
An Extensible Representation for Playlists

An Extensible Representation for Playlists
 Amar Chaudhary

Creative Advanced Technology Ctr.
1500 Green Hills Road
Scotts Valley, CA, USA

+1-831-440-2944

amar@atc.creative.com

ABSTRACT
The increasing availability of digital music has created a greater
need for methods to organize large collections of music. The
eXtensible PlayList (XPL) representation allows users to express
playlists with varying degrees of specificity. XPL handles refer-
ences to exact files or URLs as well as rules for selecting content
based on metadata constraints. XPL also allows the transitions
between tracks in a playlist to be specified. This paper describes
the features of XPL, a system for rendering XPL specifications
and use of an advanced XPL renderer in an existing application.

1. INTRODUCTION
The increasing availability of digital music on desktop PCs, the
Internet and personal devices (e.g., portable MP3 devices) has
created a greater need for methods to organize large collections of
music. The traditional concept of a playlist, long employed by
DJs and radio stations, has become an important element of digital
music organization and playback. However, there are many ways
to describe playlists. One could be very specific, listing the exact
audio files to use (e.g., Beatles_Yesterday.mp3), artist and
title names (e.g., Yesterday by the Beatles), or non-specific de-
scriptions based on styles, tempi, etc (e.g., a down-tempo classic-
rock ballad). Additionally, a sophisticated audio player can per-
form transitions between songs (e.g., cross fades, tempo matches,
etc.). Thus, a complete playlist description may include informa-
tion about transitions.
The “eXtensible PlayList” (XPL) representation allows users to
express and exchange playlists with varying degrees of specific-
ity. It extends the notion of a playlist-description format to include
not only exact lists of audio files can be represented but also more
general rule-based specifications based on artist, genre or tempo
constraints and exact transitions can be specified between succes-
sive tracks.

2. The structure of XPL documents
This section describes the basic structure of XPL documents. It is
not intended as a comprehensive specification, which can be ob-
tained elsewhere [1].

2.1 Playlists
An XPL document begins and ends with <xpl> tags and consists
of one or more playlist elements. A playlist element is enclosed
in <playlist> tags, and consists of one or more track ele-
ments.
<?xml version="1.0" ?>
<xpl version=”1.0”>
<playlist attributes>
 track or playlist 1

 track or playlist 2
 …
 track or playlist n
</playlist>
</xpl>

Playlist elements can also be nested, to form hierarchical struc-
tures. Similar to HTML documents, which can reference external
sub-documents, images, etc., playlist elements can refer to other
XPL files using a src attribute:
<playlist name=”super_party_mix” >

<playlist src=”early_evening.xpl” />
<playlist src=”late_night.xpl” />

</playlist>

where the value of src can be a local file name or a URL.

2.2 Tracks
An XPL track element describes a piece of content to be played or
a rule for selecting a piece of content. Track elements that specify
a piece of content are called static tracks and formatted as fol-
lows:

<track [name=name]>
<content src=filename />

</track>
where src is a filename or URL. The file references by src
should be a “playable” piece of content, such as an MP3 file (of
course, the definition of “playable” will differ among applica-
tions).
Track elements that specify rules are called dynamic tracks and
can specified in different ways according to the type of rule being
applied. The most common type of rule is a query that describes a
set of constraints that an application can use to select a particular
piece of content for the track. A query track is formatted as fol-
lows:

<track>
<query> query specification</query>

</track>
The query specification uses an “SQL-like” language for describ-
ing constraints, for example the following track specification:

<track><query>
genre=”Acid Jazz” AND bpm > 120

</query></track>

results in the inclusion of a piece of content attributed to the genre
“Acid Jazz” whose tempo is greater than 120 beats per minute.
The query language allows arbitrarily complex constraints to be
specified for satisfying queries in a playlist. XPL does not spec-
ify the method by which an application satisfies the constraints in
query elements.

Another class of rules that can be used to describe tracks is
weighted selection from one or more sub-playlists. Consider the
playlists fast.xpl and slow.xpl, which contain songs above
120 bpm and below 120 bpm, respectively. A user can create a
new playlist that blends the two playlists by using a “combination
track” as follows.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee pro-
vided that copies are not made or distributed for profit or com-
mercial advantage and that copies bear this notice and the full
citation on the first page.
© 2002 IRCAM – Centre Pompidou

<playlist name=”random_mix” loop=”1”>
<track name=”track1”>

An Extensible Representation for Playlists

<combine>
<playlist src=”fast.xpl” weight=”.6” />
<playlist src=”slow.xpl” weight=”.4” />

</combine>
</track>

</playlist>

The <combine> element specifies that the content for the track
should be randomly selected from the two external sub-playlists,
with a .6 probability that the selection will be from fast.xpl
and a .4 probability that it will be from slow.xpl. The loop
attribute of the playlist is used to repeat the track and randomly
select content until both playlists are exhausted. Fast.xpl and
slow.xpl can themselves be dynamic playlists represented by
the queries “bpm > 120” and “bpm < 120”, respectively.
Thus, a new more complex rule “60% of the songs should be
greater than 120 bpm and 40% should be less than 120 bpm” is
created.

2.3 Transitions
For some applications, it is not enough to simply declare what
content to play next. A user might also want to control the transi-
tion between tracks, such as how to crossfade between the two
tracks and whether or not to perform beat matching. Transitions
can be included in a playlist by using a <transition> element
between tracks:
<track><content src=”funky.mp3” /></track>
<transition track1Start=”3”

fadeDurationMin=”2”
enableBeatMatching=”1”>

</transition>
<track><content src=”groovy.mp3” /></track>

In the above example, a special transition is defined between the
two tracks. It begins 3 seconds before the end of the first track,
with the second track starting at this time. The duration of the
crossfade is set at 2 seconds, and beat-matching is enabled. A
complete list of available transition attributes is available in the
XPL specification.

3. RENDERING XPL
An application that renders XPL playlists must include an XML
parser that converts the textual representation into internal repre-
sentation. The renderer must be able to iterate through the inter-
nal representation and render each explicitly specified or rule-
based content file in order to a suitable output device, such as a
soundcard, audio file or network port. Consider the following
XPL representation:
<playlist name=”mainlist”>

<track><content src=”first.mp3” /></track>
<transition …></transition>
<playlist name=”sublist” >

<track><content src=”second.mp3” /></track>
<track><query>

bpm > 150 and genre=”Electronica”
</query></track>

</playlist>
</playlist>

The file is parsed and the interpreted tracks and transitions are then
sequenced in depth-first order. A track that satisfies the constraints
in the query specification is then located. The resulting sequence of
content references is then sent to the application’s rendering (i.e.,
playback) engine. If the engine supports transitions, the explicit
transition is used to cross-fade between first.mp3 and sec-
ond.mp3

3.1 Metadata Support
In order to support the dynamic queries available in XPL, the
renderer must have access to metadata, or data about the musical
content in a user’s library. Examples of metadata include textual
elements such as track and album title, artist name, etc. as well as
audio-derived data such as fingerprints or tempo specifications.
Such metadata can be made available to an XPL renderer via a
metadata database, or metabase. The renderer sends each query to
the metabase, which returns a list of content files that satisfy the
query. The metabase acts as a central repository for metadata
acquired from several sources, such as ID3 tags, CDDB records
and audio analyses of the content. The acquisition and storage of
metadata for use by XPL renderers is an application-dependent
process. Multiple metabases are supported in XPL via the data-
base and language attributes of query tags. In addition to
support for multiple distributed metabases, these attributes allow
queries to be defined that are not easily expressed via the default
SQL-like language in XPL [2].

4. CONCLUSIONS AND FUTURE WORK
XPL provides an expressive, extensible and readable format for
the specification and exchange of playlists. An XPL renderer has
been successfully incorporated into a demonstration application
codenamed “VDJ” that supports loading an rendering of static and
dynamic XPL representations and user editing of queries and ex-
plicit transitions. All edit operations are live, allowing the user to
dynamically shape the playlist in real time, and can also be saved
to XPL files for later rendering and sharing with other users.
Successful rendering of dynamic XPL requires quality metadata.
If tracks in a music library lack metadata or contain incorrect data
(e.g., incorrect genre or tempo), rendered playlists will not match
user expectations. Quality of metadata can be improved by use of
authoritative quality-controlled repositories and linking of meta-
data to audio-derived features (e.g., fingerprints) [3].
Future work on XPL will include integration with content-based
music-information-retrieval systems and distributed metabases.

5. ACKNOWLEDGMENTS
The author would like to thank the members of the Technovation
department at Creative ATC for their contributions and feedback
on the XPL specification and their impressive work turning the
concepts of XPL and metadata-aware rendering into a real appli-
cation.

6. REFERENCES
1. Chaudhary, A., XPL Specification, . 2002, Creative Advanced

Technology Center: Scotts Valley, CA.
2. Reiss, J., J.-J. Aucouturier, and M. Sandler. Efficient multidi-

mensional searching routines for music information retrieval.
in International Symposium on Music Information Retrieval.
2001. Bloomington, IN.

3. Allamanche, E., et al. Content-based identification of audio
material using MPEG-7 low level description. in International
Symposium on Music Information Retrieval. 2001. Blooming-
ton, ID. http://ismir2001.indiana.edu/pdf/allamanche.pdf.

	INTRODUCTION
	The structure of XPL documents
	Playlists
	Tracks
	Transitions

	RENDERING XPL
	Metadata Support

	CONCLUSIONS AND FUTURE WORK
	ACKNOWLEDGMENTS
	REFERENCES

