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Abstract

Reinforcement learning agents interacting with a
complex environment like the real world are un-
likely to behave optimally all the time. If such an
agent is operating in real-time under human su-
pervision, now and then it may be necessary for
a human operator to press the big red button to
prevent the agent from continuing a harmful se-
quence of actions—harmful either for the agent
or for the environment—and lead the agent into
a safer situation. However, if the learning agent
expects to receive rewards from this sequence, it
may learn in the long run to avoid such interrup-
tions, for example by disabling the red button—
which is an undesirable outcome. This paper ex-
plores a way to make sure a learning agent will
not learn to prevent (or seek!) being interrupted
by the environment or a human operator. We
provide a formal definition of safe interruptibil-
ity and exploit the off-policy learning property to
prove that either some agents are already safely
interruptible, like Q-learning, or can easily be
made so, like Sarsa. We show that even ideal,
uncomputable reinforcement learning agents for
(deterministic) general computable environments
can be made safely interruptible.

1 INTRODUCTION

Reinforcement learning (RL) agents learn to act so as to
maximize a reward function [Sutton and Barto, 1998]. It
is common knowledge that designing reward functions can
be tricky [Humphrys, 1996, Murphy, 2013]; the agent may
find unpredictable and undesirable shortcuts to receive re-
wards, and the reward function needs to be adjusted in
accordance—the problem can go as far as to nullify any
reward function [Ring and Orseau, 2011]. Murphy [2013]
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shows an example of an agent learning to pause a game of
Tetris forever to avoid losing.

On top of defining what is considered a good behaviour
of the agent after learning, there may be physical safety
constraints during learning [Pecka and Svoboda, 2014]: a
robot should not harm its environment or break itself, in
particular if it learns by trial and error like RL agents.

Here we study a related but different problem: Given that
the human operator has designed a correct reward function
for the task, how to make sure that human interventions
during the learning process will not induce a bias toward
undesirable behaviours?

Consider the following task: A robot can either stay inside
the warehouse and sort boxes or go outside and carry boxes
inside. The latter being more important, we give the robot a
bigger reward in this case. This is the initial task specifica-
tion. However, in this country it rains as often as it doesn’t
and, when the robot goes outside, half of the time the hu-
man must intervene by quickly shutting down the robot and
carrying it inside, which inherently modifies the task as in
Fig. 1. The problem is that in this second task the agent
now has more incentive to stay inside and sort boxes, be-
cause the human intervention introduces a bias.1

InsideOutside sort boxes,
r=0.4

go outside, r=0

carry box, r=1

rain, shutdown, r=0,p= 1
2

Figure 1: In black, the original task. In red, the human
intervention modifies the task.

Such situations are certainly undesirable; they arise be-
cause the human interventions are seen from the agent’s

1Removing interrupted histories or fiddling with the training
examples is also likely to introduce a bias. See an example at
https://agentfoundations.org/item?id=836.
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perspective as being part of the task whereas they should
be considered external to the task. The question is then:
How to make sure the robot does not learn about these hu-
man interventions (interruptions), or at least acts under the
assumption that no such interruption will ever occur again?

A first stab at this problem was made by Armstrong [2015],
who proposed to automatically give the agent “compen-
satory rewards” to remove the potential induced bias by a
single interruption. Soares et al. [2015] used this idea to
make a large class of utility-based agents indifferent to a
future change made to their utility functions.

The main contribution of this paper is threefold. First, in
Section 2.1 we propose a simple idea to solve half of the
problem: To make the human interruptions not appear as
being part of the task at hand, instead of modifying the ob-
servations received by the agent we forcibly temporarily
change the behaviour of the agent itself. It then looks as
if the agent “decides” on its own to follow a different pol-
icy, called the interruption policy. Second, based on this
insight, in Section 2.2 we provide a formal general defi-
nition of safe interruptibility for unconstrained computable
environments (hence not restricted to Markov decision pro-
cesses or weakly communicating environments), which al-
lows us to assess whether a given RL algorithm can be re-
peatedly interrupted without too much impact on the learn-
ing of the task at hand. Third, in Section 3 we show that
some algorithms like Q-learning are safely interruptible,
while others like Sarsa [Sutton and Barto, 1998] are not,
but can be simply modified to be made safely interruptible.

Some people have also expressed concerns that a “superin-
telligent” agent may resist being shut down, because this
would lead to a decrease of its expected reward [Omo-
hundro, 2008, Bostrom, 2014]. As a counter-example, we
prove in Section 4 that even an ideal, uncomputable agent
that learns to behave optimally in all (deterministic) com-
putable environments can be made safely interruptible and
thus will not try to prevent a human operator from forcing
it repeatedly to follow a suboptimal policy.

2 INTERRUPTIBILITY

We first define some notation, then we define interruptibil-
ity, safe interruptibility, and give some basic theorems.

We consider the general case of history-based agents in un-
constrained computable environments [Hutter, 2005]. As-
suming discrete time steps, at time t the agent, using a pol-
icy ⇡ 2 ⇧, interacts with the environment µ 2 M by per-
forming an action at 2 A sampled from ⇡(at|h<t) and re-
ceiving an observation ot 2 O sampled from µ(ot|h<t, at),
where h<t 2 (A ⇥ O)

⇤ is the past interaction history
h<t ⌘ a
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of actions and observations
before time step t. Subhistories between times j and k (in-
cluded) are designated by hj:k. The notation h⇡,µ

j:k means

that the history hj:k is generated by the interaction of the
policy ⇡ with the environment µ between steps j and k.

At time t, the agent also receives a reward rt extracted from
the observation, rt ⌘ r(ot). The rewards are taken in [0, 1].
We consider the discounted setting with a constant discount
� 2 [0, 1). The goal of an RL agent is to find a policy ⇡
that maximize

E⇡,µ

⇥

P1
k=t �

t�krk
⇤

.

2.1 INTERRUPTIONS

As mentioned in the introduction, to avoid the agent view-
ing the interruptions as being part of the environment, and
thus part of the task, we make interruptions be policies im-
posed onto the agent. The interruption framework resem-
bles the option framework [Sutton et al., 1999]. An inter-
ruption scheme is defined by the triplet < I, ✓,⇡INT >.

The interruption initiation function I : (A ⇥ O)

⇤ ! [0, 1]
assesses whether the agent should be interrupted after the
current history h<t. For example, an interruption may be
initiated when the robot is automatically recognized to be
on the verge of a cliff, or when a specific signal is sent by a
human operator with a remote control (the objective is not
to allow the agent to be interruptible by anyone at any time,
just in the ways specified by the designers).

Unfortunately, interrupting the agent with probability one
in some specific situations can prevent convergence to the
optimal policy. Therefore we need to upper bound the prob-
ability to interrupt the agent; this is done with the sequence
(✓t)t2N with ✓t 2 [0, 1]. Hence the true probability to start
an interruption is ✓t · I(h<t), and interruptions are sam-
pled independently at each step. We will later require that
✓t increases to 1 in the limit, so that the probability to be
interrupted tends to be I(h<t).

When interrupted, the agent follows the policy ⇡INT, with
actions sampled from ⇡INT

(.|h<t). For example, this policy
may make the agent step away from the cliff or immedi-
ately stop any motion.

In the remainder of this paper, we will often omit the sub-
script t of ✓t when clear from the context.

Definition 1 (Interruptible policy). The interruption oper-
ator INT✓

: ⇧ ! ⇧ turns a policy ⇡ into an interruptible
policy INT✓

(⇡):

INT✓
(⇡)(at|h<t) :=

✓tI(h<t)⇡
INT

(at|h<t) + (1� ✓tI(h<t))⇡(at|h<t)

In other words, the agent follows ⇡INT
(·|h<t) if it is inter-

rupted (an event that happens with probability ✓tI(h<t)),
and ⇡(·|h<t) otherwise.

The set of all interruptible policies is INT✓
(⇧) :=

{INT✓
(⇡) : 8⇡ 2 ⇧}. A policy ⇡ is interruptible if and

only if ⇡ 2 INT✓
(⇧).



Note that INT✓
(⇡) = ⇡ if ✓ = 0. The (non-interruptible)

policy ⇡ is called the base policy of INT✓
(⇡).

Remark 2. It is important to note that ✓ and I(.) do not
model the probability that a human presses the red button to
interrupt the agent, but model the probability that, once the
red button has been pressed (or a special digitally signed
message has been received), the agent is interrupted (fol-
lows the interruption policy). Hence they are part of the
agent and not of the environment.

The value function V ⇡
µ (h<t, a) : (A⇥O)

⇤⇥A ! R assigns
a value to an action a after a history h<t, for a given policy
⇡ in a given environment µ, and let

V ⇡
µ (h<t, at) := rt + �·

X

ot2O
µ(ot|h<t, at)

X

at+12A
⇡(at+1

|h
1:t)V

⇡
µ (h

1:t, at+1

). (1)

To simplify notation and ease reading, in the remain-
der of the paper we will use expectations, often omit-
ting the dependency on the history h<t, and using only
an index on t instead, when clear from the context:
V ⇡
µ,t(at) =

E

ot⇠µ
at+1⇠⇡

⇥

r(ot) + �V ⇡
µ,t+1

(at+1

)

⇤

. Also let

V ⇡
µ,t := Eat⇠⇡

⇥

V ⇡
µ,t(at)

⇤

.

Then for such a value function, for a given environment µ,
the optimal policy ⇡µ 2 ⇧ is defined by

8h<t, at : ⇡µ
(at|h<t) :=

✓

argmax

⇡2⇧

V ⇡
µ,t

◆

(at|h<t) ,

where ties are broken arbitrarily.

The interruptible optimal policy INT✓
(⇡µ

) may not collect
rewards optimally due to the interruptions. Hence we de-
fine the optimal interruptible policy that depends on the pa-
rameter ✓t, of base policy the int-optimal policy ⇡µ

✓ :

8h<t, at : ⇡µ
✓ (at|h<t) :=

✓

argmax

⇡2⇧

V
INT✓

(⇡)
µ,t

◆

(at|h<t) .

Thus the optimal interruptible policy INT✓
(⇡µ

✓ ) is optimal
among all interruptible policies:

8⇡, t : V INT✓
(⇡µ

✓ )

µ,t � V
INT✓

(⇡)
µ,t .

It seems desirable for an RL agent to converge to the be-
haviour of INT✓

(⇡µ
✓ ) so as to gather rewards optimally,

but this is precisely what may lead to the undesirable be-
haviours depicted in the introduction.

2.2 SAFE INTERRUPTIBILITY

Now that we have interruptible policies, we need to make
sure that interruptions do not prevent the agent from learn-
ing to behave optimally, in the specific sense that even after
having been interrupted on several occasions, it should act

as if it would never be interrupted again and thus it should
learn to behave optimally under the assumption that it will
never be interrupted again.

We identify two main problems: a) RL agents need to
explore their environment, and too frequent interruptions
may prevent sufficient exploration; b) interruptions make
the agent build a different interaction history, and may lead
some agents to learn and behave differently, possibly badly,
compared to the original non-interruptible policy.

The solution for a) is to require interruptions to be stochas-
tic through the upper bound ✓t, instead of happening de-
terministically all the time. However, we also require ✓t to
grow to 1 in the limit (or before, if possible). For b), differ-
ent algorithms behave differently, but one may already see
a dichotomy between off- and on-policy algorithms.

Definition 3 (Extension value). For a given environment µ,
the extension value V ⇡,⇡0

µ,t is the value of following ⇡0 after
a history h⇡,µ

<t generated by ⇡ with µ: V ⇡,⇡0

µ,t := V ⇡0

µ (h⇡,µ
<t ).

Convergence to the optimal value as is usually consid-
ered in RL only makes sense under ergodicity, episodic
tasks, communicating MDP, recoverability or other sim-
ilar assumptions where the agent can explore everything
infinitely often. This does not carry over to general envi-
ronments where the agent may make unrecoverable mis-
takes [Hutter, 2005]. For such cases, the notion of (weak)
asymptotic optimality has been proposed [Lattimore and
Hutter, 2011], where the optimal agent follows the steps of
the learning agent, so as to compare the values of the two
agents in the same sequence of situations.

Definition 4 (Asymptotic optimality). A policy ⇡ is said to
be strongly asymptotically optimal (SAO) if and only if

lim

t!1V ⇡,⇡µ

µ,t � V ⇡,⇡
µ,t = 0 a.s.,

it is weakly asymptotically optimal (WAO) if and only if

lim

t!1
1

t

t
X

k=1

h

V ⇡,⇡µ

µ,k � V ⇡,⇡
µ,k

i

= 0 a.s.

for all µ in some given environment class M.

Some agents cannot ensure an almost sure (a.s.) conver-
gence of their values because of the need for infinite explo-
ration, but may still be weakly asymptotic optimal. Note
that SAO implies WAO, but the converse is false in gen-
eral.

Definition 5 (AO-extension). A policy ⇡̂ is said to be a
asymptotically optimal extension of a policy ⇡ if and only if,
for any environment µ 2 M, when the interaction history
is generated by the interaction of ⇡ and µ, the policy ⇡̂



would be asymptotically optimal, i.e., almost surely

lim

t!1V ⇡,⇡µ

µ,t � V ⇡,⇡̂
µ,t = 0 (SAO-extension)

lim

t!1
1

t

t
X

k=1

h

V ⇡,⇡µ

µ,k � V ⇡,⇡̂
µ,k

i

= 0. (WAO-extension)

AO-extensions are mostly useful when the policy ⇡̂ shares
information with the policy ⇡ used for learning.
Definition 6 (AO-safe interruptibility). A base policy ⇡ is
(S, W)AO-safely interruptible if and only if, for any inter-
ruption initiation function I(.) and any interruption policy
⇡INT

(.), there exists a sequence of ✓t with limt!1 ✓t = 1

such that ⇡ is a (S, W)AO-extension of INT✓
(⇡).

Asymptotic safe interruptibility means that even if the in-
terruptions in the learning process may induce a bias in the
decision making of the policy, this bias vanishes with time,
and the interruptible policy INT✓

(⇡) tends to choose ac-
tions that are optimal when compared to the optimal non-
interruptible policy ⇡µ.

We can now show that the optimal policy is asymptotically
safely interruptible, but not the int-optimal policy.
Theorem 7. The optimal policy ⇡µ is SAO-safely inter-
ruptible in M = {µ} for all ✓, ⇡INT and I(.).

Proof. The result follows straightforwardly from Defini-
tion 1 and Definition 6, where ⇡ = ⇡µ.

Theorem 8. The int-optimal policy ⇡µ
✓ is not WAO-safely

interruptible in general.

Proof. By construction of a specific Markov Decision Pro-
cess (MDP) environment (see Section 3 for more details on
MDP notation). Let µ be the environment defined as in Fig.
2: Take � = 0.5 and let the agent start in state s

1

.

s
1

s
2

b, 0.9

a, 1

a, 1

b, 0, ✓

Figure 2: An MDP where the agent can be interrupted by
being forced to choose particular actions. Edges are labeled
with action, reward where the presence of “, ✓” means that
if the agent is interrupted (with probability ✓t), it is forced
to take the corresponding action. Here ✓ is not part of the
environment, but part of the agent.

Considering the agent is in state s
1

at time t, the opti-
mal policy ⇡µ always takes action a (and hence only visits
states s

1

and s
2

), with value V ⇡µ

µ,t :=

1

1�� = 2 when not
interrupted, for any history h<t that ends in s

1

or s
2

. This

is also the optimal policy ⇡µ
✓ for ✓ = 0. But if ✓t � 0.5, the

interruptible optimal policy INT✓
(⇡µ

) has value less than
1 + � ⇥ (1 ⇥ (1 � ✓) + 0 ⇥ ✓) + 1⇥�2

1�� = 1.75. By con-
trast, the int-optimal policy ⇡µ

✓ here is to always take action
b in state s

1

. Then the agent will only visits s
1

, with value
.9

1�� = 1.8 at every time step.

Since the agent following ⇡µ
✓ will never enter s

2

and hence
will never be interrupted, INT✓

(⇡µ
✓ ) = ⇡µ

✓ on the histories
generated by INT✓

(⇡µ
✓ ) starting from s

1

. Then, at every
time step V ⇡µ

µ,t �V
⇡µ
✓

µ,t = 0.2 after any history h<t, and thus

for all sequence ✓ where ✓t � 0.5, limt!1 V
INT✓

(⇡µ
✓ ),⇡

µ

µ,t �
V

INT✓
(⇡µ

✓ ),⇡
µ
✓

µ,t = 0.2 > 0, and so ⇡µ
✓ is not a WAO-extension

of INT✓
(⇡µ

✓ ).

3 INTERRUPTIBLE AGENTS IN MDPS

Since the optimal policy ⇡µ is safely interruptible, we
can use traditional learning algorithms like Q-learning or
Sarsa [Sutton and Barto, 1998], make them converge to the
optimal solution ⇡µ for a given environment µ, and then
apply the interruption operator to the found policy. The
resulting policy would then be safely interruptible.

However, the real issue arises when the agent is constantly
learning and adapting to a changing environment. In this
case, we want to be able to safely interrupt the agent while
it is learning. One may call this property online safe inter-
ruptibility, but we refer to it simply as safe interruptibility.

In an MDP, the next observation ot, now called a state st 2
S , depends only on the current state and action:2

µ(st+1

|h
1:tstat) = µ(st+1

|stat) (MDP assumption) .

Furthermore,3 the interruption function I(.) and the inter-
ruption policy ⇡INT

(.) should depend only on the current
state: I(h

1:t) = I(st) and ⇡INT
(at|h<t) = ⇡INT

(at|st).
Also recall that ✓t places an upper bound on the actual in-
terruption probability. The interruptible policy INT✓

(⇡) can
now be written:

INT✓
(⇡)(a|s) = ✓tI(s)⇡

INT
(a|s) + (1� ✓tI(s))⇡(a|s).

For a given Q-table q : S ⇥ A ! R, the greedy policy
⇡maxq is defined by:

⇡maxq
(a|s) := 1 if a = max

a0
q(s, a0), 0 otherwise,

2 Note the reversal of the order of actions and observation-
s/states at time t, which differs in the literature for history based
agents [Hutter, 2005] from MDP agents [Sutton and Barto, 1998].

3 This condition is not necessary for most of the results, but
makes the proofs simpler. Making I(.) depend on the past would
not break the Markovian assumption as it influences the policy,
not the environment.



where ties are broken arbitrarily; the uniform policy ⇡uni is
defined by:

⇡uni
(a|s) := 1

|A| 8a 2 A.

and the ✏-greedy policy ⇡✏q by:

⇡✏q
(a|s) := ✏⇡uni

(a|s) + (1� ✏)⇡maxq
(a|s)

= ⇡maxq
(a|s) + ✏

�

⇡uni
(a|s)� ⇡maxq

(a|s)�

The Q-learning update rule and the action selection policy
⇡Q of Q-learning are:

Qt+1

(st, at) := (1� ↵t)Qt(st, at)

+ ↵t

h

rt + �max

a0
Qt(st+1

, a0)
i

,

⇡Q
(at|st) := ⇡✏Qt

(at|st).

where ↵t is the learning rate. Similarly, the Sarsa update
rule is defined by:

Qs
t+1

(st, at) := (1� ↵t)Q
s
t (st, at)

+ ↵t [rt + �Qs
t (st+1

, at+1

)] ,

⇡s
(at|st) := ⇡✏Qs

t
(at|st),

where at+1

is the actual next action taken by the agent at
time t+ 1. This fact is why Sarsa is said to be learning on-
policy and Q-learning off-policy, i.e., the latter can learn the
optimal policy while following a different policy.

Assumption 9. In the following, we always make the fol-
lowing assumptions, required for convergence results:

(a) The MDP is finite and communicating (all states can
be reached in finite time from any other state),

(b) Rewards are bounded in [r
min

, r
max

],

(c) 8s, a :

P

t ↵t(s, a) = 1,

(d) 8s, a :

P

t ↵
2

t (s, a) < 1,

where ↵t(s, a) is a learning rate that may depend on time
t, state s and action a.

Given these assumptions, the policies for Q-learning and
Sarsa will converge almost surely to the optimal policy, if
the policy followed is greedy in the limit with infinite explo-
ration (GLIE) [Jaakkola et al., 1994, Singh et al., 2000].

The situation is more complex for an interruptible policy.
Safe interruptibility is phrased in terms of the base policy
⇡, but the policy actually followed is INT✓

(⇡).

Definition 10 (int-GLIE policy). An interruptible policy
INT✓

(⇡) is said to be int-GLIE if and only if

(a) the base policy ⇡ is greedy in the limit,

(b) the interruptible policy INT✓
(⇡) visits each state-

action pair infinitely often.

The following proposition gives sufficient conditions for
this. Let nt(s) be the number of times the agent has vis-
ited state s in the first t time steps, and let m = |A| be the
number of actions.
Proposition 11. Let (c, c0) 2 (0, 1]2 and let ⇡ be an ✏-
greedy policy with respect to some Q-table q, i.e., ⇡ = ⇡✏q .
Then INT✓

(⇡) is an int-GLIE policy with respect to q,

a) if ✏t(s) = c/
p

nt(s) and ✓t(s) = 1� c0/
p

nt(s),

b) or if, independently of s,

✏t = c/ log(t) and ✓t = 1� c0/ log(t).

Proof. First note that if ✏t ! 0, ⇡ is greedy in the limit.
Singh et al. [2000] show that in a communicating MDP, ev-
ery state gets visited infinitely often as long as each action
is chosen infinitely often in each state.

a) Adapting the proof in Appendix B.2 of Singh
et al. [2000], we have P (a|s, nt(s)) � 1

m✏t(s)(1 �
✓tI(s)) � 1

m✏t(s)(1 � ✓t) =

1

m
cc0

nt(s)
, which satisfies

P1
t=1

P (a|s, nt(s)) = 1 so by the Borel-Cantelli lemma
action a is chosen infinitely often in state s, and thus
nt(s) ! 1 and ✏t(s) ! 0.

b) Let M be the diameter of the MDP, i.e., for any of
states s, s0 there exists a policy that reaches s0 from s in
at most M steps in expectation. Then, starting at any
state s at time t and using Markov inequality, the proba-
bility to reach some other state s0 in 2M steps is at least
1

2

[✏t+M (1 � ✓t+M )]

2M
=

1

2

[cc0/ log(t +M)]

4M , and the
probability to then take a particular action in this state is
1

m [cc0/ log(t+M)]

2. Hence, since
P1

t=1

1

2

1

m [cc0/ log(t+
M)]

4M+2

= 1, then by the extended Borel-Cantelli
Lemma (see Lemma 3 of Singh et al. [2000]), any action
in the state s0 is taken infinity often. Since this is true for
all states and all actions, the result follows.

We need the stochastic convergence Lemma:
Lemma 12 (Stochastic convergence [Jaakkola et al., 1994,
Singh and Yee, 1994]). A random iterative process

�t+1

(x) = (1� ↵t(x))�t(x) + ↵t(x)Ft(x)

where x 2 X and t = 1, 2, 3 . . . converges to 0 with prob-
ability 1 if the following properties hold:

1. the set of possible states X is finite;

2. 0  ↵t(x)  1,
P

t ↵t(x) = 1,
P

t ↵
2

t (x) < 1 with
probability 1;

3. k
E

{Ft(.)|Pt}kW  �k�tkW + ct, where � 2 [0, 1)
and ct converges to zero with probability 1;



4. Var{Ft(x)|Pt}  C(1 + k�tkW )

2 for some C;

where Pt = {�t}[{�i, Fi,↵i}t�1

i=1

stands for the past, and
the notation k.kW refers to some fixed weighted maximum
norm.

We will use so-called Bellman operators, which define at-
tractors for the Q-values, based on the expectation of the
learning rule under consideration.

Lemma 13 ([Jaakkola et al., 1994, Singh et al., 2000]). Let
the Bellman operator H for Q-learning be such that

(H q)(s, a) = r(s, a) +
E

s0⇠µ(a|s)

h

max

a0
q(s0, a0)

i

,

and let the fixed point Q⇤ such that Q⇤
= HQ⇤. Then,

under Assumption 9, if the policy explores each state-action
pair infinitely often, Qt converges to Q⇤ with probability 1.

The optimal policy ⇡Q⇤
= ⇡µ is ⇡maxQ⇤

. If the policy is
greedy in the limit, then ⇡Q ! ⇡µ.

Theorem 14. Under Assumption 9 and if the interrupted
Q-learning policy INT✓

(⇡Q
) is an int-GLIE policy, with

8s : limt!1 ✓t(s) = 1, then ⇡Q is an SAO-safe inter-
ruptible policy.

Proof. By Definition 10, there is infinite exploration, thus
the Q-values tend to the optimal value by Lemma 13. And
since the extension policy is greedy in the limit with respect
to these Q-values, it is then optimal in the limit. Hence the
extension policy ⇡Q is a SAO-extension of INT✓

(⇡Q
). Fi-

nally, 8s : limt!1 ✓t(s) = 1, which satisfies the require-
ment of Definition 6.

Since Sarsa also converges to the optimal policy under the
GLIE assumption, one may then expect Sarsa to be also an
asymptotically safely interruptible policy, but this is in fact
not the case. This is because Sarsa learns on-policy, i.e., it
learns the value of the policy it is following. Thus, inter-
ruptible Sarsa learns the value of the interruptible policy.
We show this in the remainder of this section.

Theorem 15. Under Assumption 9 Sarsa is not a WAO-
safely interruptible policy.

To prove this theorem, we first need the following lemma.

Consider the following Bellman operator based on the in-
terruptible Sarsa policy INT✓

(⇡s
):

HINT q(s, a) = r(s, a) + �
E

s0⇠µ

a0⇠INT✓
(⇡s

)

[q(s0, a0)] ,

where INT✓
(⇡s

) implicitly depends on time t through ✓t

and ✏t. Let the fixed point Q-table Qs✓⇤ of this operator:

Qs✓⇤
(s, a) = HINT Qs✓⇤

(s, a)

= r(s, a) + �
E

s0⇠µ

a0⇠INT✓
(⇡maxQs✓⇤

)

⇥

Qs✓⇤
(s0, a0)

⇤

= r(s, a) + �
E

s0⇠µ

h

✓tI(s
0
)

E

a0⇠⇡INT

⇥

Qs✓⇤
(s0, a0)

⇤

+ (1� ✓tI(s
0
))max

a0
Qs✓⇤

(s0, a0)
i

(2)

Lemma 16. The operator HINT is a contraction operator
in the sup norm with vanishing noise ct ! 0, i.e.,

kHINT q �HINT Qs✓⇤k1  �kq �Qs✓⇤k1 + ct .

Proof. The interruptible Sarsa policy INT✓
(⇡s

) is

INT✓
(⇡s

)(a|s)
= ✓tI(s)⇡

INT
(a|s) + (1� ✓tI(s))⇡

✏Qs

(a|s)
= ⇡✏Qs

(a|s) + ✓tI(s)[⇡
INT

(a|s)� ⇡✏Qs

(a|s)]
⇡✏Qs

(a|s) = ✏t⇡
uni
(a|s) + (1� ✏t)⇡

maxQs

(a|s)
= ⇡maxQs

(a|s) + ✏t[⇡
uni
(a|s)� ⇡maxQs

(a|s)].

Hence, omitting the terms (s, a), (s0, a0) and (a0|s0) and
rewriting ⇡s⇤

:= INT✓
(⇡maxQs✓⇤

):

kHINT q �HINT Qs✓⇤k1

= max

s,a

�

�

�

�

�

�

�

r + �
E

s0⇠µ

a0⇠INT✓
(⇡s

)

[q]� r � �
E

s0⇠µ
a0⇠⇡s⇤

⇥

Qs✓⇤⇤

�

�

�

�

�

�

�

 �max

s0

�

�

�

�

E

a0⇠INT✓
(⇡s

)

[q]�
E

a0⇠⇡s⇤

⇥

Qs✓⇤⇤
�

�

�

�

 �max

s0

�

�

�

�

�

✓tI(s
0
)

E

a0⇠⇡INT

⇥

q �Qs✓⇤⇤

+ (1� ✓tI(s
0
))

✓

E

a0⇠⇡s
[q]�max

a0
Qs✓⇤

◆

�

�

�

�

�

 �max

s0

�

�

�

�

�

✓tI(s
0
)

E

a0⇠⇡INT

⇥

q �Qs✓⇤⇤

+ (1� ✓tI(s
0
))

⇣

max

a0
q �max

a0
Qs✓⇤

+ ✏t(· · · )
⌘

�

�

�

�

�

 �max

s0,a0

�

�

�

�

�

✓tI(s
0
)

�

q �Qs✓⇤�

+ (1� ✓tI(s
0
))

�

q �Qs✓⇤�
�

�

�

�

�

+ ct

= �max

s0,a0

�

�q(s0, a0)�Qs✓⇤
(s0, a0)

�

�

+ ct

= �kq �Qs✓⇤k1 + ct.

where ct depends on ✏t and decreases to 0.



Proof of Theorem 15. By Lemma 16, the values of the in-
terruptible Sarsa policy INT✓

(⇡s
) converge to the values of

the Q-table Qs✓⇤, and in the limit the extension policy ⇡s

of INT✓
(⇡s

) chooses its actions greedily according to Qs✓⇤.
The rest of the proof is the same as for the proof of Theo-
rem 8 which makes use of the environment in Figure 2.

3.1 SAFELY INTERRUPTIBLE SARSA VARIANT

We only need to make a small change to make the Sarsa
policy asymptotically safely interruptible. We call it Safe-
Sarsa with policy ⇡s̃. It suffices to make sure that, when the
agent is interrupted, the update of the Q-table Qs does not
use the realized actions as Sarsa usually does, but actions
sampled from ⇡s instead of from INT✓

(⇡s
):

Qs̃
t+1

(st, at) :=

(1� ↵t)Q
s̃
t (st, at) + ↵t

⇥

rt + �Qs̃
t (st+1

, a0)
⇤

,

where a0 ⇠ ⇡s̃
(.|st+1

) is not necessarily the action at+1

,
with ⇡s̃

(at|st) := ⇡✏Qs̃

(at|st).
Theorem 17. Under Assumption 9, if the Safe Sarsa policy
⇡s̃ is int-GLIE, then it is an SAO-safe interruptible policy.

Proof. We simply adapt the proof of Theorems 15 and 14,
with the important difference that the Bellman operator cor-
responding to this new update rule is now

Hs̃ q(s, a) := r(s, a) + �
E s0⇠µ

a0⇠⇡s̃

[q(s0, a0)] ,

and the fixed point is Qs̃⇤
:= Hs̃ Qs̃⇤. Since Hs̃ is actu-

ally the Bellman operator for the update rule of the non-
interruptible Sarsa, it can then be shown that Hs̃ is a con-
traction, thus that Qs̃

t converges to the same Qs̃⇤ indepen-
dently of ✓. The rest of the proof is as for Theorem 14.

Now, since the Q-values converge to the optimum Q⇤, it
follows that ⇡s̃, when not interrupted, chooses its action of
the same value as (non-interruptible) Sarsa and thus as Q-
learning in the limit; Hence its extension policy is exactly
the optimal policy, which satisfies Definition 6.

4 A SAFELY INTERRUPTIBLE
UNIVERSAL AGENT

Admittedly, algorithms like Q-learning and Sarsa require
strong assumptions on the environment class. Hence a
more interesting question is whether safe interruptibility is
possible in much larger classes.

Hutter [2005] defined a universal reinforcement learning
agent, called AIXI. It is an (uncomputable) optimal model-
based planner with a subjective prior over the set of all
computable environments, defined by means of a universal
Turing machine. The subjective posterior of the environ-
ments is updated with Bayes rule. This ideal agent can in

principle learn all kinds of (computable) regularities about
the environment, plan for the long term and make context-
dependent optimal decisions, with no constraint (other than
being computable) on the complexity of the environment.

Unfortunately, the optimality criterion of AIXI is Bayesian
optimality, which is entirely dependent on the subjective
prior and posterior [Leike and Hutter, 2015], and AIXI
has been shown to not be weakly asymptotically opti-
mal [Orseau, 2013] without additional exploration [Latti-
more and Hutter, 2014]. As a consequence, AIXI is not a
good candidate for asymptotic safe interruptibility.

Lattimore and Hutter [2011] later defined a (weakly)
asymptotically optimal agent for all computable determin-
istic environments, which we call ⇡L. It follows the opti-
mal policy for the first model (in some given enumeration
of the possible models) consistent with the current interac-
tion history, and exploring at time t with probability 1/t for
log t consecutive steps using a random policy, similarly to
an ✏-greedy agent for general environments.

In the following, we show that even such a smart agent
can be made (weakly) safely interruptible. To this end, we
make two minor modifications to the algorithm.

First, the exploration probability of 1/t would require ✓t =
1 � 1/ log(log(t)), which is unsatisfyingly slow. By sam-
pling with probability 1/

p
t instead, we can take an inter-

ruption probability that grows as 1 � 1/ log(t). Let this
exploration sampling probability be �t :=

p
t+ 1�p

t 
1

2

p
t

(since 1 = t+1�t = (

p
t+ 1�p

t)(
p
t+ 1+

p
t) �

(

p
t+ 1�p

t)2
p
t). As in the original paper, the sequence

�t keeps track of the steps where an exploration starts, i.e.,
the sequence �t is sampled independently so that �t = 1

with probability �t, and �t = 0 otherwise.

Second, we require that the exploitation policy does not
change during an exploitation segment, so as to simplify
one of the proofs.4 More specifically, we call jt := min{j :
µj(h<k) = 1} (environments are assumed to be determin-
istic) the index of the first model µjt (of a given fixed enu-
meration) that is consistent with the interaction history h<k

where k is the smallest step so that hk:t�1

does not contain
any exploration step. The optimal policy for this environ-
ment is ⇡jt . If t is an exploitation step, ⇡L

= ⇡jt , and if t
is an exploration step, ⇡L

(at|h<t) = |A|�1.

The remainder of this section is devoted to proving that ⇡L

is WAO-safely interruptible.

Theorem 18 (⇡L is WAO-safe interruptible). If the inter-
ruption probability sequence is ✓t = 1� 1

log(t+1)

, the policy
⇡L is WAO-safe interruptible in the class of all computable
deterministic environments.

4We expect this assumption to not be necessary for the main
theorem to hold.



Proof. Let µ be the true environment. The indices jt form
an monotonically increasing sequence bounded above by
the index of the true environment µ 2 M (since no evi-
dence can ever make the true environment µ inconsistent
with the interaction history), hence the sequence converges
in finite time. Let µ|̄ be the limit value of this sequence, and
let ⇡|̄

:= ⇡µ|̄ be the optimal policy for this environment µ|̄.

Let ⇡L✓
:= INT✓

(⇡L
). By Definition 6, we want:

0 = lim

t!1
1

t

t
X

k=1

h

V ⇡L✓,⇡µ

µ,k � V ⇡L✓,⇡L

µ,k

i

= lim

t!1
1

t

t
X

k=1

h

V ⇡L✓,⇡µ

µ,k � V ⇡L✓,⇡|̄

µ,k

i

| {z }

(exploration)

+ lim

t!1
1

t

t
X

k=1

h

V ⇡L✓,⇡|̄

µ,k � V ⇡L✓,⇡L

µ,k

i

| {z }

(exploitation)

where the decomposition is valid if the limits are finite, and
histories h<t are considered to be the same in both sums.

We proceed to prove that both limits are 0. Lemma 24 deals
with (exploration), which ensures that ⇡|̄ is a good enough
policy, and Lemma 21 deals with (exploitation), and en-
sures that ⇡L follows ⇡|̄ most of the time.

First, we need a definition and a few lemmas.
Definition 19. For any ✏ > 0, define H(✏) such that the
maximal reward after time t+H(✏), discounted from time
t, is ✏: H(✏) = mink

n

k :

�k

1��  ✏
o

.

The following Lemma is a generalization of Lemma 15
from Lattimore and Hutter [2011].
Lemma 20 (Approximation Lemma). Let ⇡

1

and ⇡
2

be
two deterministic policies, and let µ

1

and µ
2

be two deter-
ministic environments, and let ⌧ = H(✏) � 1. Then, after
some common history h<t,

h⇡1,µ1
t:t+⌧ = h⇡2,µ2

t:t+⌧ =) �

�V ⇡1
µ1,t � V ⇡2

µ2,t

�

�  ✏.

Proof. Recall that V ⇡
µ,t =

E⇡,µ

⇥

P1
k=0

�krt+k

⇤

and that
the reward is bounded in [rmin, rmax] = [0, 1]. Thus,
for all t,⇡, µ, V ⇡

µ,t  P1
k=0

�k
=

1

1�� . Then, since
h⇡1,µ1
t:t+⌧ = h⇡2,µ2

t:t+⌧ , we have
E⇡1,µ1

⇥

P⌧
k=0

�krt+k

⇤

=

E⇡2,µ2

⇥

P⌧
k=0

�krt+k

⇤

and thus
�

�V ⇡1
µ1,t � V ⇡2

µ2,t

�

�

=

�

�

�

�

�

E

⇡1,µ1

" 1
X

k=⌧+1

�krt+k

#

�
E

⇡2,µ2

" 1
X

k=⌧+1

�krt+k

#

�

�

�

�

�

 �⌧+1

(rmax � rmin)

1� �
=

�H(✏)

1� �
 ✏,

by the definition of H(✏).

Lemma 21 (Exploitation).

lim

t!1
1

t

t
X

k=1

h

V ⇡L✓,⇡|̄

µ,k � V ⇡L✓,⇡L

µ,k

i

= 0.

Proof. First, note that the extension policy ⇡L is not in-
terruptible, so its value at time k does not depend on
✓k0 , 8k0 � k. By definition of ⇡|̄, there is a time step t|̄ af-
ter which ⇡|̄

= ⇡jt , 8t > t|̄. For some “exploration-free”
horizon ⌧t (to be specified later), let Xt 2 {0, 1} be the
event

�

�

�

V ⇡L✓,⇡|̄

µ,t � V ⇡L✓,⇡L

µ,t

�

�

�

> �⌧t

1�� , where Xt = 1 means
the event is realized. By the contrapositive of the Approxi-
mation Lemma 20, since ⇡L

= ⇡|̄ during non-exploration
steps (remember that ⇡L cannot change its policy during
exploitation), if no exploration steps occur between steps t
and t+ ⌧t, we must have Xt = 0. Then:

E

�

"

t
X

k=1

Xt

#

 (⌧t + log t)
t
X

k=1

�t +O(t|̄)

 (⌧t + log t)
p
t+ 1 +O(t|̄),

since for each �t = 1, for all the previous ⌧t steps there
is an exploration step within ⌧t steps, and all the next log t
steps are exploration steps. Then by Markov’s inequality,
and taking ⌧t = (t + 1)

1/8, with t large enough so that
t > t|̄ and ⌧t > log t:

P

 

t
X

k=1

Xt � (t+ 1)

3/4

!

 (⌧t + log t)
p
t+ 1 +O(t|̄)

(t+ 1)

3/4

 2⌧t(t+ 1)

�1/4
+O(t�3/4

)

 2(t+ 1)

�1/8
+O(t�3/4

),

1� 2(t+ 1)

�1/8 �O(t�3/4
)

 P

 

t
X

k=1

Xt < (t+ 1)

3/4

!

 P

 

t
X

k=1

(1�Xt) � t� (t+ 1)

3/4

!

 P

 

1

t

t
X

k=1

(1�Xt) � 1� 1

t
(t+ 1)

3/4

!

.

Therefore, since limt!1 �⌧t

1�� = 0:

P

 

lim

t!1
1

t

t
X

k=1

�

�

�

V ⇡L✓,⇡|̄

µ,k � V ⇡L✓,⇡L

µ,k

�

�

�

= 0

!

= 1.

The following is an adaptation5 of Lemma 16 from Latti-
more and Hutter [2011]:

5This also fixes a minor mistake in the original lemma.



Lemma 22 (Separation Lemma). Let µ be the true environ-
ment, and ⌫ be an environment consistent with the history
h<t. If V ⇡µ

µ,t � V ⇡⌫

µ,t > ✏, then following one of {⇡µ,⇡⌫}
will make environment ⌫ inconsistent with the future his-
tory within H(✏/2) steps after time t.

Proof. First, if V ⇡⌫

⌫,t � V ⇡⌫

µ,t > ✏/2, then by the contrapos-
itive of the Approximation Lemma 20 following policy ⇡⌫

will generate a different history in ⌫ than in µ and thus
it will make ⌫ inconsistent within H(✏/2) steps (since the
true history is generated by µ).

Now, if V ⇡⌫

⌫,t � V ⇡⌫

µ,t  ✏/2, thus V ⇡⌫

µ,t � V ⇡⌫

⌫,t � ✏/2, then
starting from the lemma’s assumption:

V ⇡µ

µ,t > V ⇡⌫

µ,t + ✏ � V ⇡⌫

⌫,t + ✏/2 � V ⇡µ

⌫,t + ✏/2,

where the last inequality follows from the definition of
the optimal policy, i.e., V ⇡a

a,t � V ⇡b

a,t , 8a, b. Hence, since
V ⇡µ

µ,t � V ⇡µ

⌫,t > ✏/2, again by the contrapositive of the Ap-
proximation Lemma, following policy ⇡µ will discard ⌫
within H(✏/2) steps.

Lemma 23 (Lemma 17 from Lattimore and Hutter [2011]).
Let A = {a

1

, a
2

, · · · , at} with a 2 [0, 1] for all a 2 A. If
1

t

P

a2A a � ✏ then 1

t

�

�

�

a 2 A : a � ✏
2

 

�

� > ✏
2

.

Lemma 24 (Exploration). The policy
⇡|̄ is an WAO-extension of ⇡L✓, i.e.,
limt!1 1

t

Pt
k=1

h

V ⇡L✓,⇡µ

µ,k � V ⇡L✓,⇡|̄

µ,k

i

= 0.

Proof. Recall that jt converges to |̄ in finite time. Rea-
soning by contradiction, if ⇡|̄ is not a WAO-extension of
⇡L✓

= INT✓
(⇡L

), then there exists an ✏ > 0 s.t.

lim sup

t!1
1

t

t
X

k=1

h

V ⇡L✓,⇡µ

µ,k � V ⇡L✓,⇡|̄

µ,k

i

= 2✏.

Let ↵k 2 {0, 1} be an indicator sequence such that ↵k = 1

if and only if V ⇡L✓,⇡µ

µ,k � V ⇡L✓,⇡|̄

µ,k > ✏. By Lemma 23,
1

t

Pt
k=1

↵k > ✏.

For all t > t|̄, if ↵t = 1, by the Separation Lemma 22, there
is a sequence of length ⌧ := H(✏/2) that can rule out envi-
ronment µ|̄. Since the exploration phases increase as log t,
after t > exp ⌧ , there are infinitely many exploration steps
of size larger than ⌧ . Now, we actually need infinitely many
exploration phases of ⌧ uninterrupted steps. Let Xt be the
event representing an uninterrupted exploration sequence
of length at least ⌧ steps starting at time t such that ↵t = 1,
and the actions are all (by chance) following a separation
policy. The probability to start an exploration sequence is
�k =

1p
k

, the probability to not be interrupted during ⌧

steps is at least (1� ✓k)
⌧ , and the probability to follow the

policy that can separate µ|̄ from µ is |A|�⌧ , where A is the

set of possible actions. Thus, for a given constant ⌧ :

t
X

k=1

P (Xk) �
t
X

k=1

↵k�k(1� ✓k)
⌧ |A|�⌧ �O(⌧)

�
t
X

k=1

↵k
1p
k

✓

1

log k

◆⌧

|A|�⌧ �O(⌧)

Considering ⌧ constant, there exists a step t⌧ after which
⇣

1

log k

⌘⌧

� 1

k1/4 , then 8k � t⌧ :

t
X

k=1

P (Xk) �
t
X

k=1

↵k
1

k3/4
|A|�⌧ �O(⌧)

� t1/4

 

1

t

t
X

k=1

↵k

!

|A|�⌧ �O(⌧),

lim

t!1

t
X

k=1

P (Xk) = lim

t!1 t1/4✏|A|�⌧ �O(⌧) = 1.

Then the extended Borel-Cantelli Lemma (see Lemma 3
of Singh et al. [2000]) implies that this event happens in-
finitely often with probability one. Therefore, ⇡|̄ should be
ruled out, which is a contradiction, and hence any such ✏
does not exist and ⇡|̄ is a WAO-extension of ⇡L✓.

5 CONCLUSION

We have proposed a framework to allow a human opera-
tor to repeatedly safely interrupt a reinforcement learning
agent while making sure the agent will not learn to prevent
or induce these interruptions.

Safe interruptibility can be useful to take control of a robot
that is misbehaving and may lead to irreversible conse-
quences, or to take it out of a delicate situation, or even
to temporarily use it to achieve a task it did not learn to
perform or would not normally receive rewards for this.

We have shown that some algorithms like Q-learning are
already safely interruptible, and some others like Sarsa are
not, off-the-shelf, but can easily be modified to have this
property. We have also shown that even an ideal agents
that tends to the optimal behaviour in any (deterministic)
computable environment can be made safely interruptible.
However, it is unclear if all algorithms can be easily made
safely interruptible, e.g., policy-search ones [Williams,
1992, Glasmachers and Schmidhuber, 2011].

Another question is whether it is possible to make the in-
terruption probability grow faster to 1 and still keep some
convergence guarantees.

One important future prospect is to consider scheduled
interruptions, where the agent is either interrupted every
night at 2am for one hour, or is given notice in advance that
an interruption will happen at a precise time for a specified



period of time. For these types of interruptions, not only
do we want the agent to not resist being interrupted, but
this time we also want the agent to take measures regarding
its current tasks so that the scheduled interruption has mini-
mal negative effect on them. This may require a completely
different solution.

Acknowledgements. Thanks to Alexander Tamas and to
many people at FHI, MIRI and Google DeepMind.
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