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ABSTRACT

This paper presents a high time-resolution strategy to esti-
mate multiple fundamental frequencies in musical signals.
The signal is first divided into overlapping blocks, and a
high-resolution estimate made of the short-term spectrum.
The resulting spectrum is modified such that only the most
relevant spectral components are considered, and an iter-
ative algorithm based on earlier work by Klapuri is used
to identify candidate fundamental frequencies. Finally, a
context-based rule is used to improve the accuracy of fun-
damental frequency estimates. The performance of this
technique is investigated under both noiseless and noisy
conditions, and its accuracy is examined in cases where
the polyphony is known and unknown a priori.

1 INTRODUCTION

The estimation of fundamental frequencies (F0) of mix-
tures of several sound sources is a problem whose solu-
tion can benefit several areas of digital audio processing,
including automatic music transcription, music informa-
tion retrieval, and sound source separation, among others.
Early work relating to this problem aimed to solve the

problem of transcribing polyphonic music [1, 2]; however,
such methods worked well only under very restrictive con-
straints. A new phase in multiple-F0 estimation started
with the work of Meddis and Hewitt [3], which has pro-
vided the foundation for most approaches used in more
recent methods. Cheveigné explored the model proposed
in [3] to develop an iterative procedure in which the sound
component corresponding to a particular estimated F0 is
removed, and a new round of F0 estimation then proceeds
using the residual [4]. Tolonen and Karjalainen simpli-
fied the approach of [3] to create a strategy reported to be
both accurate and computationally efficient [5], and statis-
tical inference was used by Davy and Godsill to estimate
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multiple fundamental frequencies [6]. Klapuri proposed
a method based in the harmonicity and spectral smooth-
ness of the signals [7], as well as a more recent percep-
tually motivated strategy that uses an iterative estimation-
cancellation approach [8].
Like other approaches, the method proposed here be-

gins with the division of the musical signal into overlap-
ping short-time frames. The high-resolution spectral es-
timation proposed in [9] is then applied to each frame in
turn, in order to allow a finer analysis of the spectral struc-
ture of the signal. The resulting spectrum is modified in
such a way only the most relevant frequency components
are considered. Additionally, the remaining components
are quantized into only two levels, making the data more
homogeneous. The modified spectrum is then analyzed
using an iterative algorithm based on the procedure pre-
sented in [8], but which also introduces some further pro-
cessing intended to refine the selection of the correct F0.
If the polyphony is known a priori, the iterations stop as
soon as the number of sound sources has been reached. If
the polyphony is unknown, the iterations are interrupted
if one out a set of rules is fulfilled. After the fundamental
frequencies have been determined for all frames, a fur-
ther procedure is applied to improve the estimates. All
frames contained in a segment between two events 1 are
analyzed, and the estimates are all made the same accord-
ing to majority rules. In the cases where the polyphony is
known a priori, this last procedure only changes the val-
ues of F0, but in cases where the polyphony is unknown at
the outset, there can be changes in the estimated number
of sound sources. Those context-corrected F0 estimates
comprise the output of the algorithm.
The remainder of this paper describes this algorithm

and its application in more detail, and is organized as fol-
lows. Section 2 presents a description of the algorithm.
The analysis of the results is presented in Section 3, and
Section 4 presents the conclusions and final remarks.

1 An event, in the context of this work, is any change in the number
of sound sources and/or fundamental frequencies present in the signal.
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Figure 1. Block diagram of the estimation strategy

2 ALGORITHM DESCRIPTION

Figure 1 shows the basic structure of the method. As can
be seen, there are four basic procedures, which will be
described in the following.

2.1 Division into Frames

The first step of the algorithm is the division of the signal
into frames. Assuming a sample rate fs = 44100 kHz,
the length of the frames is taken to be 2048 samples, cor-
responding to 46.4 ms. This value was chosen in order
to provide a good temporal resolution to the analysis—
thereby minimizing, as much as possible, the estimation
problems that can arise when a new event occurs in the
middle of a frame. (This also provides better estimates
when new events occur in short time intervals.) In spec-
tral analysis, better time resolution comes at the expense
of worse frequency resolution. To minimize this prob-
lem, a high-resolution estimate of the spectrum was em-
ployed [9], as described in Section 2.2 below.

2.2 Computing High-Resolution Modified Spectrum

The tight compromise between time and frequency reso-
lutions in spectral analysis has motivated the use of an al-
gorithm that makes a high-resolution estimate of the spec-
trum [9]. The Matlab code and more details can be found
in [10]. More specifically, a spectrum with 44100 points
(i.e., 1 Hz resolution) is estimated based on a frame length
of 2048 samples. The resultant estimates are reasonably
accurate, and were observed to provide much better results
than using the regular Discrete Fourier Transform (DFT).
Besides providing a high-resolution spectral estimate,

the method of [9] also reduces greatly the amplitude of
sidelobes that appear in the computation of regular DFT.
This is achieved by extrapolating the data, and properly
exploring the autocorrelation function of the extended data.
(The mathematical details of the procedure can be found
in [9].) The only major shortcoming of this strategy is
the computational burden, which is much higher than that
required by the Fast Fourier Transform (FFT) algorithm.
The high-resolution spectrum is then modified to con-

sider only relevant components. First, all spectral compo-
nents that do not represent a local magnitude peak are set
to zero. The component with greatest magnitude is identi-
fied and taken as a reference valueXm. Then, the follow-
ing assignment is applied for k ∈ {1, 2, . . . , �fs/2�}:⎧⎪⎨

⎪⎩
Sm[k] = 0 X[k] < 0.01Xm

Sm[k] = 100 0.01Xm ≤ X[k] < 0.1Xm

Sm[k] = 1000 X[k] ≥ 0.1Xm

,

where X represents the magnitude spectrum, k is the fre-
quency index, and Xm is the value of the component of
largest magnitude.
The resulting modified spectrum Sm is then used to

determine the fundamental frequencies present, according
to the procedures described in Section 2.3 below.

2.3 Iterative Determination of Multiple F0

Part of the iterative procedure to determine the fundamen-
tal frequencies was based on part of the strategy presented
in [8]. This procedure is performed according to the fol-
lowing steps:
1. A residual spectrum Sr is initialized and set equal

to the modified spectrum Sm.
2. A simplified version of the fundamental period esti-

mation presented in [8] is applied, given by

λ(τ) =
(

fs√
τ

) τ/2∑
j=1

max
k∈kj,τ

(Sr(k)) , (1)

where fs is the sampling frequency, τ is the candidate fun-
damental period, and kj,τ is a set that defines a range of
frequency bins in the neighborhood of the harmonic par-
tials of the k′th F0 candidate, given by

kj,τ =
[
kminj,τ · · · k′ · · · kmaxj,τ

]
,

where

kminj,τ = �jK/(τ + 1)�+ 1

kmaxj,τ = max
(�jK/(τ − 1)�+ 1, kminj,τ

)
and K = fs = 44100 is the total number of spectral
bins of the modified spectrum. As can be seen, there are
some differences between the procedure adopted here and
that described in [8]. Particularly, the weighting factor
that simulates the bandwidth of the auditory filters was
not used here, nor the balancing operation over λ. This
is because such operations were not seen to improve the
results of the method proposed here. Additionally,

√
τ is

used in (1), instead of τ itself; this decision was taken as
a result of optimization tests performed with the method
over large databases, as described in Section 3 below.
3. The candidate fundamental frequency is given by

fc = fs/max (λ) .

4. In the next step, the partials corresponding to fc are
removed from the residual spectrum Sr according to

Sr(Pm) = 0,



where form ∈ {1, 2, . . . , � fs

2fc
�}, Pm is defined as

Pm = argmax
n∈N∩[α1,α2]

Sr(n);

α1 = �(0.975− a)fc�, α2 = �(0.975 + a)fc�,
a = max

(
(f̃c − 1), 0

)
· 10(f̃c−25)/5,

with f̃c the candidate F0 in kHz. As can be seen, the in-
terval around each partial grows for large frequencies in
order to account for deviations caused by inharmonicity.
5. If the polyphony is known a priori, Steps 1–4 are

repeated until the number of estimated fundamentals co-
incides with the number of concurrent sounds. Otherwise,
some stopping criteria must be applied. In particular, if at
iteration i the stopping criteria

max
(
Si

r

) ≤ 100 and
∑

k

Si
r(k) < 200

are met, then the candidate fundamental fc(i) will be ac-
cepted and the algorithm will proceed to Step 6 below.
Alternatively, define at iteration i the criteria

fc(i) ≥ 500 and
∑

k

Si−1
r (k)−

∑
k

Si
r(k) < 200

fc(i) < 500 and
∑

k

Si−1
r (k)−

∑
k

Si
r(k) < 300,

where Si−1
r and Si−1

r are, respectively, the residual spec-
tra before and after removing the partials of the current F0
estimate, and S0

r = Sm. If either of these criteria are met,
then the candidate fc(i) will be rejected and the algorithm
will proceed to Step 6 below. Such rules interrupt the iter-
ations if there are too few significant spectral components
remaining, or if the current fundamental frequency was
estimated using too few spectral components. The rules
are tighter for low F0, because more significant spectral
components are expected to be present in such situations.
6. Finally, the first estimated F0 is checked to verify

that it is the lowest of all estimated F0. If so, the estimates
resulting from Steps 1–5 are the final output of this stage
of the algorithm. If not, these procedures are repeated,
this time forcing the lowest detected frequency to be the
first to be considered in the iterative process. This method
is employed as in many cases an overtone partial of the
actual F0 is taken as the estimated F0, leading to an esti-
mation error. In that case, the correct F0 is normally also
detected as a potential F0 in a subsequent iteration. More-
over, in such cases it was often observed that the correct
F0 would be the lowest among all estimated F0. Forcing
the lowest partial to be considered first greatly reduces the
frequency of this problem.

2.4 Context-Based Correction

The last stage of the algorithm is a context-based cor-
rection of the estimated F0. The homogeneous segments
between two events normally will contain more than one

Poly- Context Correction Klapuri Method [8]
phony Without With 46 ms 92 ms
1 1.5 1.1 7.2 2.1
2 5.2 3.9 12.0 7.0
3 7.5 6.0 21.3 10.2
4 13.0 9.9 26.9 12.8
5 19.8 15.3 35.5 17.1
6 29.0 24.2 42.4 21.3

Table 1. Estimation error (%) with known polyphony

frame and, since it is expected that all frames of the seg-
ment present the same results, a procedure to homogenize
the estimates is applied. If the polyphony N is known a
priori, the set of estimated F0 for all frames in the segment
will comprise the N fundamental frequencies that appear
most frequently among these frames. If the polyphony is
unknown, then a given F0 is included in the set of esti-
mates of all frames in the segment only if it appears in
at least 50% of the frames; otherwise it is removed. This
simple procedure improves the overall algorithm perfor-
mance by about 25%, as will be seen in the next section.

3 RESULTS

The database used for testing is composed of 1200 mix-
tures of one to six concurrent sounds, taken from both the
RWCMusic Instrument Sound database [11] and from the
University of Iowa Musical Instrument Samples database
(http://theremin.music.uiowa.edu/MIS.html). These mix-
tures have lengths between 0.05 and 1 second, with an
average of about 250 ms. Sounds from 30 instruments
were used, and each mixture was the result of a random se-
lection among all instruments and respective note ranges.
Calibration was performed using 200 mixtures, and the
remaining 1000 signals were used in the tests.
Table 1 shows the percentage of mis-estimates obtained

for the method in the case where the polyphony is known,
with and without the context correction. The results are
compared with the 46-ms and 92-ms frame versions of
the method proposed by Klapuri, implemented according
to the guidelines presented in [8]. As can be seen in Ta-
ble 1, the strategy performs very well for few concurrent
sounds, and the performance begins to degrade rapidly
when more sounds are present. This is due, firstly, to
the tendency of any method to lose reliability when too
many spectral components are present. Additionally, the
elimination of spectral components considered irrelevant
(see Section 2.2) sometimes removes partials of actual F0,
leading to an error. However, the method performs better
with this “clean” spectrum than without any component
selection. Table 1 also reveals that the context-based cor-
rection reduces errors by approximately 25%. It is impor-
tant to note that the effects of correction are more effective
when the segment between events is longer; as described
above, the results of Table 1 were obtained for segments
with lengths between 50 ms and 1 s (250 ms on average).



Poly- Without Correction With Correction
phony Corr. Miss False Corr. Miss False
1 98.5 1.5 3.4 98.9 1.1 1.2
2 94.1 5.9 6.6 95.6 4.4 4.2
3 91.0 9.0 8.8 92.5 7.5 6.6
4 84.7 15.3 12.3 87.1 12.9 10.3
5 77.9 22.1 18.0 80.0 20.0 15.9
6 68.1 31.9 23.4 71.8 28.2 23.0

Table 2. Estimation error (%) with unknown polyphony

Table 2 shows the performance of the technique for the
case in which polyphony is unknown. Its columns show
the percentage, with respect to the number of actual F0, of
the correct estimates, missed F0, and incorrectly detected
F0. As can be seen, the results exhibit similar behavior to
that observed in Table 1, but since the polyphony is un-
known, the results are (as expected) slightly worse. It also
can be seen that there is a balance between the number of
missed F0, and false F0. The method was calibrated in
this way, but simple changes in the algorithm can change
the compromise between missed and false detections.
The results shown in Tables 1 and 2 were obtained from

mixtures where the levels of the sounds were the same.
If the relative levels between the sounds change, the ac-
curacy of the technique tends to be reduced. To test the
influence of level in algorithm performance, all mixtures
of three sounds were taken and each estimation procedure
was repeated, with the level of one of the sounds being
reduced at a time. Figure 2 shows the percentage of F0
mis-identifications in the level-reduced sound, as a func-
tion of the reduction factor. As can be seen, the technique
is quite robust to mild variations in the level of the sounds,
but it quickly begins to lose reliability if the target sound
is more than 5 dB below the levels of the others.

4 CONCLUSIONS

This paper presented a new method to estimate multiple
fundamental frequencies of concurrent sounds. It uses a
modified spectrum as input to an iterative algorithm that
estimates a candidate set of F0. A set of rules is applied to
improve these estimates, and an additional context-based
correction procedure provides the final F0 estimates. The
method performs well in cases where the polyphony is
known or unknown a priori, and is robust to mild differ-
ences in the levels of the sounds. The main shortcoming of
the technique is its high computational complexity; future
work will search for solutions to this problem. New proce-
dures and statistical models to replace current rule-based
heuristics will be investigated, in an attempt to improve
estimation performance and quantify F0 uncertainty.
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Figure 2. Estimation error (%) for varying relative level

5 REFERENCES

[1] J. A. Moorer, “On the transcription of musical sound by
computer,” Comput. Mus. J., vol. 1, no. 4, pp. 32–38, 1977.

[2] C. Chafe and D. Jaffe, “Source separation and note iden-
tification in polyphonic music,” in Proc. IEEE Int. Conf.
Acoust. Speech Signal Process., 1986, pp. 1289–1292.

[3] R. Meddis and M. J. Hewitt, “Virtual pitch and phase sen-
sitivity of a computer model of the auditory periphery I:
Pitch identification,” J. Acoust. Soc. Am., vol. 89, no. 6,
pp. 2866–2882, 1991.
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