €5,t) independent of .. It then
appears that the kinetic functional 2(U,lJ) given by the equations (10) is equal to Z(u, u)

at all orders in %E , and no longer involves the cyclotron motion but only the guiding

centre motion
_ _ F,v . du o ~F,y . Y )
Z(U,Q)_Z(u.g)_g:f _Tq&(vG Hi—(—})gd3xd3p— gf TE(VG U)—(—(—})d3xd3p 31D

where Fd3zxd3p may be replaced by f 32xdH du d;x; independent of .. With a small

oU 0 .
error of order L and L , we replace S(Ti’u) by S(a—l:,l_l) and S(UU)

WeTrelaxation WcTeollision

by S(wu). The principle (15) then determines an autonomous relaxation of the function
u(H,u,xq,¢,s,t) by imposing that at each time

ou
=7

. ou .
W+ Huw+Sww  or —45(3u) 2(wu) +S(u,u) (32)

is an extremum for all the varations of U(H,W, X, &58,t) around u(H,u,xG,e,5,t). The

principle (32) is equivalent to a gyrokinetic equation (Hazeltine and Meiss 1992) valid at

first order in , I and at all orders in %3 .

WcTrelaxation  WcTlcollision

Again, we make the working assumption to be verified a posteriori that the
entropy S(u,u) given by the equation (14) achieved durning the relaxation process is
approximately  determined by the profiles  fi(v,s, t)=n(v,s,t)-nys)  and
T(v,s,t)zT(v, s,1)=Ty . The equations (22) sull express that the deviaton u, now a
function u(H,u,xgG,€,s,t)), achieves such profiles. At each time t, we associate to the
profiles fi(v,s, t),’f(v,s,t) the function up(H,u,xgG,¢,s,t) which approximately minimizes
S(u,u) under the constraints (22). Our working hypothesis means that S(u,u) # S(ug,uyp).
We find that uj is still given by the equation (23a), but of course only if the constant of

motion Vgl X,P,S) # v(X) exists everywhere in space X,p. In fact we now write

U _'r"l(w,s,t)+( H 3)'T‘(W,s,l)
T, "ngsy T, 27 T,

(o]

(33a)
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where w is any dynamical variable which is both independent of ¢ and close to v(x).

The equations (25,26) are then applicable. We have 2 possible situations
1/ In the axisymmetric or V;/B = O configurations, we may take
W = Varifi(X, P.S) (33b)

For an axisymmetric configuration, the constant of motion vyt 1s given by the equation

(23b). In a V;;B = 0 configuration, we have, R-l— being the curvature of the flux lines

vt = vixe) + 22y ; aw= [ (Grx D) -vw)an @30

For both configurations, w_v@y(;,p_,s) depends only on x and
vaite - v(x) = IR BV | o p2)
2/ In all cases we may take
-B 5
w=v(xg) =v(x)+ (Vv(x)x—g7): mV + O(Lpc?) (33d)

Let generally ueyen and uggj be the even and odd components in € of a function
u(H,u,xg,€,s,t). It will be important below that in all cases

fi ,S,t T S, L
Uleven = %ocg)js_) +({.{; - %)_(_(_V_(Z‘FGO)_S) ; Ulodd << Uleven (33e)

o]

Within the vectorial space (u) formed by the functions u(H,p,xg,&,s,t), the functions uj

associated to the various profiles fi(v,s, t),’I"(v,s,t) via the equations (33) form a vectonal

subspace (up). Within (u), we define u; to be varied around uj by changing
fiv,s, t),?‘(v,s,t) in the equation (33a) into (v,s, t),’I'_‘(v,s,t)

_f H 3.1

T e YT,
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al
The functionals S{ugu;) and S(—a[—l,gl) are then still given by the equations (25,26). We

define also the vectorial subspace (u) formed by the functions u(H,u,xg,¢,s,t) which
satisfy the equations (22) made homogeneous by cancelling the RHS. We decompose u
and u in the form uy + uy and y; + uy, where the functions ug and u; belong to the
subspace (up). Under our working assumption S(u,u) # S(ug,uj), equivalent to IS(ug,uy)!
<< IS(u,up)l, the principle (32) states that at each time

—35(%,91) + Z(urrugap+ur) + S{urtugru+uy) (34)
1s an extremum for all the vanations of y; and of uy. Because the antisymmetrical form
¥ superimposes to the symmetrical form S, we do not recover the easy way of the
weakly collisional, integrable situations, where the extremalization with respect to
up(J, s,t) was immediatly leading to the principle (20) implying an Onsager relaxation for
the function uy and thereby for the profiles fi(v,s, t),'T“(v,s,t). The principle (34) gives a
priori no guarantee for such a relaxation: the sum £ + S in the expression (34), once it
has been extremalized with respect to up(H,u,xg, €,s,t), becomes a bilinear form
SMUI.QI) in urand y; , but, because of the presence of X, there is no obvious reason
for that bilinear form to be symmetrical. We will show that it is however the case under
the condition (30). The principle (34) will then become effectively equivalent the principle

(20) for yj or .1

One may verify by using the equations (31) and (33a,33b,33d) that 2(y.u;)=0.
The bilinear form Smdmx(q -up) is then the value of the bilinear form in ujuy and uuy

S(UIJ_JI) + (E+S)(Un M)+ (2+S)(U1,1_111) + (“Z+SXQ g (35)

when it has been made extremum with respect to uy within (ug) (Nguyen 1992). That
extremalization means that (Z+S)(uy,uy) + (£+S)(upu;) cancels whatever ugp, which
imposes a linear relation uy = Tuj allowing to denve up from up It remains
SedmoedW-Up) = Suy.up) +(-Z+SXy;, Tup . Generally, it may be shown that such an
extremalization in uy of a bilinear form A(uj.up+B(uy,up)+Cu;,up)+D(y;,up), if the
latter 1s symmetrical in upuy and upuy, leads to a bilinear form in ujand u; which is also
symmetrical. On the other hand, the result of the extremalization process is obviously
unchanged if one changes u;; into Ouy; where O is a linear operator transforming the
subspace (u) into (up) bijectively. Therefore the extremalization in uy of a bilinear form
A(up.up+Buy,up+Cup,up+ DXy, up) leads to a symmetrical bilinear form in upand y; if
A(u.up+Bug,Oup) + Cu;,Oup) +D(u;, up) is invariant when one exchanges ujuy and
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upug. Applying that result to the bilinear form (35), it appears that a sufficient, but not at
all necessary, condition for having Smjoed(q.gl)zsmln‘,(gl,q) 1s that there exists an

operator O which insures

Suy,up)+E +SXug ,Oup) +(Z+ SXuy,Oup) + =+ SXu;,up
#S(u;, up+ E+S)g, Oup) +E + SXy;, Oup)+ (== +SXy; , up) (36)

for the various components of uj,ug and uy, uy. Our strategy to demonstrate the symmetry

Smdm,(ul up)= Sm,m(l_xl, up is based on the parity operator Pin & = “\// e such that

Pu(H,u,xg,g,s,t ) = u(H,u,xg,- &5s,t)

We will indeed show that the equation (36) holds true with O = -P under the condition
(30). For that we have to show that the various components of uj, uy and u venfy

Z(ul , R]n) #Z (UI , UH) and |S(UI ,PUH) + S(UI ,Un)l << S(UI ,UI) (37)
and
Z(up,Pup + S(Un ,Pup #Z(uy ,Pup) +S(L111,PU11) (38)

In view of the equation (31), we wnte £ = Z;+X,, where X, and ¥ represent

respectively the paraliel and the much slower transverse motion of the guiding centre

3w=F [ Vorgeewdinp; Z, =3[ Vo —wdicp

’ Vo a"m

EL(UE):;f ‘[_%VGL.;L u

We will use the fact that

2(u,Pu') =-Z,(Puu') = +%,(u',Pu) , while £ (u,Pu") # Z (u',Pu) (393)
On the other hand, we will use the symmetry of the coulombian collisions with respect to
an inversion of the parallel velocities, which is expressed by the equation
S(u,u') =S(Pu,Pu') or, by taking into account that PP is the identity

S, Pu') =SPu,u') =S(u', Pu) (39b)

equivalent to state that S(u,u') cancels if u and u' have opposite parities in €.



-8 .

The first relation (37) is readily verfied in view of the relations (33e). As
S(u,u') = 0 if u and u' have opposite parities in ¢, the relation |S(u,Pup)+S(u,up)| <<
Stupup is satisfied if we have IS(uIﬂ,m,uHa,m)|<< S(uIa,m,u,cvm). We then nouce that

S(u,u') couples functions u(H,u,xG.s,t) and u'(H,u,Xg,s,t) through products of the

same type, namely, either of the type Ha% ?)a% or of the type BHdgr m af-?g; ™ By using

again the structure (33e) it then appears that the relation
[S(U ey Uteve) ] << (U eyerp Uleven) 1S Satisfied if a similar relation holds through the
entropy (14), namely if IS(lufeven!,lufleven!)! << IS(UJeven,Uleven)!- The latter relation is a

consequence of our basic working assuption IS(uy, upr)! << IS(ur, up)l.

In view of the relations (39), the relation (38) is venfied if S(uH,L_lﬂ) or Z,{up,up)

) ) Y/
largely dominates X, (ug,up) . As the ratio £ /3 reflects the ratio ng ~ PITC the

Onsager character of the relaxation is formally insured at lowest order in %-:

independently of the collisionality (Sugama and Horton 1996). However problems arise

when the functions ujj, uy exhibit very low derivative 3% The key difficulty occurs, at

low collisionality, when there exists trapped particles performing displacements ~ r
across the magnetic surfaces at the velocity vg . Such large radial displacements
combined with the radial temperature and density gradients produce an enhanced
perturbation up localized within the considered trapped domain. For a collision rate
smaller than the bounce frequencies, that enhanced up is independent of the bounce
. phases. This means that X (ug,up) cancels so that the relation (38) now demands that

S(ug,up) largely dominates | (ug,up) .The considered ug is not a constant of motion if

: 1 \ :
we exclude the extremely low detrapping rates << S’l allowing to the
Tdetrapping
particles to complete an excursion ~ r without being perturbed by collisions. This
- T Vo Uplp
means that X | (ug,up) cannot cancel: per particle, we have in fact X | (ug,up) ~ -
0

Then for Su g ~ i) to largely dominate X, (uy,uy) , the condition (30) must
i Po gely LY

0 Wetrapping

be fulfilled.

With a bilinear form S,@ux(ul.g[) in y.y; now symmetncal, the principle (34)
becomes equivalent to the principle (20). The first entropy term is given by the equation
(26). The quadratic form Spgyedl; Uy in u; is the value of the expression (35) with
w=y;, namely  S(u;,u)+E+SKug,—Pup) +E+SXuy, ~Pup + Z+S)yy, up),  made

extremum with respect to uy within the subspace (up). As that expression is symmetrical
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in ug Uy , the value of Spgyedl.Yy) is the minimum value with repect to up of

S(uy,up)+E+S)up ,~Pup) +E+SXu;, —Pup) + (~Z+SXu;, up). Since -Pu = -Ueven + Uodd.
T(u,u) = -Z(u',u) and Su,v') = 0 if u and u' have opposite parties, we find that
Smﬁm(‘![ ,u4p) 18 the minimum in ug within (up) of the expression

S(ur, 4D + SUgoad U odd) — S even Ylieven) + 22U feven: o) + CUp, Up  (40a)
where C(‘-’I"-’H):zs@lcxﬂ’gllodd)‘ 2Z(U}, Uppever)- We recover our two basic possibilities:

1/ We consider an axisymmetric or VB = O configuration and y; is expressed in

terms of the constant of motion vgrift via equationsof type (33a2,33b). Then 2(u}, U eyen) =0

and

Clyy, up =QS(!1aﬂ > Untodd) =2S(91 > Yoad) (40b)
The fact that y; enters into Sreducedl;-U;) Via a bilinear form of type S@;.u') implies that it
enters by the differences of 2 derivatives (%Lg)dr of the type (24) , if we sull assume the

same temperature for all species. As furthermore %‘%&Eﬂ depends only on x, we

have all the ingredients to recover the equations (27,28,25).

2/ We use for y; the expresion of type (33a,33c) in terms of v(xg), which is

+ applicable in all cases. Then y; is even in ¢ and it comes

Clup, Up) = ~ 22 [, Ueyen) = ~ 22, U, Ugeven) (40¢)
The profiles fi(v,s, t) and%(v t) enter into S icedlly-Up by derivatives on and BT and
i o T neov T Tav

we still recover the equations (27,29). However the equations (28) are no longer insured.
The strongly collisional Pfirsch-Schliiter regimes are an exception from that point of
view. Indeed the minimization of the expression (40a,40c) with a strong collisionality
imposes that Ufjeven Cancels S{Upeven Upeven) - Which means that upee, has the form
a(xg.s) + b(xg)H. At each x point, a and b make extremum
2% /U ffeven > Ytodd) — 22 1 (Yeyen » Uleven) - T hiS imposes that upoqg produces at each point the
Pfirsch Schluter parallel particle and energy fluxes due to the gradients up.qj. The value
Of Sphedly-Up is finally S;.up) plus the minimum value of S(l_xuaﬁ,gnodd) with Upodd
submitted to that constraint. The Pfirsch Schiuter parallel particle and energy fluxes and
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. A : : on(vst
therefore that minimum are invanant if one changes n_Z)E'E)_(')\_) Into

ofi(vs.0)
ny(syov

ov(Xc)

. ; . €
+ e(s)xconstant. This is true also of S(u;.u;) since Tdepends only on x.

The equations (28) result from these two invanances.

A striking point is that to derive the Onsager behaviour of the relaxation from
the kinetic equation in collisional or non integrable situations, we have been
obliged to use the symmetries of the individual motions and of the collisions with
respect to an inversion of velocities along the magnetic lines, so that the equations
(39) hold true. Typically our demonstration demands that the interaction
hamiltonian is invariant when one changes the sign of the parallel velocities. We
have seen on the contrary in the § 2.2 that in weakly collisional and integrable
situations the Onsager behaviour occurs whatever the weak interaction as long as it
i1s hamiltonian. One must stress here that the relations (37,38) derived from the
relations (39) are sufficient, but not at all necessary to insure the symmetry
'smm(q.gl)z'smdm@l,ul) implying an Onsager relaxation. It remains possible
that the latter may be established via another line whatever the interaction
hamiltonian. The fact that in all cases an Onsager relaxation demands that the
plasma layers on the successive magnetic surfaces are independent enough
suggests the following line. At the starting point, one would decompose the plasma
into layers of width D << delimited by a set of successive magnetic surfaces and
fully isolated from each other by thin barriers of width d << D localized around
each of these surfaces. In a magnetically confined toroidal plasma, such barriers do
not represent a huge perturbation: they may be obtained by suppressing the
interacions between the particles and also the varations of the magnetic intensity B
within the thin intervals d, assumed >> p.. The presence of the barriers allows
stationnary states of the plasma, where the temperature and the densities are
constant within each interval D but are allowed to vary from an interval to the next.
The suppression of the barriers, i.e. the reintroduction of the interactions and B
vanations, would then be considered as an hamiltonian perturbation responsible for
a diffusion of the plasma in the space of these stationnary states towards its
thermodynamical equilibrium. It is conceivable that the considered hamiltonian
perturbation is weak enough so that it finally induces transition probabilities
verifying the detailed balance equations leading to an Onsager relaxation of the Van

Kampen type.
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3. FIELD-PLLASMA SYSTEMS

3.1 VARIATIONAL PRINCIPLES

We now assume that the confining field B =VxA, E:—VII’—%-‘% 1s coupled to

the plasma by the Maxwell equations and study the slow relaxation of the system formed
by that field and the plasma. For the system to be isolated, we surround it by an
hamiltonian particle barrier which is also perfectly conducting, so that it forbids any

transfer of energy through the Poynting vector ElaExB. Over the barmer the tangential

component A; of the vector potential A is then frozen and the potential ¥ is assigned a

null value. In a toroidal plasma, the 2 barriers are of course installed on 2 frozen magnetic
surfaces flanking the plasma. Under those boundary conditions, the field A,¥ in the

plasma is determined by the densities of electric current I(x,t)=§ f FeVd;p and charge
p(x,n)= zf Fed;p developped by the distribution of the plasma particles. We use the
gauge divA = 0. As the field is slowly evolving, we may assume the "electrostatic” field
-VW¥ much larger than the "inductive" field %?— The Maxwell equations then reduce to
vy . _ .
VxVxA = uo(l + W) and to the Poisson equation egAW¥ = -p and are equivalent to

state that, at each time, the field A,% under the above boundary and gauge constraints
makes extremum the lagrangian

f (fz(-’(V‘P)z—z—lL-O(VxA)z)d_,,x+ f (1 A= pP)dsx (41)

2
I(x,t) and p(x,t) being kept constant when A, ¥ is varied. Since H = ﬁE%c;nA)_ + eV, a
variation A, 8% induces a variation 6H = gP—'Fe;A—) * (-ebA) + edW = - eV.dA + edV¥

so that the variation f (1-8A-pd¥)d;x may be replaced by —; f FHd3xdsp. In fact,

the dynamical vanable H(X,p,s,t) at a given time t is a functional of the field A(x,t),
. (p-eA)?2 N . .

Y(x,t) at that t (since H = S+ eW), a situation that we will express by the notation

H(x,p.s,t) = H(x,p,s!A,¥). The principle (41) is equivalent to state that the field A,¥

makes extremum
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[ (VW) = o (9xA Py

vs)To -H(xp,sIAW¥)+U(xpst)
. 42
+2 f T T )d3xdsp (42)

U(x,p.s,t) being kept constant when A, W is varied.

When the system reaches its thermodynamical equilibrium, the field AW takes the
value A y(x), W(x) satisfying the static boundary conditions but corresponding to the
electric currents and charges Iy(x),po(x) produced by the maxwellian distnibution (5).
Obviously I=0 so that the magnetic field Bo=VxA is the vacuum field achieving the

fixed magnetic fluxes f A -dx across the various contours drawn over the field-plasma

barrier. By positioning close enough the 2 toric barmers flanking a toroidal plasma, the
practical magnetic configuration may be reproduced. The relaxed electric potential Wo,
assumed to cancel on both barriers, 1s determined by the Poisson equation —ejAWy=p,

—<¥
with the charge density py=2 evye %) resulting from the distribution (5).
g Y Po= L evoep(——) g (5)
Assuming that g:evo =0, the solution is W = O, implving constant relaxed densities

no(x,s) = vo(s) and pg = 0.

At a given time, the deviation U entirely determines through the principle (42) the
field A,¥ and the hamiltonian H, which are therefore functionals of U. We express that

situation by writing

H(xp,st) = HxpsiU)
AXD=ARX. ) ~A¢x) =AXIU) ;P =WE.D - Wyx) =W(x,) = P(x IUY43a)

The functionals X(xl Uy, lhf’()zIU) ,H(xp,s|U) depend only on the constants vg(s) and Tg in
the equation (6) and on the boundary conditions imposed to the field A,W. A differential
variation dU induces variations dA=A(x U+ dU)— A(xIU), dW=P(x|U+dU)- Bx1U)

and also a vanation dH = H(x,p,s | U+dU) - H(x,p,s | U) = -eV.dA + edW. There

exists at each time t a well defined linear operator G acting in the space of dynamical

variables functions of x,p,s at that t, such that , whatever the dynamical variable dU
dH=G(dU) (43b)

The kinetic equation is still equivalent to the principles (7) or (11). However, the set
(13,14) is no longer valid in the present case where the hamiltonian H(x,p,s,t) depends
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JF(xpst
on t, since —(;pr) 1s now given by T-F(T—a— T—(T) instead of FT_(T We have

in fact T G( )so that _5— T'(T ( )) The equation (13) becomes again

valid if we replace the definition (14) of the bilinear form S by the new definition

UL UD=X [ U d3xd3p+zf L ouurdyaap (44)
0

The principles (15) then give exactly at each time t the vanation aa—? [t is crucial at this

point that the deviation U imposes a each time the state of field-plasma system, via the
principle (42) for the field A(x,t),¥(x,t) and the hamiltonian H(x, p,s,t), and then via the
equation (6) for the distribution function F(x,p,s,t). On the other hand, for principles of
type (4) to be eventually recovered, it is essential that S(U',U") = S(U",U"). It 1s the
case because of the principle (42). Indeed, the latter implies that in the space of dynamical
variables at a given time, a vanation dU induces vanations dA, d¥ and dH = G(dU)

such that the differential element g: f (ZnTom)mexp(—H+U )dHd ;xd3p is integrable, since

it is equal to d( [ (-29(V q’)2—2—”--0(V><A)2)‘13?() . That integrability means that 2 different
variations dU', dH' = G(dU') on one hand and dU", dH" = G(dU") on the other must

Yo =H+U, —dH'+ dU' 7 v
produce equal values of g: [ (ZnTOm)wap( T, ) T dH" dsxd5p

zf (2nT0In)3p\,)qX—H+U —dI‘l + dU” dI—l‘d3xd3P . The Symmetry S(Ul’Un) - S(U",U')

and

Io

results. It is worth stressing that it results from the lagrangian structure of the Maxwell
equations, expressed by the principles (41,42), and not simply from the conservation 1n
time of the energy of the field-plasma system. An important consequence of the
symmetry S(U',U") = S(U",U") is to allow to identify S(U,U) at second order in U with
the entropy S of the system with respect to the thermodynamical equilibrium U = O, by
using the same argument as at the end of the § 2.1, namely, the fact that

dS(cthU) s( ,U) and the equations (13,16).

Again an Onsager relaxation is immediately recovered in the weakly collisional

regimes where l__ and .1 1

T . —, if at each time t the
collision relaxation Tkinetic

are small compared to

motion in the hamiltoman H(x,p,s,t) is integrable, i.e. if at each t there exists 3 angular
variables ®(x,p,s,t) and 3 action variables J(x,p.s,t), with H(x,p,s,t) = h(J,s,t). The
arguments used in the § 2.2 (namely, the low collisionality implies U # u(J,t,s),
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F # f(J,t,;s) and the choice U=u(J,t,s) cancels 2(U,U)) still allow to pass from the
principle (15) to the principle (18). At this point the fact that the dynamical vanables
J(x,p.s,t) are no longer static but depend slowly on time could make an important
difference with respect to the static situation of the § 2.2. Indeed GU_(xa;Lsﬁ in the

principle (15) should lead in the principle (18) to au(gis,t) + au(é]js’t) . GJ(xé{),s,t)

and not simply to \f(du(J,s,t);0t). However, we may safely use the principle (18) with

du(J,s,t : N : : .
——(‘;[ ) as it stands. This is important since the vector A(t) representing at each time t

the function u(J,s,t) of argument J,s then satisfies the principle (18), on the basis of the
equations (19). To eétablish that point, one first notices that at a given t the 3 dynamical
variables J(x,p,s,t) are fully determined by the field A(x,t),¥(x,t) at that time t, or in
other words: J(x,p,s,t) = J(x,p,s|A,¥). Similarily the function h(J,s,t) is a functional
h(J,s|A,¥). Of course those notations imply that A, ¥ belongs to the set E of the fields
creating integrable trajectories. The key element is then the form of the vanation
dJ(x,p.s) = J(x,p.slA+dA, P+d¥) - J(x,p,slA,¥) comresponding to a variation
dA(x),d¥(x) of the field A, ¥ within E: namely, the dynamical variable dJ is a sum
XXH(J,S)exp(i n-®P) over the triplets n of integers (ny,n3,n3), where the term Xn:(O,O,O)

cancels (Rebut and Samain 1969, Samain 1970). This particular form of dJ, together
with the fact that d3xd3p = d3Pd3J, makes that (—3-} . %‘tldisappears when one passes from
the principle (15) to the principle (18). It also allows to replace in the principle (42) the

~H(x,ps| A ¥ t _
functional exp( (x,ps A,T O)+U(x,ps,)) dyxdsp by e MJ,SIA¥B+ U(J,s,t)) oy

That principle then guarantees a direct link from the function u(J,s,t) of argument J,s to
the field A(x,t), W(x,t), and thereby to the structure in x,p of J(x,p,s,t). The knowledge
of that structure allows in turn to calculate the coefficients S andS, given by the
equations (19b). Finally the Onsager scheme for the vector A(t) representing the function
u(J,s.t) relies on the principle (18) equivalent to the principle (4) through the equations
(19), but as well on the principle (42) which allows to know what sort of bilinear forms
S, A%A Pand $, A°A® must be employed.

We now denve convenient expressions of S(U',U") at zeroth order in U, i.e. of
S(UU) at first order in U. We remark that if U = u(Z(x,p,s,t),s,t) and if Z at given x,p

has a relative vanation ~ U during the relaxation, %Lti = %—‘: (I+O(U)). This will allow

below to identif S(aU,l_J) with S(au,g) for U =u(H,u,vdrift O XG,S,t)) .At first order in
YT 3t

U, the current and charge densities I(x,t), p(x,t) at time t are linear functionals I(x|U),

p(x1U) given by the equation (6) (where W =¥, Zev():O)
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1(x)=1x0)=3 f eFV-Il:-I-d3p (45a)
p(x,t)=p(xIU)=2_: f eF(T— iy.(rf‘-'g-))% (45b)

The functionals X(xIU) ande"(xIU) also become linear in U, and
G(U)= —eV-X(xlU) + eﬁ'f()dU), so that the expression (44) becomes

SUW)=-3 f —ZFUUd3xd3p+ h) f %ezﬁ’(xlwq’(x@dﬁdp
<10

_ [ 2_T0(x<x;u>-x(x@—wer)p(xrl_J))dzx (46)

In principle the electric potential {y is determined from the charge density p via the
Poisson equation. If the spatial scales in the plasma structure are much larger than the
Debye length, one may a priori impose p = 0, divl = 0. This implies that p(xIU) = O,
and, in view of the equation (45b), the functional ﬁ"(in) is determined in terms of U by
the equation

YUz — L

%[ Feuap ;ioezgf FeUdp;@me®=ve®) (47

f FeZd;p

. Putting p(x{U) = O in the expression (46), where qf()dU) 1s now given by the equation
(47), we obtain

S(U,LI)z—z_‘,f %M—eﬁ’(xlU))((_J—e%(xl_U))%xdth
0

- ,_,.}5[ AXIU)- Ix | Udsx (48)

When one builds up a deviation U(x, p,s,t) in practise, one starts from a set of values of
densities 1 , temperatures, macroscopic velocities, etc, and one fits U to these values
through the equation (6). The equation (47) leads to use the values of the electric potential
{ as a similar ingredient for building U. The potential {y and its working version ¥ then
enters into the functionals of the principles (15,18,32), which must be extremalized with
respect to \i’ on the same grounds as with respect to i , etc. That extremalization with
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respect to ¥ around iy will express the neutrality constraint p = O within the evolution of

the system, and therefore will express that divl = O. Let us notice that, with divl = 0,
the Maxwell equations now reduce to VxVxA = pgl: for a given U, the current density

[(xIU), provided by the equation (45a), creates the field X(xIU) via the Ampere law
VxVxA =pgl and the boundary condition A,=0. The symmetry S(U,U) = S(U,U)
based on the expression (48) then implies the "reciprocity theorem" (Landau and Lifshitz
1960)

f(X(xlU)-l(le))d:;x:f (X(le_J)-l(xlU))d:;x:f MLO(VxX(xILU-VxX(le_J))%\'

In a toroidal configuration the field A(x,t) imposes at each time the form of the magnetic
surfaces, 1.e. the volume v(x,t) of the magnetic surface passing by x. Via the integrals
f A-dx , it then determines the poloidal flux 2wy pol(v,t) embrassed by the major turns

drawn on the magnetic surface of volume v, and the toroidal flux 2myo(v,t) embrassed
by the minor turns. At a given t, the deviation U, since it entrely determines the field
A(x,t), determines as well the functions ‘Ppol(",t) and Yo(v,t) of v. At the
thermodynamical equilibrium, the volume function v(x,t) has taken the relaxed form
vo(x) and the flux functions Ypol(V,1) Yror(v,1)) the forms wopol(V), Wowor(V). We

introduce the functionals in U
PV T = (VD= (VD ~ Wi s Vi (VI =P (VD= (VD = (V)

which are linear at first order in U. We will transform the second term in the expression

(48) by taking into account that we know a prior that
divi=0;IxB # Vp; p # p(v(x,1),t) (49)
p being the plasma pressure. The equations (49) imply that the current density I(x,t)

produces well defined amperages 2ntlpo)(V,t) and 27xlor(V,t) across the minor and the

major turns. We define

a r
R

The mechanical equilibrium IxB = Vp imposes that (Mercier 1974, p 33)

Ny (v, R v,t)  ap(v,t)
L, D—B Ipd( ol (f; P (50a)
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We base the topology of our minor and major turns, which then determines the functions
Yror(V.1), TioV,t) and Ppol(v,1), Ipol(v,t), on Hamada angular coordinates Opa(x,t),
PHa(X,1) defined modulo 2x, parametrizing each magnetic surface v. We define the minor
turns I'mip on a surface v by varying OHa, @Ha by 27,0 and the major tuns I'ymaj by
varying OHa,@Ha by 0,2n. The use of the Hamada coordinates allows to writ—e (Mercier
1974, p 37)

I(x,1) = Lo V. VVX VO, + Ipol (V1) VVXV@Ha

-1
Lior(V.1) = (271)2 1(x,t)« Voua(X,1) 5 Ipoi(v,t) = Ey I(x,t)s VOa(x,1) (50b)

where v,0 1, Py, stand for v(x,t), etc. By taking into account the equation (45a) we then

obtain
~ _ U oH aBHa(’LI)
IMV,[)—%(Vlu)—;I FT'-a_ (”J’[)zax 3 g[ (Jt) axdj)
0
lott 9=l10=3 [ eF 51 T a=Tf eF - Tesap 1o

The equation (50a) links Ilior and Ipoy to the profile of the pressure
pv.t)= gn(v, s,0)T(v,s, t), expressed in terms of U via the equation (6)

MWl .. APl
In,(le)T— LV 10y = (f(‘ﬁ;?

Pv,t) = p(v, )= po(v, t):EnOTO(% +—1T6) :;] §FHUd3p='ﬁ(v1 U (51b)

Let us stress that, for a given U, the functionals Iio(vIU) and Ipe)(viU), defined by the
equations (51), determines I via the egs (50b) , then X(xIU) via the Ampere law
VxVxX:pOI and the boundary condition leo, and thus finally the functionals
i'pu(le),i'pm(le), A key point (see Appendix 3) is that the last term in the

expression (48) may be written
2T AXN)- IxIU)dyx=— ] ('f'ppd(wU)I“(vlLD wu(WLDIpd(\dU))dx(_so)

so that

SUY) = g:f —-—,(U ePx IUYU-eP(x IU)d3xdp
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~ i
[ S U 1) = T 1) g L) (53

3.2 NEOCLASSICAL TRANSPORT

With respect to the imposed field situations considered in the § 2.2 and 2.3, the
main difference is that the entropy S(U,U), now given by the equation (53), is influenced
by the average velocties of each species through the electric current densitty I which
controls the magnetic energy of the field plasma system. Our working assumption that
S(U,U) i1s simply determined by the average density and temperature profiles
n(v,s)=ny(s)+Wv,s,t) and T(v18)=T, +T(v, s,t) 1s no longer realistic. We must add the
poloidal and toroidal current profiles Ipol(v,t) and Iipr(v,t), and of course also the average
electric potential W(v, [)=fi’(v, t) over each magnetic surface v. In fact we have to add only
one of the profiles Ipol, lior: because of the equations (51b), we may consider the profile
Ipol, for instance, as determined by the profiles ﬁ,'T',a[ﬂIu . Accordingly, we will take as
working assumption to be verified a posterior1 that S(U,U) is determined by the profiles
f(v,s, t),?(v,s, ,t),fi’(v,t)arﬂlu(v,t). The equations expressing that the deviation U
achieves at a given time t the profiles Ti(v t.s) and?(v,t,s) are driven from the equations (6)
and are quite similar to the equations (22). Those expressing that U achieves the profiles
l'.I”(v, t) and [io(v,t) are driven from the equations (47) and (51). The whole set has the

form

fiv,s.0) e(s)ﬁ'!(v,t)

f 76(\ (x [) - \)T-d3‘(d3 = ds) TO

exp(- HTp), 4 T(\,st)
3/ i (F -%x.)-Y) pdysdp=—p—
HIT,
[ noe‘p(T 2 8% - Hyxdp=(Tnge?) (;‘)
exp( I—I/TO) oU . 9Pra(X. 1)
Zf (3 ey ) P 0) (54)

In the last integral, x is a position (arbitrarily chosen) on the magnetic surface of volume

v, of equation v(X,t) = v.
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Let us first consider an axisymmetric tokamak in a weakly collisional regime. At
each time the deviation U is nearly a function u(J.s,t) of 3 action varniables J(x,p,s,t) for
the hamiltonian H at the considered t, which then satisfies the principle (18). With

S(U,U) taken at first order in U, we may in fact express U as u(J,s,t) with J meaning the

) mVv?2 :
3 constants of motion H = —— + eW(x,t), p and the constant of motion

P

Varifi(X, p.s,t) # v(x,t) given by the equation (23b). We will pass of course from the
principle (18) to the principle (20). The first step is to associate to the profiles
fi(v,s, t),?(v,s, t),q’(v,t)andlk](v, t) a deviation ug(J,s,t) which approximately minimizes
S(U,U) given by the equation (53) under the constraints (54). The second term of
S(U,U) is directly imposed by the given profiles ﬁ,?,andlu which determine I via the
equations (51b) and then 'f'pu,'{'ppd from lior, Ipol Via the Ampere law. Therefore up has

only to minimize the first term S' = ; ’);,’II‘:_(U—e‘I‘)Zdy(%p. Accordingly ur contains a
=lo

A(via,s,t) es)fl"(v 1) Tv s,t
term of type (23a), namely u' = (d]'lﬁo + ( To(hﬁ’ +(=§ )w As long

as the ordered kinetic energy associated to average velocities of the various species 1s
small, the odd part of uy’ has a small influence on S'. To obtain the actual uj, we add to
vy’ a further odd constant of motion, which again does not influence S', but allows to
satisfy the last constraint (54) involving I, That term is built up from gl -
uBmax(Vdrift.t)), where Bpax(v,t) is the maximum value of the magnetic field B over the

magnetic surface of volume v and ¢ is either O in the trapped domain H - pBpyay < 0 or

Vi in the passing domain H - uBpax > 0. We are in fact led to take
2 passing

_lllzﬁ(vm,s,t) +e(s)“i"(vdiﬁ, [)+(ﬂ )T(Vduﬁvs Ky
To no To
+e(s)e RBTE;(VMt 0 (a( Dl D +
aﬁ(v(h-ﬁ,s,t)# alp(vcﬁﬁ,l) aT(Vchft’S [))) 55

) + (Ve S0

% ols)e®) BV 8.9 (e 83V Todv e(s)Todv

L . ... du . : . . .
giving nise to a denvative a—pI at a given x which, besides the isotropic term

T__T__(V(x’ v, s’[)V , exhibits the following directional term

[o]

ouy o, oW \eVar 4T  H eav 4 S — V1)
(T)dr ((noeax Toov’ 9p ' T, eax((To -) Ty V))



o oW T B
+(a lor + (; bnoe(enoav+ Tyov ))+ (; ©flo¢ eToav))e evV- lgm Vi (56)

The functions a(v,t), b(v,s,t), c(v,s,t) are found by substituting the expression-(56) in the

constraint (54) involving I. An important point is that, if ea\d"né; p5.U 1s independent

of p,s, the function b(v,s,t) appears to be independent of s. It is indeedthe case in

in)
tokamaks, where a=x “Bm(z oe‘ me) (with Vihermal = (-'%——0-)1’2) and b=c¢
0P OW
= —nl"ZBmTo(zn 2 (;Pvnr pd(" )" me) . We build up y;(J,s,t) by replacing the
profiles fi(v,s, t),%(v,s, t),‘P(v .0, (v, in the expression (55) by the working profiles
iv,s, t) ,T(v,s, t),‘i’(v 0, Lg(v, 1), to be varied around fi(v,s, t) ,'T"(\r',s, t),"i"(v 0, L (v, 0
After insertion of upand y; in the expression (53) and elimination of Ipo by using the

equations (51b), one finally obtains the first term of the principle (20) in the form

aul On(v,s, ) 3 aT(\ S, D)
= up= g:f ((n oF i TV, s, t)+ 2 Uy, s, t))no(s)d\

ony awpd(v, D P/ OV alpu(\’, 1) ,
+2 T ( ot - Py / OV ot )_n(v’[)d\

I 9Pulv0) o Avsy Tvso, o
+2f6wu/av S PN T (57)

The second step to apply the principle (20) 1s to minimize S(g1+gn,gl + up) for gtven up
when one varies ug(J,s,t) submitted to the constraints (54) made homogeneous by

cancelling the right hand side. We still obtain the structure of the corresponding minimum
S educed (1> Uy ) by using the fact that uj(J,s,t) enters into S(u;+uy,u;+ up) and therefore

. : . d .
Into S 4,4, u;) through differences of 2 -(-% for 2 different p,s at the same x. In

view of the expression (56) one first finds, assuming ?(v,s,t):’T"(v,t), that
Spdedi-U) is a sum for all possible v of quadratic forms in

_dBvsy )P, 1) ve aT(v,0)
=37 np(s)ov Toov =7 Tyov

and [ (v, 1)

St 00)= [ (3ot (UK Xt YO OY Y4100 Ly Le

+ 22: Bv, XY + 22: K(V, D X o+ 2MV, DY ln) dv (58)
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edVarift(X,p,s,t)
op
of p,s, which implies that b(v,s,t) is independent of s. Taking also into account that

where of course agg' = ag. In axisymmetric tokamaks, 1s independent

Zno(s) e(s)=0, it then appears that the differences of 2 ;)I for 2 different p,s at the same

o . Mrv.s ) es)dP(v,) .
X are invanant if one changes (S + — wIc into

v, e (v,1)
O " T v 1Y

when one changes X into X+ e(s) x a constant, that is to say

+ e(s) x a constant. This means that Smnad(l_l, ,U) 1S invanant

2e(s) o =0 Xe) B =0 Xe(s) ;=0 (59)

. ou : )
We then apply the principle (20) by extremalizing —4S(—aTI,yI)+ SeduedUplly)  as it

appears from the equations (57,58) with respect to the working profiles
fv,s, 0, T(v,s 1, ¥W,0), 1 (v, t) around the actual profiles fi A %and I, It comes

ofi(v,s,t) _ 9 P (VLYo
T_W(_Fs+nds)mwuv :

_ IMv,s\ 0 e )P,1) aT(v, 1) ,
'FS_(SZGS'(nO(s')av + Tov ))+ B, Tov +x L v, 1) (60a)

3 BT(V t) an(v,s,t) e(s) affJ(v,s,t)
BT = 5 (T T )

no(s)av
aT(v ) P (v, V3
Tov +AL (v, t)+(§n0(s))——-——awu(v’tyav) (60b)
0=L(Te(s)T,) (60¢)
o Af(v,s,0) . e(s)aP(v,s,0) aT(» t) ,
Ty oW (vV,/ov — (g'( ( ny(s)ov + Toov ))+;‘ + MgV, Y
PV, 1) 9 My (v, 1) 0% v,t)
V> D (v, 0, (v, FWpof 60d)

T v ot v
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—-d Lt/ v
M is the safety factor Q)Ha, the quantty S S
Y (V, 1)/ v ’ V.01 T 0PV, 1) /0V

Since the ratio

readily 1dentified with :1— x the inductive voltage | E,dx. along the flux lines per major
2

turn.  The  equations (60) express the relaxation of the  profiles

~ ~ . aN \”[) aN ‘1t
i(v,s, ), T(v,t), P(v,t)and [, (v,t) If one uses the Ampere law to relate ‘Pp(;it( , ng‘ D

(V.1 B, (v, 1)
S TR T
The considered situation is general in the sense that the shape of each magnetic surface of
volume v and the flux functions g (V.t), P (v,) may evolve in the course of time.

_ , (v Tv,0) ol (vt
and then, via the equations (51b), to an(:;,[s, [), aT(()‘[’t), ”('3(: )

However, since we have used an expression of S(U,U) at first order in U, some effects

are absent in the egs (60): for instance the energy transfer from the field to the particles,

9 P > _
namely f E-Id;x= f (- ::T[pd L+ %‘;[‘“ Ipd)(’_’n)‘dv, being of order U2, does not
appear in %{-‘, it may be introduced by using the general expression (44) of the bilinear

form S(U',U"). The minor turms I'pjper along which the Hamada coordinates 8g,, 9ua
vary by (2x,0), rather than the major tumns ['major along which O, gHa vary by (0,27),
have been chosen to play a preferential role in the equations (60), whose sructure must be
invanant if one changes of Hamada coordinates, passing from 0y and @y, to
0'Ha = [ Opa+m @ and @'y = p O +9@Ha Where the integers /, m , p , g are such
that/q -mp =1 (see Appendix 3). The integers p and ¢ determine the new minor turns
I minor = ¢ I'minor- P Tmajor @long which 8'pp,, @' gy vary by (2n,0), embrassing the
new "toroidal" flux ¢'ior= g Yior- P Ypol and the new "toroidal" current
~ I'or = q lior - P Ipol- It appears that the quantity E given by the equation (60c) is
invaniant. The new coefficients a'gy, pB's, etc are readily dernived from the invanance of
the entropy production rate (58) expressed in terms of X,Y,1, . on one side and of
XY, I'y on the other, by taking into account the relation

Yoo 19V ap/av
Lamtla- Plagg—g- P

derived from the uations (51b). It
250)" 0/ OV 4 (>1b)

— Yy, 1OV

Yol [0V the new equations (60) are determined by

appears that for a given safety factor

the integers p and ¢ which determine the new minor turns I'" yinor. The structure of the
equations (60) is therefore fully determined by the topology of the flux lines and that of

the minor turns.

The above analysis may be extended to the collisional or non integrable situations.
Of course the dynamical varables UandU are now functions
u(H, 1, x5, & s, t)and W(H, u, X, €,5,t) and one must start from the principle (34) rather than
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from the principle (20). The analysis of the § 2.3 allowing to pass from the principle (34)
to the principle (20) 1s still applicable. The function uf 1s now given by the equation (55)
in the axisymmetric configurations or the VB = O configurations for which the constant

of motion vgift exists. In all cases one may use the equation (55) by replacing Vgife by
. du _ . .
v(xG). The functional —4S(—5-—I,1_11) is given by the equation (57) and S;, .4y, up) is the

minimum of the expression (40a) with respect to uy , now submitted to the constraints
(53) made homogeneous by cancelling the RHS. Finally, the equations (58,59,60) apply
in the axisymmetric or V;;B = 0 configurations. In the general case, where one cannot
state that all the trajectories are integrable and close to the magnetic surfaces by a distance
~ pc, the equation (59) does not apply. The ambipolarity of the particle fluxes, i.e. the
equation (60c), is then introduced by the extremalization with respect to ¥(v,t) when
applying the principle (20). Sugama and Horton have shown that the ambipolarity allows
to build up an Onsager matrix which does not involve the electric potential (Sugama and
Horton 1996). This is quite clear in a variational presentation of the Onsager relaxation:
the working potential W(v,t), since it does not appear in the expression (57) of

0 _ ) : )
_4S(—(;-1—I,1_1l) , must minimize the expression (58) of S 4,.q(Uy, Up) » which then becomes a

quadratic form in n(v s,t), T(v.t), I (vt) only.

In an axisymmetric configuration, where the equations (59) hold true, ¥(v,t) is
involved neither in —4S(—(;—1-!,1_1l) nor in Spy,.q4(ur, up) . When one applies the principle

(20), the extremalization with respect to l_'.I:’(v,t) gives no information . The ambipolanty
(60c) results from the equation (59) directly. The electric potential l'.I"(v,t) and the
" associated rotation of the plasma along @ around the major axis are let free by the
principle (20). However this is only true as long as the inertia and the viscosity effects

. . ) . . aff’ v,t
associated to that rotation are not taken into account. A strong potential gradient —'B(V—)

induces via the equation (56) a denvative
§ W), VeV -
(%El)drn— O_W_B‘P(vmt)__a_eavmﬁ =RQvg4p ) RVQ  where Qv = (‘ )( pd ) ! ,

which represents the rotational velocity at a given x of the various subspecies p.s. of the

. L ) 0
plasma. That gradient enters into Sy 4(ujup by the differences of 2 (—(-,j%)dmt taken at

the same x for 2 (different p,s , 1. e by the differences of

RmV,
i%%ﬁ(vdﬂﬁ—\/(x,t))=agg:,”t) v ;':av . For reasons of parity in V, there is no
pol

coupling between such differences and the differences of 2 (%%)dr due



g%g%:—t) L,(v.,t) . Therefore the rotation enters into Sm(gl,g,) by a decoupled

quadratic form [mmg, (v,0) ac(z)(\\ [)@d\ On the other hand the term ( )du

rot MV = RQmV ¢ of up contributes to S(ug,up), given by the equation (53), by a quantity

Nnopm -1 . . . .
- 9 Q§2R2d X , equal to =— x the rotational kinetic energy. It then contributes to
3 q To £3

au[ ul) by Z:f Do BQ\ t) Q(v.1) R2d3x— f A peral V t)ﬁa(‘—[) Q(v,tidv . When
one applies the pninciple (20), the extremalization with respect to lf( v,t) around l»I"(v,t), or

equivalendy to £(vt) around €(v,t), provides the relaxation equation

oQ 0Q L
Ainertia = '(%T(aviscosity 5\—,). This expresses the the balance of the inertia and

viscosity forces along @, but as well the ambipolarity of the particle fluxes: the radial
polarnization current due to the variation in time of the radial electric field is compensated

by the radial current due to the viscosity forces.
3.3 TURBULENT SITUATIONS

We will now try to extend the above results when our isolated toroidal field-
plasma system involves a saturated turbulence, whose level relaxes towards O together
with the general deviaton from the thermodynamical equilibrium. That saturated
turbulence is the consequence of the imitial situation, either directly or through an
enhancement by instability. We will assume hereafter weakly collisional regimes. Let us
. begin by a situation where the consistent field A(x,t) W(x,t) remains quasi static,
although it involves a complex component perturbing the configuration. It is convenient
to take as a guiding example a perturbation creating magnetic islands on a set of resonant
magnetic surfaces. A first possibility is that the island chains are well separated so that,
between the island chains and within each island, a magnetic surface passes through each
point x, by embrassing the volume v(x,t) and the fluxes Yo(V,t), Ypol(V,t). Of course
the magnetic surfaces exhibit a different topology between the island chains, where they
are nested around the main magnetic axis, and within each island where they surround a
secondary magnetic axis. The situation remains similar to those studied above: one may
expect an Onsager relaxation for the vector A(t) representing the profiles i T, Wand | .
on the successive magnetic surfaces between and within the islands, if the plasma layers
around these surfaces are independent enough. In our weakly collisional regime, such an
independence of the layers demands that the particle motion is integrable and close to the
magnetic surfaces. This is typically the case if we neglect V,;B so that all the particles are

passing. We may then assume the existence of 3 angular variables ¥(x,p,s,t) and 3
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action vanables J(x,p,s,t) for the Hamiltonian H = h(J,s,t): for passing particles and a

large safety factor we have J; = %u, o # ey V(XG.1).1),

I3 # eypol(V(xG,t),t) + RmVgy. Of course, the action vanables J(x,p.s,t) changes of
structure with respect to x,p when one passes in the phase space x,p from a type of
trajectory topology to another, i.e., in our guiding example, when one passes from an
island to a space between 2 island chains. The weak collisionality imposes that, in each
domain DJ corresponding to a type of trajectory topology, the deviation U(x,p.s,t) is
nearly a function u(J,s,t). The function u(J,s,t), continuous in space X,p, changes of
structure with respect to J when one passes from a domain DJ to another. This does not
prevent that unction to satisfy the principle (18) implying an Onsager relaxation on the
basis of the equations (19). One may indeed show that the principle (18) may be applied
at a given time by freezing the various domains DJ. Within or near small islands, one
must really use the 3 action vanables J to express U as u(J,s,t): if one expresses U as

u(J,t) with J meaning the 3 constants of motion H, u and vgif; widely used above, it is

Ui t
not guaranteed that S(—(x+’s’),l_J(x,p, s,t)) is safely replaced by S(ﬂ‘(%s—’—tz,g(.],s,t))

when one goes from the principles (15) to the principle (18). In each domain DJ the
function u(J,s,t) then reflects the profiles 4.7, Pand . expressed versus or rather
than versus v (since Jo # eyod(XG,t)). With that small change, the principle (20) is still
applicable on the basis of equations of type (55,57,58).

Another regime occurs when the resonant surfaces are close to each other so that
the magnetic islands overlap. The particle trajectories are no longer integrable. We will
consider the actual hamiltonian H as a sum Hjpd{x,p.s,t) + H'(x,p.s,t), where Hjp 1S
integrable and H' is a small resonant term destroying the integrability. In the simplest
approach, Hjp¢ is the hamiltonian of the unperturbed configuration in the absence of the
turbulent field creating the islands and H' is the hamiltonian perturbation associated to
that field. In the presence of the hamiltonian Hjp; only, the trajectories are described by 3
angular varniables ¥(x,p,s,t) and 3 action vaniables J(x,p.s.t)) such that Hjy = h(J,s,t).
The quasi static perturbation H' is expressed in terms of the dynamical variables @, J as

H =§hn(J,s,t)e)q>(in - D) (61)

where n is a set of 3 integers ny,n3,n3. For a small H' and a weak collisionality, the
dynamical vanables H, F, U are approximately functions h(J,s,t), f(J,s,t), u(J,s,t)
representing the average of H, F, U over @ at given J. However, the change from the
principles (15) to the principle (18) is now impossible since the dynamical variables J are
not constants of motion for the actual hamiltonian H: the basic relation Z(U,u(J,s,t)) =0
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does not hold. Nevertheless F and U tend to be constant along the trajectones in the
presence of the actual hamiltonian H. Because of the non integrability of these trajectories
and of their resulting stochasticity, such a large scale of U along the trajectories imposes
fine scales to U in the transverse directions. The adjustment is such that the fine
transverse scales are at the limit of being felt by the particles in view of the collisional
diffusion they experience during their transit over the large longitudinal scale (Rechester
and Rosenbluth 1978). From the point of view of the principle (15), we first notice that
the structure of U and of U around their averaged u(J,s,t) and u(J,s, t) over ® at given J

disappears by integration in the entropy functionals S(U, U) ,S(%%,[_j), that we may write
as well S(u,l_l),S(%%,l_l) . On the other hand we notice that the large longitudinal scale of

U, U tends to decrease the functional 2(UJ) while the fine transverse scales enhance
S(U,U), since they correspond to large gradients in p space. By thus mechanism, S(U,L)
is reaching the level of Z(U,U) in spite of the assumed weak collisionality. The principle
(15) leads to extremalize the bilinear form Z(UU)+S(UU) in UandU under the
constraint that Uand U exhibit the averages u(J,s,t) and u(J,s,t) over ® at given J. This
changes Z(UU)+S(UU) into a finite bilinear form Sq () inuandu. For a weak

enough H', satisfying however the Chirikov criterium (the magnetic islands overlap in
our guiding example), the quasilinear theory allows to calculate that Sy (uu) via a formal

development at second order in H', as it allows to establish the diffusion equation of the

particles in space J. One finds

S (uds.DudsD) = S, +

0 ou 5 oh
Zf %g_ %:(n- a—ﬁ)(n- aj)|hn|i’.n&n- a)(2n)3d3.l (62)

The bilinear form Sy (u,u) is symmetrical, i.e. Sy (u.u) =Sy (u,u), by virtue of the basic
Dyj = Dyg. The principle (18) becomes applicable by replacing S(uu) by SQL@_J,Q) .

Let us apply that principle (18) in a tokamak, by neglecting the collisional term S
in SQL We assume that the turbulent field has its wave numbers mainly perpendicular to

the flux lines, so that the friction forces that it exerts on the species or subspecies are also
perpendicular. This means that the quasilinear entropy production rate SQL(}_,ll_l) 1S
mainly nfluenced by the transverse diamagnetic velocities of the vanous species and

subspecies. The action variable ix—egs—[l is close to Ypol(V(X,1)), the poloidal flux

embrassed by the unperturbed magnetic surface of volume v(x,t). For given J3, the
action vanables Jj and J determine the transverse and parallel motions. We define v grft
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as the function of J3 close to v(x,t) such that Ypol(Vdrift) = It appears that the values

e(S)
of S(%,l_l) and of SQL(L_J,l_g) are correctly produced by taking

uJsp v s e(S)‘P(vd,ﬁ Y, H_3,VairsY v I3
T o T T 27 T, Vel =g

. . . . a ealp n3 T .ah
mplying : - 755 (noav_ Tyov (TO )Toav)ealppo{a\ z™ap (63

The principle (18) in its quasilinear version then states that the functional

1 Ofi(v,s,t) 3 aT(\ S, 1)~
2§ f ((no(s))_ (v st)+ S 222 (v, st))n (s)dv

8 ed® h(Jsh 3, n3To T  ohUJsp )~
Zfﬁg??*oa“ Tyt Ty~ vm) v T, _J_)
|h | 27 ah('lj’s’ )@y I dI, ledy (V) dvidy (64)

with J3 identified with e(s) 1ppd(v,t) , Is an extremum for all the vanations of the working

profiles ’r"_llll’i around the actual profiles ﬁq’? The term 11:- (m- ) disappears from
0

oJ
the functional (64) because it is multiplied by d(n- 3 J) Accordingly, the extremalization

of the latter with respect to 'i_i,? around %, ? leads to Onsager relations between

%ﬂ and %’_I‘ on one hand and _a'%i'/ %Qalli and Ta"g— on the other hand involving particle

and energy fluxes but no heating power by the turbulent field. This is normal since the
latter is a quast static, non oscillating field. The extremalization with respect to ‘:I'_’ around
Y insures the ambipolarity of the fluxes. It may be used to eliminate ¥ from the

functional (64), which then involves only the density and temperature profiles.

Let us now assume that the turbulent perturbing field is no longer quasi static but
exhibits oscillations in time, meaning in our guiding example a rotation of the islands. We
assume the oscillations of the system quasi periodic: the consistent field A, ¥ involving
the turbulence and the dynamical variables H,F,U linked by the equations (6) are periodic
functions of period 2r of a set of q phases a = (aj,...,ag)



AY =[AW¥](x,a,s,t) and H,F,U = [H F,Ul(x,p,a,s,t) (65)

In addition, the phases o have at each wtme a vamation rate

da
= w(t) = (wi(1),...,w(1)), assumed of course much larger than the relaxation rate,

and uncommensurable so that the useful cell of extension (2n)4 in space a 1s ergodically
covered at each t. The explicit dependence on tme t in the functions (65) and in axt)
reflects the slow relaxation of the isolated field-plasma system towards its
thermodynamical equilibrium, namely the relaxaton of [A,W](x,a,s,t) towards
[Ap,Wol(x,s), of [HF,U](x,p,a,s,t) towards [Hp, Fo, Upl(x,p,s) and of the frequencies
axt) towards a null value. A convenient way to generalize the results obtained above with
a quasi static turbulence is to consider the dependence of [A,W](x,a.s,t) and
[H,F,U](x,p,a,s.,t) on the phases a on the same grounds as the dependence on x or
x,p. This means that we install our field A, ¥ and our particles in an extended space x,a
of dimension 3+q. To preserve the hamiltonian nature of the particle motion, we use the
well known trick of introducing an artificial set j = (J1,... jg) canonically conjugate to a =
(a1,..-s ag). The particles are thus installed in an extended phase space of dimension
2(3+q), namely x,a conjugate to p,j. We choose as hamiltonian in that extended phase

space
H(x,p,a,j,s,t) = H(X,p,a,s,1) + aXt). j (66a)

da _doH
T 0] of the phases a

which coincide with the actual variation rates w. Also the vanation rate

dgtv aW+(H W) of any dynamical vanable W(x,p,a,s,t) which is "natural" -

independent of j and 2x penodic in aj,...,aq - coincides with the actual

dd\?/ 6(}?:’ + %g w+{H,W}. It is convenient to impose hamiltonian barriers preventing

the particles to escape from a large box in space j. The distribution F (x,p,a,j,s,t) of the

This extended hamiltonian indeed produces variation rates

particles in the extended phase space x,p,a,j verifies the kinetic equation

aF =— + {H, F} = C(F), with C being the usual collision operator differential in p. The

natural distnbution F(x,p,a,s,t) verifies that kinetic equation. In fact it may be shown
that F coincides with F ( except in an irrelevant zone near the boundaries of the large
allowed box in space j; also F' and F differ by a mutiplicative constant, omitted in what
follows). The relaxation of the natural, oscillating system and that of the quasi static

extended system are therefore equivalent. The entropy of the extended system at a time t
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. . ] d ,
1S —; f FIn(F )d3xd3pdqadq] = —; f Hn(F)d3xd3p(—5;%q, equal to the natural entropy
—; f FIn(F)d3xd3p since the useful cell of extension (2r)4 in space a is ergodically

covered at each time t. We are led to define the deviation of the extended system from the
thermodynamical equilibrium by the dynamical variable U linked to H and F by the
equation (6). As F = Fis independent of j, we obtain

U (x,p,a,j,s,t) = U(x,p,a,s,t) + ax(t). j (66b)

This means that the extended deviation U(x,p,a,j.s,t) of our system from the
thermodynamical equilibrium is specified by the natural deviation U(x,p,a,s,t) and by
the frequencies w(t). At this point it is essential to the consistency of the scheme that at a
given time t the extended deviation U (x,p,a,j,s,t) fully determines the state of the
extended field plasma system. Indeed an extended version of the principle (42) allows to
calculate A(x,a,t),¥(x,a,t) together withH(x,p,a,s,t) at a given time t if one knows
U(x,p,a,s,t) and o(t) at that t. The equation (6) then determines F(x,p,a,s,t).
Introducing the working deviation U =U(x,p, s, tH-@(t): j , where Uandw are to be
varied around U and o, one readily establishes extended versions S ,S andX in
UU ofS,SandX in UU. The relaxation of U , i. e. of U(x,p,a,s,t) and ext), is
then obtained from the extended version of the principles (15). We find in fact that

S(UU)-[S(UU)d“aamSWU)— SU, U)o (67)
)= ) SUD g 0d SUL) = | SUD

At second order in U the quadratic form S (U, U) 1s the entropy of our isolated field
plasma system with respect to the thermodynamical equilibrium. Of course the
antisymmetrical functional X (U ,U) cancels exactly if U or U commutes with H .

Again a first possibility is that the extended hamiltonian H (x,p,a.j,s,t) frozen at
a given time t produces integrable trajectories in the extended phase space x,p,a,j,
described by 3+q angular variables @ (x,p,a,j,s,t) canonically conjugate with 3+q action
variables J (x,p,a.j,s,t) such that H = h (J, s,t). It appears that, if it exists, the set @, J
has a well defined structure with respect to the phases a and the artificial dynamical
variables j: it is readily shown that there exists at each time time 3 natural variables ® of
angular type, 3 natural variables J of action type and q natural dynamical vanables K,
such that
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@ consists of @ = (Pg(x,p,a,s,t)) and of a = (ay)
J consists of J = (Jk(x,p,a,s,t)) and of j + K = (jr +K{x,p,a,s,1))
k=123;,r=1, .4

In view of the equation (66a), H (x,p,a,j.s,t) = A (J ,s,t) must then have the form
h(J,s,t) + o(t). (j + K), the normal hamiltonian H(x,p,a,s,t) being then identified with

h(J,s,t) + w. K. We now introduce the point that, in our very weakly collisional
regime, the extended deviation U (x,p,a,},s,t) must be nearly a function u (J ,s,t). The

structure of J with respect to j and the equation (66b) then imposes the following forms
of that function and of the natural deviation U(x,p,a,s,t)

u(J .s,t) =u(l,s,t) + o(t). (j+ K); U(x,p,a,s,t) = u(]J,s,t) + o). K(x,p,a,s,t)

while F = F(x,p,a,s,t) # f(J,s,t). The extended deviation U = u(J,s,t) 1s now
characterized by the function u(J,s,t) and the frequencies w(t). One may change from the
extended principles (15) involving U and U to the extended principle (18) involving the
function w(J,s,t) = u(Js,t) + o). (j+K) and its working version
u(J,s,t)y=wJ,s,t)+oxt)- j. Taking into account the eqs (67), the extended principle (18)
states that

dqa
K, ulst) + axt) 'K)W

4 f S50 G0

d a
f Sy + 000 K, uls + 20 K b (68)

is at each time t an extremum for all the vanations of u(J,s,t) and of a(t) around u(J,s,t)
and «(t). This implies of course an Onsager relaxation for the vector A representing at
each time t the function u(J,s,t) of argument J,s and the frequencies uxXt). In a magnetic
configuration containing magnetic islands where a magnetic surface passes through each
point x between and within the islands, by embrassing the volume v(x,a,t) and the
fluxes Yo V,1), tppol(v,l), the 3 action vanables J(x,p,a,s,t) are roughly equal to the 3
action varables for the hamiltonian H(x,p,a,s,t) with frozen a and t (namely, for

passing particles and a large safety factor: Jj = %u, Ja # ey v(XG,a,t),t),

J3 # eypol(V(XG, a,t),t) + RmVg,). The function u(J,t) is roughly given by a formula
of type (55) in terms of the various profiles ﬁ'T“‘Z’md [y versus Yior- On the other
hand, the q dynamical vanables K(x,p, a,s,t) reflect the quast MHD displacement of the
magnetic surfaces, taking place at the velocity Vagp(x,a,t) perpendicular to B: the
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— d(w*K) . : . .
denivative ((gp ) is roughly identified to Vygp(X,a,t). Writing Vygp =

d(w-K)
P

d _— . : . 9
(o aa)DMHD(x’a’t)’ the derivative —p— s then identified to (w- '871) D\IHD The

. . ad : :
dynamical variables 6(:) *K and w-K in the entropy term S of the functional (68)

introduce inertia effects due to the displacement of the magnetic surfaces. On the other
hand, @*K in the entropy production rate term S introduces the friction and viscosity
effects due to that displacement. Generally the inertia effects are negligible so that the
frequencies @ around w minimize that entropy production rate. Such a minimization is

analogous to the minimization with respect to the electric potential ¥.

Another possibility is that the extended hamiltonian H = H 5 + H' where
Hipn= Hipdx,p,a,s,t) + w. j produces integrable trajectories, while H'(x,p,a,s,t) 1s a
small resonant perturbation destroying the integrability, to which the quasilinear theory
may be applied. In the simplest approach Hjye is the hamiltonian of the unperturbed

configuration in the absence of the turbulent field and H' is the perturbation due to the
latter. The 3+q angular variables @ and the 3+q canonically conjugate action variables J
for H j5t = h (J ,s,) are then formed by the 3 angular and action variables
P(x,p,s,t) = (P1, P2, P3) and J(x,p,s,t) = (J1, J2, J3) for the unperturbed hamiltonian
Hin(x,p.s,t) = h(J,s,1), together with the q phases a = (ay,..., ag and the q artificial
momenta j = (Jy,---, Jg

P =(P(x,p,s,)and @) ;J =(Jx,p.s,t)and j) ;A (J ,s,t) = h(J,s,t) + @.

The perturbation H' takes the following form, which extends the expression (61)

H= %hn,v(,],s,t)exp(i M P+ v @) (69)

n and v meaning 3 integers (nj,ny,n3) and q integers (v1,--.,vg), respectively. The
extended particle distribution function F = F(x,p,a,s,t) and the extended deviation
U=U®x,past) + ot).j are approximate functions of J. This means that
F=F#fJst)and U #u (J ,5,1) = u(J,s,t) + a(t). j. One extends the formula (62).

by replacing n by n = (n and v), n-z%by n '%: n-aa—J+ v-g—jand of course h(J,s,t)

by h(J,s,t) + o(t). jand u(J,s,t) byu(J,s,t)+ w(t)- j . [t comes
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Sa.(uds @ s Wlsh).w) = Suy) +

du 2 dh
f”TO +v w)(n- 7j+v w)|h nv|”2n6(n-gj+ v-w)(an%J (70)

Still applying the equations (63), one extends the prnciple (64), which becomes a
principle of type (4) for the vector A(t) representing the profiles fi(v,s, t), P, t),'f‘(v,s, 1)
and the frequencies axt): at each time t the functional

o, 3 9% ,
T (G R s D

o)

eallf Wlst) 3 Ty T ah(Jst) 2
3 O
+Z] 2T ;;( + To ’f)TOd’ ) dw T(" 7 )+v-@)

'h nvl 2?‘“6( ahg]f Y V- w) (’-’ﬂ)3 dJ, dJ, |ea‘de(V D/ ovidy (71)

with J3 1dentified with e(s)wm(v, 0, is an extremum for all the vanations of the profiles

8,5, 0,8, 5,0, T(v.s,) around fi(v,s,1), P(v, 0, T(v,s,1) and of e(t) around w(t). The
extremalization with respect to the profiles ‘rj,T leads to an Onsager matrix of the type
proposed by Shaing (Shaing 1988), relating the particle and energy fluxes to differences

~

betwecen diamagnetic velocities and phase velocities. The term .IT;(n 6,]) does not
_ . . . . dT(v,s,0)
disappear from the functional (71): it introduces in the expression of - for each

species s the heating power by the turbulent field, or in other words the energy transfers
between the various species via the turbulence. There is of course no reason in the
present view for those transfers to be Onsager f{luxes, as proposed by Sugama and

Horton in another context (Sugama and Horton 1995). The minimization of the second

term of the functional (71) with respect to each working frequency w,, . » Qg around the

actual frequency wi, ..., wq gives a set of equations determining the latter. These
equations express the energetic balance of the turbulent field. One may also use the
minimization with respect to @ to transform the second term of the functional (71) into a
quadratic form in the profiles ﬁ@i only, the functional (71) thus becoming independent
of w. A first possibility is that the component of the turbulent {ield (A,W¥); which is
influenced by the frequency wy is localized very near a well defined magnetic surface
v = vy, and so on with wy, etc. This means that the coefficients {(J,s,t)ihpa(J,s,0)12 with

J3 idenufied t0 eypol(V,t)) cancel except for specific volumes v, namely for v = vy if v
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# 0, etc. In that case the fluxes, friction forces, heating powers on a magnetic surface v
are determined by the profiles i, ¥, T on the same surface. In fact that situation is not
likely to occur: the principle (71) after elimination of @ then relates the fluxes, friction

forces, heating powers on a surface v to the profiles at some distance of that surface.

We stress again that the consistency of the above scheme demands that the
knowledge at a given time t of the function u(J,s,;t) of argument J,s and of the
frequencies uxt) allows to calculate the field A(x,a,t),¥(x,a,t) (involving of course the
turbulent component) at that t. Such a calculation must take into account the non linear
resonances of the turbulent field with the particles, which play a leading role in the
saturation of the turbulence. These non linear resonances should also be taken 1nto
account in the quasilinear entropy production (70). However it is not the case 1f our basic
partition of H into Hjnc + H' makes use of the unperturbed hamiltonian as integrable
hamiltonian Hjpy, the perturbation H' then representing the naked effect of the turbulent
field: the fact that the functional (70) is simply quadratic in H' then implies that the non
linear resonances involving beatings between the various components of the turbulent
field are excluded. To take into account those non linear resonances, and at the same time
be justified in using the quasilinear entropy production rate (70) and its transparent
Onsager symmetries, one must build up a special integrable hamiltonian Hjne which
properly incorporates a clothing of the particles by the non resonant components of the
turbulent field. The construction of that hamiltonian Hjy¢ and of the associated dynamical
variables @, J, H', h, hpy is possible if one gives only the function u(J,s,t) and the

frequencies w(t) (Garbet et al. 1993). Interestingly, it is only justified if the width of the

~ spectrum of the resonant frequencies Qpy = n. a—h((‘al—"l§—’2+ v. o for all the useful n,v

such that f(J,s,t)lhn(J,s,)I2 # 0, is muvch larger than the Kolmogorov broadening of

0Qnv Qv |, . . L
the resonances yK ~ |Dkl ST oI \113) the Dys being the particle difusion

coefficients in space J. It is plausible that this condition gives the upper limit of the

turbulence level which induces an Onsager relaxation.

4. CONCLUSION

Our main conclusion is that the relaxation towards its thermodynamical
equilibrium of an isolated toroidal plasma tends to conform to the Onsager scheme (1-4)
based on the entropy metric. That scheme is conveniently expressed by the variational
principle (4) which cammes the physical idea that the vector A(t) representing the deviation
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of the system from the thermodynamical equilibrium relaxes in the form of modes
minimizing, at constant entropy, the collisional entropy production rate. The appropriate
vector A(t) at the starting point is the deviation U(x,p) of the particle distribution in phase
space X,p from maxwellian. Our basic tool 1s the variational principle (15) involving U,
equivalent to the kinetic equation. That principle anticipates the principle (4) implying an
Onsager evolution, in the sense that it contains two symmetrical functionals S and S
representing respectively the entropy and the entropy production rate. The symmetry of
the functional S reflects the symmetry of the Fokker-Planck collision operator in the
Kinetic equation, 1.e. the hamiltonian character of the interactions. For a field-plasma
system the symmetry of the functional S reflects the Lagrangian character of the Maxwell
equations. However, the principle (15) differs from the prnciple (4) by an
antisymmetrical functional Z reflecting the individual trajectory effects.

When the particle trajectories are integrable and close to the magnetic surfaces
(e.g. in axisymmetric tokamaks), and in weakly collisional regimes, it is straighforward
to pass from the principle (15) to the principle (4). Indeed the antisymmetrical functional
Z is eliminated since the dynamical variable U(x,p) is nearly a function u(J,t) of 3 action
variables J, constants of motion. The principle (4) automatically applies to the vector
A(t) representing the function u(J,t). That tvpe of Onsager relaxation results from the
hamiltonian nature of the system and from the weak collisionality. It could have been
anticipated from Van Kampen arguments without using the kinetic equation. One may
then pass to a principle (4) for a reduced vector A representing the profiles of density,
temperature, electric potential, electric current density on the successive magnetic
surfaces, which determine the entropy S of the field-plasma system. The entropy
production rate functional Sm for that reduced vector A is obtained by minimizing the
general entropy production rate functional S under the constraint that the considered

profiles of density, etc are achieved. [t covers all the aspects of the neoclassical evolution.

In the case of a collisional regime or of non integrable trajectories, the deviation U
is no longer a constant of motion, but simply a function of the slow Kruskal dynamical
variables. The antisymmetrical functional Z is not automatically eliminated. However,
one may stll arrive to the principle (4) for the vector A representing the profiles of
density, etc which determine the entropy of the field-plasma system provided that the
trapped particles which are not confined are detrapped long before they depart
significantly from a magnetic surface. Starting from the general principle (15), the
extremalization of £ + S, when the profiles of density, temperature, electric potential,
electric current density are imposed, leads to a functional S,edmed which 1s shown to be
symmetrical. This proves that a principle (4) applies to the vector A representing the

profiles of density, etc. The entropy production rate functional Sy, for that vector A
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may be again obtained by a well posed minimization calculus (the minimization of the
expressions (40)), and again covers all the aspects of the neoclassical evolution. The
toroidal geometry is involved by the topologies of the flux lines and of a single closed
contour drawn on the magnetic surfaces. If one neglects the viscosity effects, the
ambipolanty of the particle fluxes across the magnetic surface is insured independently
of the electrical potential if all the particle trajectories are intregrable and deviate from the
magnetic surfaces by a disatance scaling as p¢. In the other cases the ambipolarity 1s
expresesed by the minimization of the entropy production rate functional with respect to
the eletric potential profile. The derivation from the kinetic equation of the Onsager
behaviour of the relaxation is not so general as in the weakly collisional, integrable
situations: it is only valid if the hamiltonian interaction is symmetrical with respect to an
inversion of the velocities along the magnetic lines. However that restriction could be not
physical. From that point of view another approach in the van Kampen framework,
where the system would be considered as a set of weakly interacting plasma layers

around the successive magnetic surfaces, could be interesting.

Finally, we propound the possibility of Onsager relaxations in turbulent, weakly
collisional situations, on the basis that the turbulent field is a component of the isolated
field-plasma system. We first consider the case of a quasi static turbulent field. The
extension of an Onsager relaxation poses no new problem if the trajectories remain
integrable and close to the magnetic surfaces. If the trajectories are no longer integrable
but the quasilinear theory is applicable, we recover Onsager relaxations reflecting the
symmetries of the quasilinear diffusion. If the turbulent field exhibits finite frequencies w
- the latter are considered as an aspect of the deviation of the field-plasma system from its
thermodynamical equilibrium. One is led to consider the oscillating phases a (such that

da . . : ,
= w) as new coordinates forming with the 3 usual coordinates x an extended space,

in which the field and in fact the field-plasma system are installed in a quasi static state.
The variational techniques applicable to the neoclassical relaxations of collisional may

then be extended to the considered turbulent case. This extension leads to Onsager
relaxations conform to the scheme (1-4), the vector A now representing the frequencies w

together with the usual profiles of density temperature, electric potential, electric current.

APPENDIX 1: NOTATIONS

The notations concern functions and functionals defined at a given time t duning
the relaxation of the isolated field-plasma system. The substrict O means that a function is
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taken at the thermodynamical equifibrium. The tilde indicates the difference of a function
with respect to its version at the thermodynamical equilibnnum. The underlining indicates
a working version of a function, to be introduced in a functional and vaned around the

physical version of the function in the course of a vanational calculus.

Functions

A(x,t), W(x,t) = vector and scalar potentials of the electromagnetic field (see
beginning § 2.1); I(x,t), p(x,t) = current and charge densities; v(x,t) = volume of the
magnetic surface passing through x; Opa(X,t), @Ha(x,t) = Hamada coordinates (see

. 1 . : .
appendix 3); yor(V,t), wpol(v,t) == x the magnetic fluxes across the minor, major turns
T

. 1 .
on the magnetic surface of volume v; yor(V,t), tpol(V,t) = —— x the corresponding
1

e

al, V,[ a (V’t)
amperages; Iio{V,t) = —-[Oarg—,l, Ipol(v,t) = -—"%l\————

H(x,p.s,t) = hamiltonian of a particle in the field A,¥; we call constant of motion any
dynamical vanable Z(x,p,s,t) such that {H,Z} = 0; V(x,p,s,t) = %—I; = velocity of a
particle in state X,p; vo(s),To = basic constants in the equation (6); F(x,p,s,t) = particle

distribution function in phase space x,p; U(x,p.s,t) = deviation of the field-plasma

system with respect to the thermodynamical equilibrium (see equation (6)).

w(x,p,s,t) = nmagnetic moment; XgG(X,p,s,t) = guiding centre position;
Vg(x,p.s.t) = guiding  centre  velocity; £ = % (see § 2.3);

D(x,p.s,t) = (P, P2, P3), J(x,p,s.t) = (J1,J2,J3) = angular and action vanables for the
hamiltonian H(x,p,s,t) frozen at time t then equal to h(]J,s,t) (see § 2.2). J(x,p.s,t) may
- designate also the 3 constants of motion H, u and vgrfi(x,p,s,t) = constant of motion
close to v(x,t)

u(J,s,t), = form of the deviation U(x, p,s,t) in a weakly collisional, integrable situation;
u(J,s,t) 1s decomposed as uy(J,s,t) + ug(J,s,t) so that uy(J,s.t) determines the entropy of
the system. Similarily, u(H,u,xg,€,s,t) = form of U in the general magnetized case.

n(v,s,t), T(v,st), W(v,s,t) = average density, temperature, electric potential on the

magnetic surface of volume v.

Functionals

S(U''U" (see equation 8), S(U'U") (see equations 14,44,53), (U U") (see
equations 10) associate a scalar to any 2 dynamical vanables U'(x,p,s,t),U"(x,p,s,t);
S(U,U) is the collisional entropy production rate; S(U,U) is (at second order in U) the
entropy with respect to the thermodynamical equilibrium ; 2(U',U") = O 1if U' or U" are a

constant of motion.
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At a given time t, the fields A(x,t),¥(x,t) and I(x,t),p(x,t), the hamiltonian
H(x,p,s,1), the functions yio(v,1), Ppol(V.t), ltor(V,1), Ipol(V,t) are fully determined by
the deviation U(x,p,s,t) and are thus functionals of U. This is expressed by the
notations: A(x,t) = A(xIU), etc, H(x,p,s,t) = H(x,p,slU), yrov,t) = ProvIU), etc.
Similarnly, at a given time t, H(x,p,s,t) is fully determined by A(x,t),%(x,t) and may be
written H(x,p,sl|A,¥).

APPENDIX 2: VAN KAMPEN AND QUASILINEAR
DIFFUSION

Van Kampen starts from the master evolution cquation for the probability Py (1)
' oP
of finding the system in state N, namely: —&ﬁ = ; Wy NPy —Pn , OF

aP
N ;WN_,M(PM —Py) by taking into account that W _, =W,, _, and that

EWM_.N=§WN_,M =1. Because of the symmetry W, _, =W,, .y, one has,

whatever the auxiliary set (Q )

oP
?v:—aﬂQN @WN—-M (Pyy - Py)Qn =1\§4WM ~~ Py ~Ppy)Ou

= 2 W o P =Pn)Qu) =5 3 Wiy op Py =Pr)Qy=0p) (A1-D)

. The key point is that the last expression is invariant when one exchanges (Py) and (Q ).

At thermodynamical equilibrium, Py has relaxed to a maxwellian value
Poy = Xoexp(

). At a given time, a small deviation of the system from the

thermodynamical equilibn'um is specified by the set u (t) = (uny (t)) such that

Pn(t) = X0 exp ( “hn ;‘;N (t) ). By using the certainty equations gPN =§PON =1

and the equation ;PNh N =§P0 vhy expressing the energy conservation during the
relaxation, the entropy S =—§(P N In(Py) — Poy In(Fyp) is readily identified at second

order In u with S(u,u), where S(u,u) is the symmetrical bilinear form

Su,u)= ;W”N“N inu=(@wy) and u=(uy) . At first order in u , one may
0
aPN auN

replace in the equation (A1~1) by PONT(;(’)T . Taking into account the energy

conservation Ay = hy for the allowed transitions Wy _, s =0, one may replace also



Wy _p (Py — Py) by _T_WNQM (Up ~uy) . We put QN:%I.Z; and define the

WN_,M(uM—uN)(uM —uy) in u,u , which 1s

bilinear form S(u,u)= l\;;l T2
0

symmetrical since Fyp, Wy .y =Pgy, Wy . . The equation (A2-1) finally means that

S(d” W)+ S(u,u) (A2-2

i1s an extremum for all the vanations of u . It thus appears that the vector A(t)
representing the set u (1), verifies the variational principle (4). The quadratic form S(u ,u )

1s of course identified to the entropy production rate induced py the transitions.

The quasilinear theory leads to similar results for a classical system of N particles,
numbered LII, ..., whose individual unperturbed motion is ihtegrable, described by 3
angular variables @ conjugate to 3 action variables J. The 3 action vanables J label the
various stationary states of an individual particle. The unperturbed system of the particles
is descibed by the 3N angular variables @ = (@, Py,...) conjugate to the 3N action
variables J = (J,Ji....). The unperturbed hamiltonian is h(J) for a particle and
h(J ) =h(Jp + h(Jg) + ... for the system. A small resonant hamiltonian perturbation
induces a diffusion of the system in its action space J = (Jy , & = 1,...,3N). The
quasilinear theory, if it applies, predicts that the probability density P (J ,t) of finding the
system in state J satisfies the autonomous evolution law

oP(J.1) aP(J,t _ L
(g[ =% (Dkl (J)—7— ( ) , with the symmetry Dy, = Dy . Multiplying by

the auxiliary function Q (J ,t) and integrating, one obtains that at each time

oP -1 dP a
S0 dn = [ TDugsdn (A23)

That equation, where the RHS is invanant when one exchanges P and @ since
Dy = Dy , is the classical version of the equation (A2-1). The coefficients Dy ,
identifiable with the diffusion coefficients <dJy 8J; > 1n the space J, are given for a static

resonant perturbation ;H"(J)e,\p(in @), where n is a set of integers (ng , k =

, 2 oh -
l,..., 3N), by the well known formula Dy, = n n,|h, | 2nd@ ) . For a static
Fren i 2o, -
A U oh (J)
perturbation the diffusion preserves the energy, so that Dy a—J_ = 0. A small
deviation of P (J ,t) from the maxwellian distribution Po(J ) =X ¢ e\p( (‘] )) which

applies at the thermodynamical equilibrium is specified by the function u (J ,l) such that
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PJ,t) = X Oexp(*—hﬂz%:ﬂﬁ. One readily pass from the equation (A2-3) to the

principle (A2-2), where the symmetrical bilinear forms S(u u) and S(u.u) are now

P ou
S(u,u) f—quu d3\IJ and S(u,u) f ng Dkl a]k 8], d3NJ . In fact the state of

the system (assuming to simplify a single particle species) is determined by the
distribution function f(J,t) of the N particles in the 3 dimensional action space

= (J1,J2,J3) , and the deviation from the thermodynamical equilibrium is determined

by the function u(J,t) such that f(J,t) = Xoexp(-—m‘l)—;ol—l—(‘m if Xoexp( (J)) applies

at the Lhennodynarniéal equilibrium. The probability density P (J ,t) of the system in the
space J = (J1,J1....) is the normalized product f(Ji,t) f(Ji.t)... and the deviation u (J ,t)
is the sum u(Jp,t) + u(Jp,t) + .... The symmetrical bilinear forms S(u ,Q_) and S(u u) are
readily rewritten as symmetrical bilinear forms S(u.u) and Su.u) in u(J,t)andu(J, ).
The principle (A2-2) then means the principle (4) for the vector A(t) now representing at
each time the function u(J,t). The scheme may be used to build the Fokker-Planck
collision term expressing in the kinetic equation the collisional diffusion of the particles in
momentum p at each position x. One then 1solates at the considered ime the plasma
particles located within a small box centered on x. One applies the usual periodicity trick
identifying the opposite sides of the box so that the particles indefinitely travel the 3
dimensions of the box. An individual particle is described by 3 angular variables @
giving its position within the box and 3 action vanables J identified to its momentum p.
The Fokker-Planck diffusion coincides with the quasilinear diffusion of the system of the
particles within the box due to the interaction hamiltonian. The basic symmetry of the
. Fokker-Planck operator expressed by the equation (8a) express the above symmetry

S(u ,u)=S(u,u).

APPENDIX 3: f dA-Idx= f (20 Oy Ly — O TV

Ata given time t, the Hamada angular coordinates OHa(x), @Ha(x) form with the

volume v(x) a coordinate system for the space (x) such that

DO PaY) =(VO3,(X) XV oy, (X)) - VY (x) = 2m)* (A3-1)

X 1, X2, X3)

and that

B= VXA ; A= (V(X)) VB, (%) + (VX)) VOp,(¥) (A3-2)



They are not unuque: any set 0"y, = 1 Opy + 7 PHa, 9 Ha = p OHa + ¢ Ha Where I,m,p,q
are 4 integers such that /g - m p =1 is receivable as well. An important point is that a
formula of type (A3-2), namely the first equation (50b), applies to any vector I(x) as
soon as it satisfies the equations (49). Let us consider a field B' = VxA' close to B,
producing magnetic surfaces with a volume function v(x) # v(x). If 8'ga(Xx) # Opa(x)
and @'Ha(x) # @Ha(Xx) are the Hamada coordinates for the field B', we have

B'=VxA' A' ()=t (V' (%) VB ')+ (v (%) Vi ', (%) (A3-3)
We imtroduce the  differences Oyiody) =  YiodV) - Yolv) and
dPpol(V) = Y'pol( V) - Ppol(v) of the flux functions for the same argument v. We
introduce also at given x the differences 00(x) = O'Halx) - Oua(x),
Op(X) = @'Ha(X) - @Ha(x), dv(x) = v'(x) - v(x). Those differences are single valued
over a magnetic surface, and we may accordingly write, in terms of the coordinates
v = V(X), OHa= OHa(X), QHa = QHa(X)

[00(x), 08(x), dv(x)] :mZI [@mn (V.0 (Vs Cn (V] eXp (i (n B, +1 @p,))  (A3-4)

where m ,n are integers. We put 0A(x) = A'(x) - A(x) and use the equation (50b) and
the equations (A3-1, A3-2, A3-3) to obtain

f dA(x)- I(x)dsx = f (’_’Jt)z(fnppd(v) [odV) = 3y, (V) Ipd(v))dv+X +Y  (A3-5)
where

X= f (WerW T (VOB(X))* (V¥ xVBy,) + i) L) (VX)) * (V¥ %V By,) +.. 3¢

')”q) \") d i ,
Y:f (- apg( LxlV) - ipgn\_j(ﬁlpd(v)(zﬂ)_ﬁ\‘(x)d3x

and again v stands for v(x), etc. It appears that X cancels after that 88 and ¢ have been

replaced by their expressions (A3-4), by taking into account that the equation (A3-1)

dodedy
allows to replace d3x by - q)c;v_ In view of the equations (50a,A3-4)), we have
)

0 ap(v
Y :[ p((;ix)) dv(x)dsx= f ﬁfj(%) Cog(v)dv . We may consider the quantity cop(v) as the

average of vi(x) - v(x) = 0v(x) for x equally distributed in the space between the

neighbouring magnetic surfaces of equation v(x) = v and v(x) = v + Av. [t is not difficult
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to show that such an average, for given Av, is of order 2 in 6v(x), i.e. in 8A. Therefore
the equation (A3-5) is valid at first order in dA with X =0, Y = 0. This establishes the
equation (52). The equation (A3-5) allows to transform the principle (41) as follows: for
given functions I[io(V), Ipol(v), the field A(x) makes extremum the -functional

[ sLivxats f (T MA)~ Lo (VIA)) )
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