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Abstract

In this paper we proceed to study properties of Mellin-Barnes (MB) transforms of Usyukina-
Davydychev (UD) functions. In our previous papers [Nuclear Physics B 870 (2013) 243],
[Nuclear Physics B 876 (2013) 322] we showed that multi-fold Mellin-Barnes (MB) transforms
of Usyukina-Davydychev (UD) functions may be reduced to two-fold MB transforms and that
the higher-order UD functions were obtained in terms of a differential operator by applying
it to a slightly modified first UD function. The result is valid in d = 4 dimensions and its
analog in d = 4 − 2ε dimensions exits too [Theoretical and Mathematical Physics 177 (2013)
1515]. In [Nuclear Physics B 870 (2013) 243] the chain of recurrent relations for analytically
regularized UD functions was obtained implicitly by comparing the left hand side and the right
hand side of the diagrammatic relations between the diagrams with different loop orders. In
turn, these diagrammatic relations were obtained due to the method of loop reductions for the
triangle ladder diagrams proposed in 1983 by Belokurov and Usyukina. Here we reproduce these
recurrent relations by calculating explicitly via Barnes lemmas the contour integrals produced
by the left hand sides of the diagrammatic relations. In such a way we explicitly calculate a
family of multi-fold contour integrals of certain ratios of Euler gamma functions. We make a
conjecture that similar results for the contour integrals are valid for a wider family of smooth
functions which includes the MB transforms of UD functions.
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1 Introduction

Off-shell triangle-ladder and box-ladder diagrams are the only family of the Feynman diagrams
which were calculated at any loop order, for example in d = 4 space-time dimensions [1, 2, 3, 4]
with all indices equal to 1 in the momentum space representation (m.s.r.) and in d = 4− 2ε space-
time dimensions with indices equal to 1 − ε on the rungs of ladders in the m.s.r. too [5, 6]. For
the important case of the ladder diagrams with all indices equal to 1 in the m.s.r. in d = 4 − 2ε
space-time dimensions the on-shell result for this family of diagrams is known only at the first three
loops in the form of expansion in terms of ε [7, 8] up to a certain power of ε. The off-shell result
for the whole family of the ladder diagrams in is unknown in d = 4− 2ε dimension.

The momentum integrals corresponding to the family of the ladder diagrams in d = 4 space-time
dimensions result in UD functions [2, 3]. The order of the UD function is the loop order in the
ladder diagram [2, 3, 9]. The ladder diagrams possess remarkable properties at the diagrammatic
level, for example, in Refs. [10, 11] it was shown that the UD functions are invariant with respect to
Fourier transformations. In Ref. [12, 9] it has been shown that such a property of Fourier invariance
may be generalized to any three-point Green function via Mellin-Barnes transformation.

MB transforms of the UD functions were investigated in Refs. [13, 14]. It has been found
under some analytical regularization of Ref. [1] that MB transform of n-order UD function is a
linear combination of MB transforms of three UD functions of (n − 1)-order. This means any
ladder diagram of this family may be reduced via a chain of recurrent relations to the one-loop
scalar massless triangle diagram, which may be expressed for any indices and in any dimensions
in terms of Appell function F4 [15, 16]. This chain of the recurrent relations for the analytically
regularized UD functions in the double-uniform limit when removing this analytical regularization,
is represented as a differential operator applied a to a slightly modified first UD function [14]. It has
been shown there that if instead of MB transforms of UD functions we write any smooth function
of the same arguments the structure of this differential operator will be maintained the same in
this double uniform limit. This operator will be applied to the function of the lowest order in this
chain of recurrent relations.

However, in the present paper we show that in the particular case when in the integrand of
the contour integrals on the left hand sides of the diagrammatic relations the MB transforms of
the UD functions stand, this chain of recurrent relations for the MB transforms of UD functions
is produced by the contour integration. These contour integrals are calculated explicitly via the
first and the second Barnes lemmas. Due to observation done in the previous paragraph, we make
a conjecture that similar results for the contour integrals are valid for a wider family of smooth
functions written instead of MB transforms of UD functions. In the next papers we describe this
family of functions and also describe what kind of changes should be made for the contours of the
integrals over complex variables for the case of other smooth functions different from certain ratios
of Euler gamma functions. In this paper we focus on the contour integration via Barnes lemmas
for the case when the integrand contains MB transforms of UD functions.

The Barnes lemmas were introduced in science about century ago. The first Barnes lemma has
been proved in Ref. [17], the second Barnes lemma has been proved in Ref. [18]. They allow to
integrate a product of several Euler gamma functions in a simple manner. The Barnes lemmas will
help us to demonstrate the integral relations of Refs. [13, 14] by doing complex integration along
the contours typical for MB transformation. In Ref. [13] in order to obtain the results for the
contour integrals we simply compared the left and the right parts of the diagrammatic relations.
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2 Proof

The integral relation we need to prove via Barnes lemmas is Eq. (13) of Ref. [13],

∮

C

dz2dz3 D(u,v)[1 + ε1 − z3, 1 + ε2 − z2, 1 + ε3]D
(z2,z3)[1 + ε2, 1 + ε1, 1 + ε3] =

J

[

D(u,v−ε2)[1− ε1]

ε2ε3
+

D(u,v)[1 + ε3]

ε1ε2
+

D(u−ε1,v)[1− ε2]

ε1ε3

]

(1)

in which the parameters ε1, ε2 and ε3 are three complex variables of analytical regularization used
in Ref. [1], subject to condition

ε1 + ε2 + ε3 = 0,

the factor J is a ratio of Euler gamma functions

Figure 1: Equation (25) of Ref. [2] is the origin of integral relation Eq.(1).

J =
Γ(1− ε1)Γ(1− ε2)Γ(1 − ε3)

Γ(1 + ε1)Γ(1 + ε2)Γ(1 + ε3)
,

the function D(z2,z3)[ν1, ν2, ν3] is the MB transform of one-loop triangle integral in the momentum
space J(ν1, ν2, ν3) taken in Ref.[13] from Refs. [16, 2, 3],

D(z2,z3)[ν1, ν2, ν3] =
Γ (−z2) Γ (−z3) Γ (−z2 − ν2 − ν3 + d/2) Γ (−z3 − ν1 − ν3 + d/2)

ΠiΓ(νi)

×

Γ (z2 + z3 + ν3) Γ (Σνi − d/2 + z3 + z2)

Γ(d− Σiνi)
, (2)

and for the brevity the notation

D(u,v)[1 + ν] ≡ D(u,v)[1, 1, 1 + ν] (3)
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is used. The integral relations in Eq. (1) is produced by the diagrammatic relation between scalar
Feynman diagrams in the momentum space given in Fig. 1 which is Eq. (25) of Ref. [2]. The
derivation of this diagrammatic relation is reviewed in details in Ref. [13]. Also, in Ref. [13] the
derivation of Eq. (1) from the diagrammatic relation of Fig. 1 may be found.

According to Eqs. (2) and (3), we write

D(z2,z3)[1 + ε2, 1 + ε1, 1 + ε3] =

Γ (−z2) Γ (−z3) Γ (−z2 + ε2) Γ (−z3 + ε1) Γ (1 + z2 + z3) Γ (1 + z2 + z3 + ε3)

Γ (1 + ε1) Γ (1 + ε2) Γ (1 + ε3)
,

D(u,v)[1 + ε1 − z3, 1 + ε2 − z2, 1 + ε3] =

Γ (−u) Γ (−v) Γ (−u+ ε1 + z2) Γ (−v + ε2 + z3) Γ (1 + u+ v + ε3) Γ (1− z2 − z3 + u+ v)

Γ (1 + ε1 − z3) Γ (1 + ε2 − z2) Γ (1 + ε3) Γ (1 + z2 + z3)
,

and the integrand on the left hand side of Eq.(1) is

D(u,v)[1 + ε1 − z3, 1 + ε2 − z2, 1 + ε3]D
(z2,z3)[1 + ε2, 1 + ε1, 1 + ε3] =

Γ (−u) Γ (−v) Γ (1 + u+ v + ε3)

Γ (1 + ε1) Γ (1 + ε2) Γ2 (1 + ε3)
×

×

Γ (−z2) Γ (−z3) Γ (1 + z2 + z3 + ε3) Γ (−u+ ε1 + z2) Γ (−v + ε2 + z3) Γ (1− z2 − z3 + u+ v)

(ε1 − z3)(ε2 − z2)
. (4)

On the right hand side of Eq.(1) we should obtain

D(u,v)[1 + ε3]

ε1ε2
=

1

ε1ε2

Γ(−u)Γ(−v)Γ(−ε3 − u)Γ(−ε3 − v)Γ2(1 + ε3 + u+ v)

Γ(1− ε3)Γ(1 + ε3)
, (5)

D(u,v−ε2)[1− ε1]

ε2ε3
=

1

ε2ε3

Γ(−u)Γ(ε2 − v)Γ(ε1 − u)Γ(−ε3 − v)Γ2(1 + ε3 + u+ v)

Γ(1 − ε1)Γ(1 + ε1)
, (6)

D(u−ε1,v)[1− ε2]

ε1ε3
=

1

ε1ε3

Γ(ε1 − u)Γ(−v)Γ(−ε3 − u)Γ(ε2 − v)Γ2(1 + ε3 + u+ v)

Γ(1 − ε2)Γ(1 + ε2)
. (7)

The poles at the points z2 = ε2 and z3 = ε1 were originally “right” since they come from the
Euler gamma functions with negative signs of the integration variables of their arguments. The
contribution of the corresponding residues at the points z2 = ε2 and z3 = ε1 in the integrand of
Eq.(1) which is Eq.(4) reproduces term (5) on the right hand side of Eq.(1).

To obtain terms (6) and (7) on the right hand side of Eq.(1) we need to use the Barnes lemmas.
The first lemma has been published in 1908 in Ref. [17]

∮

C

dz Γ (λ1 + z) Γ (λ2 + z) Γ (λ3 − z) Γ (λ4 − z) =

Γ (λ1 + λ3) Γ (λ1 + λ4) Γ (λ2 + λ3) Γ (λ2 + λ4)

Γ (λ1 + λ2 + λ3 + λ4)
, (8)

in which λ1, λ2, λ3, λ4 are complex numbers, chosen in a such a way that on the right hand side of
Eq. (8) there are no singularities, while the second Barnes lemma has been published in 1910 in
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Ref. [18],

∮

C

dz
Γ (λ1 + z) Γ (λ2 + z) Γ (λ3 + z) Γ (λ4 − z) Γ (λ5 − z)

Γ (λ1 + λ2 + λ3 + λ4 + λ5 + z)
=

Γ (λ1 + λ4) Γ (λ2 + λ4) Γ (λ3 + λ4) Γ (λ1 + λ5) Γ (λ2 + λ5) Γ (λ3 + λ5)

Γ (λ1 + λ2 + λ4 + λ5) Γ (λ1 + λ3 + λ4 + λ5) Γ (λ2 + λ3 + λ4 + λ5)
(9)

in which λ1, λ2, λ3, λ4, λ5 are complex numbers, chosen in a such a way that on the right hand side
of Eq. (9) there are no singularities.

The integrand of Eq. (4) may be represented as

1

z3 − ε1

1

z2 − ε2
Γ (−z2) Γ (−z3) Γ (1 + z2 + z3 + ε3) Γ (−u+ ε1 + z2)×

×Γ (−v + ε2 + z3) Γ (1− z2 − z3 + u+ v) =

=
z2 + z2 + ε3

(z3 − ε1)(z2 − ε2)
Γ (−z2) Γ (−z3) Γ (z2 + z3 + ε3) Γ (−u+ ε1 + z2)×

×Γ (−v + ε2 + z3) Γ (1− z2 − z3 + u+ v) =

=

(

1

z3 − ε1
+

1

z2 − ε2

)

Γ (−z2) Γ (−z3) Γ (z2 + z3 + ε3) Γ (−u+ ε1 + z2)×

×Γ (−v + ε2 + z3) Γ (1− z2 − z3 + u+ v) , (10)

and this is a sum of two terms. We consider the second term,

∮

C

dz2
1

z2 − ε2
Γ (−z2) Γ (−u+ ε1 + z2)

∮

C

dz3Γ (−z3) Γ (z2 + z3 + ε3)×

Γ (−v + ε2 + z3) Γ (1− z2 − z3 + u+ v) ,

in which the integral over z3 may be calculated via the first Barnes lemma,

∮

C

dz2
1

z2 − ε2
Γ (−z2) Γ (−u+ ε1 + z2)

∮

C

dz3Γ (−z3) Γ (z2 + z3 + ε3)×

Γ (−v + ε2 + z3) Γ (1− z2 − z3 + u+ v) =
∮

C

dz2
1

z2 − ε2
Γ (−z2) Γ (−u+ ε1 + z2)×

×

Γ (z2 + ε3) Γ (−v + ε2) Γ (1 + ε3 + u+ v) Γ (1 + ε2 + u− z2)

Γ (1 + u− ε1)
=

=
Γ (−v + ε2) Γ (1 + ε3 + u+ v)

Γ (1 + u− ε1)

∮

C

dz2
1

z2 − ε2
Γ (z2 + ε3) Γ (−z2)×

×Γ (−u+ ε1 + z2) Γ (1 + ε2 + u− z2) .

Now we do reflection of the complex variable z2 of contour integration, z2 −→ −z2, and apply

4



the second Barnes lemma,

Γ (−v + ε2) Γ (1 + ε3 + u+ v)

Γ (1 + u− ε1)

∮

C

dz2
1

z2 − ε2
Γ (z2 + ε3) Γ (−z2)×

×Γ (−u+ ε1 + z2) Γ (1 + ε2 + u− z2) =

−

Γ (−v + ε2) Γ (1 + ε3 + u+ v)

Γ (1 + u− ε1)

∮

C

dz2
1

z2 + ε2
Γ (−z2 + ε3) Γ (z2)×

×Γ (−u+ ε1 − z2) Γ (1 + ε2 + u+ z2) =

−

Γ (−v + ε2) Γ (1 + ε3 + u+ v)

Γ (1 + u− ε1)

∮

C

dz2
Γ(z2 + ε2)

Γ(1 + z2 + ε2)
Γ (−z2 + ε3) Γ (z2)×

×Γ (−u+ ε1 − z2) Γ (1 + ε2 + u+ z2) =

−

Γ (−v + ε2) Γ (1 + ε3 + u+ v)

Γ (1 + u− ε1)
Γ(ε3)Γ(−ε1)Γ (1 + u− ε1)×

Γ (−u− ε3) Γ (−u+ ε1) Γ (1− ε3)

Γ (1 + ε2) Γ (−u)
=

1

ε1ε3

Γ(1− ε1)Γ(1 + ε3)Γ(1− ε3)

Γ (1 + ε2)
×

Γ (−v + ε2) Γ (1 + ε3 + u+ v) Γ (−u− ε3) Γ (−u+ ε1)

Γ (−u)
.

Taking into account the factor from Eq. (4), we obtain

Γ (−u) Γ (−v) Γ (1 + u+ v + ε3)

Γ (1 + ε1) Γ (1 + ε2) Γ2 (1 + ε3)
×

1

ε1ε3

Γ(1− ε1)Γ(1 + ε3)Γ(1 − ε3)

Γ (1 + ε2)
×

Γ (−v + ε2) Γ (1 + ε3 + u+ v) Γ (−u− ε3) Γ (−u+ ε1)

Γ (−u)
=

J

ε1ε3
D(u−ε1,v)[1− ε2].

The first term in Eq. (10) analogously reproduces term
J

ε2ε3
D(u,v−ε2)[1− ε1] on the right hand

side of Eq. (1). We need to comment that there is no double counting residues at the points
z2 = ε2 and z3 = ε1 because after the reflection these points become “left” poles, that is, they
come from Euler gamma functions with positive signs of the integration variable in the arguments
of gamma functions, while we calculate the “right” residues only, that is, the residues which come
from Euler gamma functions with negative signs of the integration variable in the arguments of
gamma functions.

3 Conclusion

We showed in Ref.[14] [Nuclear Physics B 876 (2013) 322] that structure of the chain of recurrent
relations for the Mellin-Barnes transforms of the analytically regularized UD functions guarantees
the finiteness of the double-uniform limit when removing the analytical regularization. The limit
was expressed in terms of a differential operator. This operator is the same for any smooth function
written instead of the MB transforms of the UD functions and has nothing to do with explicit form
of these MB transforms. The present paper shows that the first and the second Barnes lemmas
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permit to work out the contour integration only in a particular case of MB transforms of UD
functions to produce this chain of the recurrent relations. For a wider family of smooth functions
the Barnes lemmas should be replaced with another integration trick by using more complicate
contour of integration.
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