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Impact of semi-annihilations on dark matter phenomenology
– an example of ZN symmetric scalar dark matter

G. Bélanger, K. Kannike, A. Pukhov, M. Raidal

Abstract
We study the impact of semi-annihilations χχ ↔ χX, where χ is
dark matter and X is any standard model particle, on dark matter phe-
nomenology. We formulate scalar dark matter models with minimal
field content that predict non-trivial dark matter phenomenology for
different discrete Abelian symmetries ZN , N > 2, and contain semi-
annihilation processes. We implement such an example model in mi-
crOMEGAs and show that semi-annihilations modify the phenomenol-
ogy of this type of models.

1 INTRODUCTION
The origin of dark matter of the Universe is not known. In popular models with new parti-
cles beyond the standard model particle content, such as the minimal supersymmetric standard
model, an additional discrete Z2 symmetry is introduced [514]. As a result, the lightest new
Z2-odd particle, χ, is stable and is a good candidate for dark matter. The phenomenology of
this type of models is studied extensively.

The discrete symmetry that stabilises dark matter must be the discrete remnant of a broken
gauge group [515], because global discrete symmetries are broken by gravity. The most natural
way for the discrete symmetry to arise is from breaking of a U(1)X embedded in a larger gauge
group, e.g. SO(10) [516]. The latter contains gauged B − L as a part of the symmetry, and the
existence of dark matter can be related to the neutrino masses, leptogenesis and, in a broader
context, to the existence of leptonic and baryonic matter [299, 303, 517].

Obviously, the discrete remnant of U(1)X need not to be Z2 – in general it can be any ZN
Abelian symmetry. The possibility that dark matter may exist due to ZN , N > 2, is a known
[354,518–525] but much less studied scenario1. Model independently, it has been pointed out in
Ref. [525] that in ZN models the dark matter annihilation processes contain new topologies with
different number of dark matter particles in the initial and final states – called semi-annihilations
–, for example χχ ↔ χX, where X can be any standard model particle. It has been argued
that those processes may significantly change the predictions for generation of dark matter
relic abundance in thermal freeze-out. However, no detailed studies have been performed that
compare dark matter phenomenology of different ZN models. This is difficult also because
presently the publicly available tools for computing dark matter relic abundance do not include
the possibility of imposing ZN discrete symmetry instead of Z2.

1Phenomenology of Z3-symmetric dark matter in supersymmetric models has been studied in Refs. [518, 520]
and in extra dimensional models in Refs. [354, 519].
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The aim of this work is to formulate the minimal scalar dark matter model that pre-
dicts different non-trivial scalar potentials for different ZN symmetries and to study their phe-
nomenology. In particular we are interested in quantifying the possible effects of semi-annihilation
processes χχ ↔ χX on generating the dark matter relic abundance. In order to perform quan-
titatively precise analyses we implement minimal Z3 symmetric scalar dark matter models that
contain one singlet and one extra doublet in micrOMEGAs [206,526]. Using this tool we show
that, indeed, the semi-annihilations affect the dark matter phenomenology and should be taken
into account in a quantitatively precise way in studies of any particular model.

2 ZN LAGRANGIANS
2.1 ZN symmetry
Under an Abelian ZN symmetry, where N is a positive integer, addition of charges is modulo
N . Thus the possible values of ZN charges can be taken to be 0, 1, . . . , N − 1 without loss of
generality. A field φ with ZN charge X transforms under a ZN transformation as φ → ωXφ,
where ωN = 1, that is ω = exp(i2π/N).

A ZN symmetry can arise as a discrete gauge symmetry from breaking a U(1)X gauge
group with a scalar whose X-charge is N [515, 517].

For larger values of N the conditions the ZN symmetry imposes on the Lagrangian ap-
proximates a U(1) symmetry for two reasons. First, assuming renormalizability, the number of
possible Lagrangian terms is limited and will be exhausted for some small finiteN , though they
may come up in different combinations for different values of N . Second, if the ZN symmetry
arises from some U(1)X , the X-charges of particles cannot be arbitrarily large, because that
would make the model nonperturbative – if N is larger than the largest charge in the model, the
restrictions on the Lagrangian are the same as in the unbroken U(1).

We shall see below that for the large number of possible assignments of ZN charges to
the fields, the number of possible distinct potentials is much smaller.

2.2 Field content of the minimal model
In order to study how different discrete ZN symmetries impact dark matter phenomenology
the example model must contain more than one type of dark matter candidates. The minimal
dark matter model that possesses such properties contains, in addition to the standard model
fermions and the standard model Higgs boson H1, one extra scalar doublet H2 and one extra
complex scalar singlet S [299]. In the case of Z2 symmetry, as proposed in [299], those new
fields can be identified with the well known inert doubletH2 [527–530] and the complex singlet
S [295–298, 302]. The phenomenology of those models is well studied. However, when they
are put together, qualitatively new features concerning dark matter phenomenology, electroweak
symmetry breaking and collider phenomenology occur [299, 303, 531–533]. The field content
of the minimal scalar ZN model is summarized in Table 1.
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Table 1: Scalar field content of the low energy theory with the components of the standard model Higgs
H1 in the Feynman gauge. The value of the Higgs VEV is v = 246 GeV.

Field SU(3) SU(2)L T 3 Y/2 Q = T 3 + Y/2

H1 =

(
G+

v+h+iG0
√

2

)
1 2

(
1
2

−1
2

)
1
2

(
1
0

)

H2 =

(
H+

H0+iA0
√

2

)
1 2

(
1
2

−1
2

)
1
2

(
1
0

)
S = SH+iSA√

2
1 1 0 0 0

2.3 Constraints on charge assignments
The assignments of ZN charges have to satisfy

XS > 0,

X1 6= X2,

−X` +X1 +Xe = 0 mod N,

−Xq +X1 +Xd = 0 mod N,

−Xq −X1 +Xu = 0 mod N.

(1)

The first and second conditions arise from avoiding the |H1|2S term and from avoiding Yukawa
terms for H2, respectively, and the rest from requiring Yukawa terms for H1.

The choice of ZN charges for standard model fermions, the standard model Higgs H1, the
inert doublet H2 and the complex singlet S must be such that there are no Yukawa terms for H2

and no mixing between H1 and H2: only annihilation and semiannihilation terms for H2 and S
are allowed.

All possible scalar potentials contain a common piece because the terms where each field
is in pair with its Hermitian conjugate are allowed under any ZN and charge assignment. We
denote it by Vc, where the ‘c’ stands for ‘common’:

Vc = µ2
1|H1|2 + λ1|H1|4 + µ2

2|H2|2 + λ2|H2|4 + µ2
S|S|2 + λS|S|4

+ λS1|S|2|H1|2 + λS2|S|2|H2|2 + λ3|H1|2|H2|2 + λ4(H†1H2)(H†2H1).
(2)

2.4 The Z2 scalar potential
There are 256 ways to assign 0, 1 to the standard model and dark sector fields. Of these, 8
satisfy Eq. (1); among them, there are 2 different assignments to the dark sector fields, both
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giving rise to the unique scalar potential

V = Vc +
µ′2S
2

(S2 + S†2) +
λ5

2

[
(H†1H2)2 + (H†2H1)2

]
+
µSH

2
(S†H†1H2 + SH†2H1) +

µ′SH
2

(SH†1H2 + S†H†2H1)

+
λ′S
2

(S4 + S†4) +
λ′′S
2
|S|2(S2 + S†2)

+ λS1|S|2|H1|2 + λS2|S|2|H2|2

+
λ′S1

2
|H1|2(S2 + S†2) +

λ′S2

2
|H2|2(S2 + S†2).

(3)

2.5 Z3 scalar potentials
There are 6561 ways to assign 0, 1, 2 to the fields. Of these, 108 satisfy Eq. (1); among them,
there are 12 different assignments to the dark sector fields, giving rise to 2 different scalar
potentials. The example potential we choose to work with is

VZ3 = Vc +
µ′′S
2

(S3 + S†3) +
λS12

2
(S2H†1H2 + S†2H†2H1)

+
µSH

2
(SH†2H1 + S†H†1H2),

(4)

which induces the semi-annihilation processes we are interested in. The second one is obtained
from Eq. (4) by changing S → S† (with µSH → µ′SH and λS12 → λS21).

2.6 Z4 scalar potentials
There are 65536 ways to assign 0, 1, 2, 3 to the fields. Of these, 576 satisfy Eq. (1); among
them, there are 36 different assignments to the dark sector fields, giving rise to 5 different scalar
potentials. Among those the only potential that contains semi-annihilation terms is

V 1
Z4

= Vc +
λ′S
2

(S4 + S†4) +
λ5

2

[
(H†1H2)2 + (H†2H1)2

]
+
λS12

2
(S2H†1H2 + S†2H†2H1) +

λS21

2
(S2H†2H1 + S†2H†1H2).

(5)

The other four scalar potentials can be formally obtained from the Z2-invariant potential Eq. (3)
by setting all the new terms added to Vc to zero, with the exception of the 1) λ′S , µSH , 2) λ′S ,
µ′SH , 3) µ′S , λ′S , λ′′S , λ′S1, λ′S2, 4) µ′S , λ′S , λ′′S , λ′S1, λ′S2, µSH , µ′SH terms.

3 RELIC DENSITY IN CASE OF THE Z3 SYMMETRY
3.1 Evolution equations
Consider the Z3-symmetric theory. The imposed Z3 symmetry implies, as usual, just one dark
matter candidate. This is because the Z3 charges 1 and −1 correspond to particle and anti-
particle. The new feature is that processes of the type χχ → χX , where X is any standard
model particle, also contribute to dark matter annihilation. The equation for the number density
reads

dn

dt
= −vσχχ→XX

(
n2 − n2

eq

)
− 1

2
vσχχ→χX

(
n2 − nneq

)
− 3Hn. (6)
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We define

σv = vσχχ→XX +
1

2
vσχχ→χXv and α =

1/2σχχ→χX
σv

, (7)

which means that 0 ≤ α ≤ 1. In terms of the abundance, Y = n/s, where s is the entropy
density, we obtain

dY

dt
= −sσv

(
Y 2 − αY Yeq − (1− α)Y 2

eq

)
(8)

or
dY

ds
=
σv
H

(
Y 2 − αY Yeq − (1− α)Y 2

eq

)
. (9)

To solve this equation we follow the usual procedure [526]. Writing Y = Yeq + ∆Y we find the
starting point for the numerical solution of this equation using the Runge-Kutta method using

dYeq

ds
=
σv
H
Y∆Y (2− α) , (10)

where ∆Y � Y . This is similar to the standard case except that ∆Y increases by a factor
1/(1 − α/2). Furthermore, when solving numerically the evolution equation, the decoupling
condition Y 2 � Y 2

eq is modified to

Y 2 � αY Yeq + (1− α)Y 2
eq. (11)

This implies that freeze-out starts at an earlier time and lasts until a later time as compared with
the standard case. This modified evolution equation is implemented in micrOMEGAs [206,
208].

3.2 Numerical results with micrOMEGAs
Using the scalar potential defined in Eq. (4) we have implemented in micrOMEGAs the scalar
model with a Z3 symmetry. The scalar sector is composed of one additional complex scalar
doublet and one complex singlet. The neutral component of the doublet mixes with the singlet,
the lightest component h̃1 is therefore the dark matter candidate, while the heavy component
h̃2 can decay into h̃1h, where h is the standard model like Higgs boson. The Z3 charge of
h̃1, h̃2, h̃

+ is 1.
We then compute the dark matter relic density as well as the elastic scattering cross sec-

tion on nuclei. Here we average over dark matter and anti-dark matter cross section assuming
that they have the same density. the main contribution here comes from the Z-exchange dia-
gram because there is a h̃1h̃

∗
1Z coupling2. Furthermore one can easily show that the scattering

amplitudes are not the same for protons and neutrons. Since the current experimental bounds
on σSI

χn are extracted from experimental results assuming that the couplings to protons (fp) and
neutrons (fn) are equal, we define the normalized cross section on a point-like nucleus [237]:

σSI
h̃1N

=
µ2
ψ1

π

[Zfp + (A− Z)fn]2

A2
. (12)

This quantity can directly be compared with the limit on σSI
χn.

2In the inert doublet model with a Z2 symmetry [527, 529], a λ5 term splits the complex doublet into a scalar
and a pseudoscalar, when the mass splitting is small such coupling leads to inelastic scattering.
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Figure 1: Ωh2 as a function of the dark matter mass (left panel) and σSI
h̃1Xe

. The experimental limit from
XENON100 [196] is also displayed (dashed line.)

To illustrate the behavior of the relic density of dark matter, we choose the parameters
λ2 = 0.73, λ3 = 0.16, λ4 = 0.45, λS = 0.93, λS1 = 0.06, λS2 = 0.03, λS21 = 0.69, µ′′S =
427.5 GeV. Furthermore we fix the mass of the Higgs sector to be Mh = 125 GeV, Mh2 =
371.2 GeV and let Mh̃1

vary. We also assume that h̃1 is almost singlet taking sin θh = 0.9995.
The variation of Ωh2 with the dark matter mass is displayed in Fig. 1. When the dark mat-

ter mass is around 50 GeV the main annihilation channel is through Z-exchange, note that this,
however, leads to a very large direct detection rate. As m1 = mh̃1

increases above mZ/2, the
relic density increases dramatically. At this point α is very small since the process h̃1h̃1 → h̃∗1Z
is kinematically forbidden. After the threshold for W pair production, the relic density starts to
drop, the process h̃1h̃1 → h̃∗1Z soon becomes kinematically accessible and α increases rapidly.
The contribution of this channel rises rapidly leading to a drop of Ωh2 to values below the pre-
ferred region extracted form WMAP measurements [284]. For yet larger dark matter masses the
annihilation process h̃1h̃1 → h∗2 → h̃∗1h occurs near the h2 resonance, this is the second drop in
Ωh2 displayed in Fig. 1. As the dark matter mass increases further, several processes involving
one non-standard particle in the final state can take place (notablyW+H−, hh̃∗1, hh̃

∗
2, Zh̃

∗
2); such

processes completely dominate and α ≈ 1.
The value of the SI cross section for the same parameters is displayed in Fig. 1 right panel.

The region where Ωh2 ≈ 0.1 just satisfies the Xenon100 bound [196]. Note that to achieve that
it was necessary to have an almost pure singlet dark matter. Heavier dark matter satisfy easily
the direct detection bounds, although their abundance is too low to explain all of the dark matter.
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4 CONCLUSIONS
We have formulated scalar dark matter models with the minimal particle content in which dark
matter stability is due to the discrete ZN symmetry, N > 2. Already the minimal models
containing one extra scalar singlet and doublet possess non-trivial dark matter phenomenology.
In particular, the annihilation processes with new topologies like χχ → χX , where χ is the
dark matter and X is any standard model particle, change the dark matter freeze-out process
and must be taken into account when calculating the dark matter relic abundance. We have
performed an example study of semi-annihilations in the Z3 symmetric scalar dark matter model
by implementing the model to micrOMEGAs and studying the impact of semi-annihilations to
the relic abundance and on the predictions of dark matter direct detection. We conclude that in
this type of models semi-annihilations may significantly affect the phenomenology and must be
taken into account in numerical analyses quantitatively exactly.
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