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Automated Suppression of the Initial Transient in Monte Carlo Calculations
based on Stationarity Detection using the Brownian Bridge Theory
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The accuracy of a criticality Monte Carlo (MC) calculation requires the convergence of
the k-effective series. Once the convergence is reached, the estimation of the k-effective
eigenvalue must exclude the initial transient of the k-effective series. The present paper
deals with a post-processing algorithm to suppress the initial transient of a criticality MC
calculation, using the Brownian Bridge theory.
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1. Introduction

The initial transient of a criticality MC calculation
induces a bias in the k-effective estimate. A “positive”
transient corresponds to an initial overestimation and
induces a positive bias, whereas a “negative” transient
corresponds to an initial underestimation and induces a
negative bias.

For instance the fourth benchmark of the NEA
Source Convergence Expert Group” is designed to
produce a transient in the k-effective series due to a
bad initialization of the sources distribution (Fig. 1).

Estimation of the k-effective ( 0,,~0.00240 ):
= 1.10327 without transient suppression
+ 1.11682 with an empirical transient suppression of

170 observations
kefT( i

1s

1.4

i3z

lih

12

11

1.9 HH——+

Q.9

(L8]

0.7

0.6

i
0.0 100.0 Z00.0 30¢.0 400.0 500.0 $00.0 700.6 206.0 300.0 10500

Fig. 1 Cycle k-effective series from NEA Source
convergence benchmark 4

as

This example shows a bias of more than 0.01300 in
the k-effective estimate, and the k-effective MC
uncertainty of 0.00240 is not sufficient to take into
account this bias. The post-processing algorithms
detailed in this paper are designed to suppress this
kind of transient and the induced k-effective bias.

2. Scalar series used to detect the initial transient

The initial transient observed in the k-effective
series (k(i)},cicy is obviously a consequence of the
source distribution (or eigenvector) convergence
process from the initial guess to the fundamental
mode. Since it is much easier to study the convergence
in a series of scalar values than in a series of vectors,
and because the cycle k-effective series is used for the
estimation of the k-effective eigenvalue, a first
approach to suppress the initial transient — using the
Brownian bridge? theory — focused on the stationarity
detection of the cycle k-effective series.”

However the apparent convergence of k-effective
series does not strictly imply the convergence of the
source distribution. Recently, a stationarity diagnostic
based on the Shannon entropy of source distribution,
using the two-sample F test, was proposed.® An
advantage of this method lies in the use of a more
representative scalar value of sources distribution than
k-effective.

Nevertheless the stationarity of Shannon entropy
does not rigorously imply sources distribution
stationarity and moreover stationarity of sources
distribution does not guarantee the convergence
towards the fundamental mode. Finally, it should be
noticed that the transient suppression aims only at
obtaining a stationary series and cannot guarantee the
convergence of the sources distribution in any way.

As a consequence, it is necessary to run a sufficient
number of generations to ensure that the MC powering
algorithm has converged to the true eigenvalue, or to
use an improved powering method which guarantees
that the most reactive parts of the system are correctly
sampled after the transient.

Keeping these points in mind, the stationarity
detection can be based on the cycle k-effective series
or on the cycle Shannon entropy series. So, let us
define a series x={x(1)}cien of N observations

standing for either a k-effective series or a Shannon
entropy series resulting from a MC calculation.
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3. Series and bridge processes

The underlying idea of the stationarity detection is
to consider a process revealing the stationarity or non-
stationarity of the series.

I
Let us consider f(j)=~l,—z x(i}.
i=1
Basically, when the series x is stationary, the series
[j(X(j)=%(N))),c,cy has small values and is
centered around 0 (see Fig. 6). On the contrary, in the
case of a negative (resp. positive) initial bias in the
series x, the series {j(%{j)—X(N)}] is not centered
around 0 and has a negative (resp. positive) peak (see

Fig. 7).
Let us introduce the “series bridge” of x:
j | PP,
« BS |=|= {(x(j)—x(N
( NN J) )

for 1<j<N,with T =lim NVar(x(N))
N—ow
- BS,(0)=0.
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Fig. 3 A stationary series
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Fig. 5§ Ranks of a stationary series
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Fig. 6 Bridges of a stationary series

In order to analyze the stationarity of the x series,
G. Vassilacopoulos® suggests to work with the ‘tank s
series” of x in place of the x series. This ranks series is
defined as {R,(i)},.;,cxy where Ryi) is the rank of x(i),
i.e. the ascending sort order of x(i) among all x values.
It can be proved that the {R, (i)} process is stationary
if the x series is stationary.

In the same way that X(j) let us define

4
I_€A.(j)=l—,z R, (i} . Another ‘bridge” process can
J =
thus be based on the ‘tan ks series” such that:
J I = =
+  BR, | |=—=Jj(R (j)=R,(N)),
(N) oVn’ ,J
1
for 1<j<N, where =T N(N+1) is the

sample standard deviation of the R, series.

+ BR,(0)=0.
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Fig. 4 Ranks of a non stationary series
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Fig. 3 to 7 show respectively a stationary series, its
ranks series and its bridges and a non-stationary series,
its ranks series and its bridges. Note that the bridges
ranges are very low for stationary series and reach
high values in case of non stationary series.

The terminology ‘bridge” comes from the fact that
all the bridges processes equal 0 whenr=0and ¢ =1,
thus the curves look like bridges between the points
(0,0) and (1,0) (see Fig. 6, 7).

It can be proved that bridges processes tend to the
Brownian bridge, when the x series is weakly
dependent — i.e. when two x{i) observations widely
separated from each other in the series are almost
independent (in the sense of phi-mixing”) — and as N
tends to infinity.

4. Characterization of stationarity

The bridges processes defined previously can be
useful to determine if a series is stationary or not.
Indeed it is possible to determine the distribution of
some characteristic values (called statistics and
denoted as S) of the bridges of stationary series.

Let us give some examples of such statistics used
in literature, B, being BS; or BR;:

St emin(s), 5 5)= Lozl
) __Bultw)'
Strar(B,) =max(B,) , Ssoue(B)=— =

where 1., (resp. ?,,) is the value at which the
minimum (resp. maximum) of B.(?) occurs.

But other characteristic values of the bridges can
be mentioned:

_—B,(1,,) _—B,{1,,)
Sl B)=g g 7y STl BI= 0
_ S5,m(B,) S5, (B.)
SSVM(B,)—m , Ssr,,m( ) —) ,
z ( )
minOS,sl( B, (1) ) Sad(B
( t) ;=0 j
N N
and Sfc(B,)=t, where fo is the first value strictly
1 1
greater than - where B.(f,~—)B,(1,)<0..
In fact, the characterizations of minimum and

maximum values of bridges are two symmetrical point
of views. Thus, the distributions based either on
minimum or maximum are identical.

Note that when B, is a Brownian bridge (i.e. bridge
of a weakly dependent series):
» G. Vassilacopoulos shows that Svmi» and Svme. both
follow a Kolmogorov-Smimov distribution®)
= L. Schruben shows that Ssm, and S5 both follow

a X3 distribution”

» X. Bay shows that Srmi» and Srma both follow a
distribution having this cumulative density:

_,__mr 1+r o
Fg(r)=1 +r7 ot (1 ))

All the statistics (denoted as §°) designed to
characterize the minimum value of the bridges can
only detect negative transients (for instance Svn, ,
SSminy STmin). In the same way, all the statistics (denoted
as §*) designed to characterize the maximum vaiue of
the bridges can only detect positive transients (for
Instance  SVma , SSmas, S7max ). A new kind of statistic
based on two symmetrical statistics § and S* can be
defined as max(S,5*]. This kind of statistic detects
both positive and negative transients. We only tested
such statistics in our paper:

* Schruben statistic based on the series bridge”:

Ss(BS,)=max{Ss,,,(BS,), 55, (BS.)}

This statistic is correctly estimated only if 7° is well
known, but 7 estimation is very influenced by the non
stationarity of the series. One way suggested to
improve the 7’ estimation accuracy is to estimate T2
just on the last half of the series. The two following
statistics avoid the estimation of this parameter.

* Supremum ratios statistic based on the series
bridge: Sr(BS,)=max{Sr,,..(BS,), Sr..(BS.)]

» Vassilacopoulos statistic based on the ranks
bridge®: Sv(BR,)=max{Sv,.(BR,),Sv,.(BR,)}

Nevertheless all the statistics distributions are
established for theoretical Brownian bridges, and the
k-effective or Shannon entropy series are all the more
far from weakly dependent processes (see section 3) as
the length of the series N is low. In fact the series
resulting of MC calculations have various finite
lengths and are somewhat autocorrelated. In this paper,
the two main parameters considered as influencing the
statistics and their distributions are the length N and
the first autocorrelation coefficient p of the series (see
Fig. 8, 9). The determination of theoretical statistics
distributions versus NV and p has to be achieved.

However an empirical estimation of each statistic
distribution 4, , is possible by estimating this
statistic for a great number of series with the same
values of N and p. For the purpose of our study, a plan
of experiments has been defined to evaluate
distributions of the Sr(BS,), Ss(BS.), Sv(BR,) statistics
for N€{25,100,500,1000} and p€{0.0,0.1,0.2}.
Practically, when an estimation of A, , has to be
performed with N or p not included in the previous
plan of experiments, the distributions of the statistics
are linearly interpolated. This interpolation could be
improved using a more dense plan of experiments and
a better model than a simple linear interpolation.



JAERI—Conf 2003—019

VG £al( S5,
O e

R

3.7 . 4

v
) /4

v

14

a8

ol

| Ssmin
0.0 1.¢ 40 40 50 eO 700 ¥e loe 1lu )20

Fig. 8 Cumulative density functions (cdf)
of S statistic for N = {50, 500, 5000}, p = 0.0
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Fig. 9 Cumulative densnty functions of s, statistic

for p = {0.0, 0.2, 0.4}, N = 1000

5. Stationarity iésting

Conmdermg a serles X, an extreme statxstlc value of

a bndge (BS, or BR,) points out the non stationarity of

this series. Thus, a simple statistical test can be based

on each statistic previously defined:

< S being the statistic value obtained on the x series
of length N and first autocorrelation coefficient p,
A, , being the theoretical distribution of § for
series of length N and first autocorrelation
coefficient p,
o being the level of significance of the test (for
instance 10%),

the stationarity hypothesis is accepted if:

cde”(S(Bx))< I-o

where ¢df 5 is the cumulative density function of A
distribution (see Fig. 10).

Test level (10%)
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Fig. 10 Cumulatxve densnty function of test statistic
and stationarity hypothesis acceptance region

6. Transient suppression procedure

Let us define a series x of N observations from
which we want to remove the initial ransient. Tests
are performed at first on the entire series. If the x
series is not considered as stationary, the series is
truncated (of a certain number of initial observations)
and the tests are performed again. This iterative
procedure is repeated as long as the test hypothesis is
rejected and the number of remaining observations is
statistically sufficient.” Another way to truncate the
series at each iteration could be to suppress n = tN
observations, f being the value (., or f...) where the
considered bridge B,(t) reaches ifs supremum.

*Of course, the efficiency of this iterative procedure
depends on the statistic test performed- at each
iteration. ‘ :

The methodology of truncation and various
stationarity tests (not only based on-Brownian bridge
theory) are implemented in the OPOSSUM? _post-
processmg tool of the MC code MORET 410,

7. Vahdatlon

The vélidati‘ori ~of this transient suppression
methodology - and the comparison of underlying
stationarity . tests -are performed .on a. plan: -of

_experiments of artificial and although realistic series. .

-The series are modeled (see Fig. 11) as the sum of
a- stationary . series. -and of- .a. -tramnsient:
x{(i)=x,(i)+Ti), where: o
° x, is a stationary Gaussian autoregressive process:
x i+ )=px,(i)+e(i+1) | where (€(i));5cn are
independent Gaussian random variables of mean 0
and variance o . The parameter. T (introduced in
the series bridge definition in section 3) of the X
series equals T=0 /(1-p) .
»  Tis a transient function defined as:

A, forl<i<a 1
T()={A-(b—i)l(b—a), fora<i<h
0, forb<i<N

The series are chosen to reveal different transients,
different lengths and different ranges while the
stationarity tests have the same level of significance
(10%). ‘

x(1)
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Fig. 11 Series model
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The parameters defining the series are (see Fig. 11):
+  Ne€{100,500, 1000 |,

. %6[0.0,0.25,0.5,0.75},

. %e{0.25,0.5.0.75} (with b2a),

. 1€(001,0.02,0.03}

+ p€l0.0,0.1,02],

. T€[-0.00500, —0.01000,—0.02000} ,
_a+b—l

N
where 7‘=lﬁz T(i)=A is the mean of the

i=1

transient (equal to the induced bias).

The efficiency indicators used to compare the tests

T n .
are —LTN— and — where » is the number of

b
observations finally truncated and
; i PP o .
T, n= Nontl S T() is the remaining bias.

i=n

T
Basically, _"Ti"_ is the remaining bias over the initial

h

bias and b

is the truncation length over the transient

length.

For each series parameters set, the truncation is
performed on 1000 “series to obtain a statistical
distribution of the two efficiency indicators. Finally,
these distributions obtained with each stationarity test
are compared.

Note that Schruben test is performed with an exact
value of T whereas it should be estimated. In the same
way, all the tests are performed with an exact value of
p whereas it should be estimated.

Firstly, regarding efficiency indicators means
distributions (see Fig. 12, 13), it appears that
Schruben, supremum ratios and Vassilacopoulos tests
give good results. However, it seems that Schruben
test generally tends to lightly more overestimate the
transient length than the two other tests, maybe due to
a bad estimation of empirical statistic distributions
which alters the levels of significance.
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distributions for Schruben, supremum ratios and
Vassilacopoulos based truncations

Secondly an increasing series length seems to
improve the efficiency of the tests.

Thirdly, - the -supremum ratios test becomes
inefficient when the transient length increases and
when the transient amplitude (4) is comparable to the
series dispersion (t). On the contrary, the
Vassilacopoulos test is the most robust in this extreme
case. For instance, the following series parameters:

a b
= —={. —=0,75, =002, p=0.2,
N=1000 , 5 05, N . T=0.02, p=0.2,

T=-0.00500 give a transient difficult to identify
with the naked eye (see Fig. 16) which although biases
the series mean estimation of -0.00500. The number of

.observations suppressed and the remaining bias rate

follow these distributions (Fig. 14, 15):
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Fig. 14 Statistical distributions of the truncation
n using Schruben, supremum ratios and
Vassilacopoulos based tests
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Fig. 16 Series from the plan of experiments with

a b 4)
= —=0.5, —=0.75, =002, p=0.2,
N=1000, N N T p=0.2
T=-0.00500 , leading to a -0.00500 bias on the
k-effective estimation
5)

The following Table 1 gives the number of
observations suppressed and the remaining bias for
each test used with the automated truncation on the

series Fig. 16.

Table 1 Truncation and remaining bias

Test used n T, ,
Schruben nl=511 -0.00186
Supremum ratios n2=302 -0.00370
Vassilacopoulos n3=631 -0.00061

6)

7)

This result confirms the efficiency of an automated 8)
truncation whereas an empirical truncation would have
probably give a bad result in terms of bias gains.

8. Conclusion and prospects

This study on bridges based statistical tests shows
good results in terms of transient bias gains, and even

when transients are not visible to the naked eye.

This preliminary study on automated transient
suppression allowed to validate the iterative truncation
methodology and some stationarity tests. However, it
is necessary to perform an exhaustive study of all
statistics detailed in section 4 (on the series but also on
the ranks series). For instance, a Schruben statistic
performed on the rank series may combine the
efficiency of Schruben and Vassilacopoulos tests that
we noticed thanks to the plan of experiments. It will
also be necessary to build a more efficient model for

statistics  distributions
interpolation used.

than

the

simple

9)

10)

linear

Finally this plan of experiments and a set of
practical cases could be used to compare and validate

all these improvements.
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