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Abstract. Using Green's function techniques, we derive expressions for the width of
a proton decaying state in spherical and deformed nuclei. We show that the proton
decay widths calculated by the "exact" expressions of Maglione et al. are equivalent
to the distorted wave expressions of Bugrov et al., and that of Aberg et al. in the
spherical case.

INTRODUCTION

The calculation of the decay rates for ground state proton emitters is of current
interest. Several authors have presented expressions for the proton decay width of
spherical nuclei [1-3], and deformed nuclei [1,4-6]. The proton-emitting states are
extremely narrow, with observable widths not exceeding 1O"~10 eV.

Two apparently different methods have been used for deriving the decay rates
for proton emitters. In both cases one first determines the wave function for the
relative motion of the proton and the daughter nucleus in the resonant state. In this
work we treat the decaying states as stationary states. The decay of the states is
imposed by imposing an outgoing wave Green's function to solve the Schroedinger
equation. We shall consider the spherical and deformed cases separately.

SPHERICAL NUCLEI

Maglione, Ferreira, and Liotta [1,4], using what we will call the direct (Dir)
method, describe the parent nucleus as a single nucleon moving in the potential set
up by the daughter nucleus. They give the single particle radial wavefunction at a
large distance R outside the nucleus to be an outgoing Coulomb wave:

kr) a t r = fr (1)
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where Oe(kr) = \Ge{kr) + iFt(kr)], Ngj is a normalization constant, k is the wave
number, and F^ and Ĝ  are the regular and irregular Coulomb functions, respec-
tively. They calculate the probability flux penetrating a sphere at large distances
to obtain an expression for the mean lifetime r:

where v is the velocity. One may then obtain the decay width

h2k.iDir (2)

where fj, is the reduced mass.
Aberg et al. [3] derive an expression for the width using what they refer to as

the DWBA method. We prefer to call it the Distorted Wave (DW) method, since
it uses distorted waves but not the Born approximation. The width is given by

= ̂  jj Ft(kr)\V(r)

where V(r) is the total potential between the outgoing proton and the daughter
nucleus, V$(r) is the point source Coulomb potential, and «y(r)/r is again the
radial wavefunction obtained by numerically integrating the Schroedinger equation
with a one-body potential.

To compare the two widths F^-ir and F^w , we note that the wavefunctions F((kr)
and U£j(r) are both solutions of the radial Schroedinger equation:

ePn#(r)
dr2
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Multiply equation (3) by — Fe(kr) and equation (4) by u#(r) and add the two
equations:

- Vg(r)]ucAr) = 0.

Integrate over r from 0 to a large radius R, well outside the nucleus.
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At the lower limit r = 0, both Ft(kr) and U£j(r) vanish. For R well outside the
nucleus, from equation (1), substitute Uej(R) = Nij[Gt(kR) + iFe(kR)]. Therefore

h2 Fe(kr)[V(r) - VS(r)}uej(r)dr =

The square bracket on the right hand side of the equation equals — k times the
Wronskian of the Coulomb functions, which has the value 1. In addition, we may
safely extend the upper bound of the integral on the left hand side from R to oo,
since the right hand side is radius-independent for large R. So

Ft(kr)[V(r) - V°(r)]uej(r)dr

and

DW
4»

It is of interest to compare the numerical results for the half-lives {t\/2 =
7iln(2)/r) obtained with the direct method and the distorted wave method for
spherical nuclei. We show in Table 1 the calculated half-lives for three spheri-
cal decaying states having orbital angular momentum £ = 0, 2, and 5, respec-
tively. The radial wavefunctions Uij(r) were calculated by integrating the radial
Schroedinger equation, using for the proton-daughter nucleus potential the real
part of the Becchetti-Greenlees optical model potential [7]. The potential depth
was adjusted to match the energy eigenvalue to the proton decay Q-value, corrected
for recoil and atomic screening:

mpQp,n — -C'p

f1

where mp is the proton mass and Esc is the atomic screening correction [8].

TABLE 1. Comparison of the proton half-lives of three
spherical proton radioactivities calculated with the direct
(Dir) and distorted wave (DW) methods.

Nucleus £p(keV) jp £p t °k , ffff.
167Ir*
i47Tmm

1 6 7 I r m

1064(6)

1238(7)

|+
0
2
5

35.7687 ms
171.332/is
1.99360 s

35.7671ms
171.327 ps
1.99352 s

It is seen that the calculated half-lives agree to < 0.005% between the two methods.
Since the two methods should give identical results, the difference must reflect the
accuracy of the numerical techniques that have been used.



DEFORMED NUCLEI

We consider a deformed odd-A nucleus, consisting of a single particle that is
strongly coupled to an axially-symmetric even-even core. This is also known as
the adiabatic limit, where the excitation energy of the daughter nucleus is con-
sidered to be zereo. To calculate the outgoing proton wavefunction we use the
exact Gell-Mann-Goldberger transformation and the distorted-wave Green's func-
tion with outgoing Coulomb wave boundary conditions [9]. At large distances,

tjR
V(r')-V°(r')\yKIM).

(5)

Here V(rf) is the total deformed potential acting between the proton and the core
nucleus. The angular momentum part of the Green's function includes the rota-
tional states \RMR) (R — 0,2...) of the core and the single-particle state \ljm),
which are coupled to the total spin (IM):

\(£jR)IM) = J2 (jmRMR\IM)\£jm)\RMR).
mMR

The total wavefunction of the initial state is of the form [10]

(6)

where / = 2/ + 1. The single-particle wavefunction <pK is described (as in the
Nilsson model) in terms of the intrinsic (body-fixed) cdordinates of the daughter
nucleus. It can be expanded in spherical components

Mr') = JZ4Hr')\£jK)o, (7)
ti

where the sum is over j > \K\ and the subscript "0" denotes a state in the intrinsic
frame. For the final state, the rotational state wavefunction of the daughter is

IRMR) =

We pick out a particular outgoing channel, in which the proton carries off angular
momentum lvjv: with projection mp, leaving the daughter nucleus with angular
momentum R and projection MR. For the evaluation of the matrix element in
equation (5), the final state \(£pjpR)IM) must be expressed in terms of the single-
particle wavefunction in the intrinsic system:

K>



Combining these, we obtain

K'mpMR

(8)

where we have used a well-known relation involving a sum of ^-functions [11].

Evaluation of the Matrix Element

We can now calculate the matrix element found in equation (5). Integrating over
the orientation of the daughter nucleus u/ produces an expression that is diagonal
in the quantum numbers IMK. This is evident from the first part of (6). The second
term will select the value —K from the sum (8) over final state K'-values. In fact,
the two terms are of equal magnitude, so we obtain

2R,.
(jpKR0\IK)MtpjpK, (9)

where

MtpjpK = (iPjPK
Fip{kr>)

4>K (10)

is evaluated in the intrinsic frame. It is noted that the matrix element (9) is
independent of the M-quantum number.

Partial Decay Width

We can now write the outgoing wavefunction (5) for a specific channel (£pjpRIK)

as

2/J, 2R Oip(kr)
\{lpjpR)IM)MipjpK.

The deformed decay width follows as

\MtphK (11)



Apart from a pairing term, this expression is identical to that obtained by Kad-
mensky and Bugrov [5,6]. This can be shown by inserting the expansion (7) of the
initial state into the matrix element (10) and using the expression

\£jm) = £ (£melm3\jm)Yr(r')X(ms)

for the single-particle states. Since the interaction does not change the proton spin,
the single-particle matrix element will be diagonal in ms. It is also diagonal in K.
Thus one obtains

This expression has been simplified by noting that mtp = rrn = K — ms, thus
eliminating sums over those variables. The Y^i*') term in the deformed potential
V(r') apparently allows for an angular momentum exchange at the nuclear surface
between the outgoing proton and the daughter nucleus, leading to non-diagonal
terms in the matrix element.

The DW method can also be used to calculate the decay width to an exited state
of the daughter nucleus. This is accomplished by substituting in equation (11) the
correct angular momentum R, as well as the appropriate wave number A;, which
also appears in the argument of the Coulomb function in the matrix element (10).

Direct Method

We can also use the direct method to determine the decay width of a deformed
proton emitter. To do this we expand the wavefunction ^KIM^) of the initial state
on the complete set of angular momentum basis states:

^KIM{T) = £ \(£jR)IM)((£jR)IM Y$KIM).

Using equations (9) and (10) with Fep(kr)/r[V(r) — V^(r)] replaced by 1 we can
immediately write the overlap matrix element as:

((£JR)IM\VKIM) =
on

-Z(jKR0\IK)(tjK\<f>K).

Inserting the expansion (7) for the outgoing channel £pjp we obtain

(£pjPK\<f>K) = 4p)(r) -> ̂ 5 f e M , for r -+ 00, (12)



assuming that the intrinsic states are matched to outgoing Coulomb waves as in
equation (1). The outgoing wave is therefore

where

N,Dir

\
2R
j(jpKR0\IK)Aepjp.

This gives the decay width, according to equation (2), as

Aepjp\
2. (13)

HI
This expression is consistent with the result given in equation (1) of ref. [4]. As it
stands, this expression cannot be used to calculate the decay width to an excited
state of the daughter, because it doesn't take into account the lower proton energy.

It can also be demonstrated explicitly that the distorted wave method and the
direct method give identical results for the decay width of a deformed proton emit-
ter. This can be seen by replacing the interactions in the matrix element (10) by
the associated single-particle Hamiltonian minus the kinetic energy operators,

V(r) - VSir) -+[H + />2V2/2^] right - [H0 + h2V2/2^] ^ . (14)

The subscripts 'right' and 'left' indicate that the operators must act to the right
and to the left, respectively, when inserted in the matrix element of Eq. (10).

Making the substitution (14) in equation (10), the contributions from the two
single-particle Hamiltonians must cancel because the two wave functions have the
same energy. Thus the matrix element (10) can be expressed as

- V2
e / t) £>AT

Using Green's theorem and the expansion (7) for the initial state one obtains

2/z

where we again have used the asymptotic form (12) of cftj (r). Inserting this into
the DW decay width expression (11) we see that it becomes identical to the Dir
width, equation (13).

For the deformed case we show in Table 2 the calculated half-lives for three
decaying states (/32 = 0.3) and total angular momentum j = 3/2+, 5/2+, and 7/2",
respectively.



TABLE 2. Comparison of the proton half-lives of deformed proton
radioactivities calculated with the direct (Dir) and distorted wave
(DW) methods.

Nucleus
131Eu
131Eu
141Ho*

2?p(keV)

932(7)
932(7)
1169(8)

h
3 +

1 +
2
7~
2

2
2.
3

/?2

0.3
0.3
0.3

-0.208
-0.0999
0.240

iDir
tl/2,p

27.92 ms
176.2 ms
4.087 ms

h/2,P
24.09 ms
214.8 ms
3.266 ms

a A. A. Sonzogni, private communication (1999)

Here the calculated half-lives only agree to within 20% between the two methods.
The discrepancy is probably due to the truncation in the eigenfunction space, such
that only the nearest spherical states were included. The initial state is therefore
not the exact or complete solution to the deformed Hamiltonian, and the Gell-
Mann-Goldberger transformation method will therefore not provide exactly the
same result as the direct method. The comparison of the results of the two methods
is therefore a test of how close the truncated solution comes to being correct.
Further investigation in this area is needed. Perhaps a coupled-channels approach,
such as that developed by [12], will offer closer agreement between the direct and
distorted wave methods.

CONCLUSIONS

We have shown that the distorted wave method and the direct method of calcu-
lating the width of spherical and deformed proton emitter are equivalent. In the
spherical case numerical agreement is demonstrated to better than 0.05%, while
for the deformed case the agreement is only within about 20%. Improved methods
of calculating the wavefunctions should reduce this discrepancy. We recommend
using either of these methods in place of the WKB method, which has certain prob-
lems related to the frequency factor (see ref. [3] for a discussion of this point). For
the cases where the radial wavefunction is known over the 0 < r < 25 fm range,
the direct method is preferred for its calculational simplicity. It is valid only for
calculating ground state-ground state decay. However, if the radial wavefunction is
known reliably only in the region of the nuclear surface, the distorted wave method
is to be preferred. In addition, it can be used to calculate decay branches to excited
states of the daughter.
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