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ABSTRACT

The task of identifying cover songs has formerly been stu-
died in terms of a prototypical query retrieval framework.
However, this framework is not the only one the task al-
lows. In this article, we revise the task of identifying cover
songs to include the notion of sets (or groups) of covers. In
particular, we study the application of unsupervised clus-
tering and community detection algorithms to detect cover
sets. We consider current state-of-the-art algorithms and
propose new methods to achieve this goal. Our experi-
ments show that the detection of cover sets is feasible, that
it can be performed in a reasonable amount of time, that
it does not require extensive parameter tuning, and that
it presents certain robustness to inaccurate measurements.
Furthermore, we highlight two direct outcomes that natu-
rally arise from the proposed framework revision: increas-
ing the accuracy of query retrieval-based systems and de-
tecting the original song within a set of covers.

1. INTRODUCTION

Cover song identification has been a very active area
of study within the music information research (MIR) com-
munity over the last years [1]. Traditionally, cover song
identification has been set up as a typical information re-
trieval (IR) task where queries are processed in a batch
mode [2] (p. 74): the user submits a query (a song) and
receives an answer back (a list of songs ranked by their
relevance to the query). Such a setup has conditioned the
way of implementing and evaluating cover song identifica-
tion systems [1, 3].

Here we take a new qualitative approach by consider-
ing cover song sets instead of isolated cover song queries.
More concretely, we automatically identify sets (or groups)
of covers of the same underlying musical piece in a music
collection. We do so by utilizing grouping algorithms on
top of an existing cover song identification system. We
focus on unsupervised clustering [4,5] and community de-
tection [6, 7] algorithms.
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The usage of grouping algorithms can be intuitively jus-
tified from multiple perspectives. First, grouping algo-
rithms are a natural choice given the output of current cover
song identification systems. Because this usually consists
in a set of pairwise distances ! , we can directly assume that
the preliminary issues of a typical pattern grouping task
[5], namely feature extraction and distance measurement,
are appropriately dealt with. Second, grouping algorithms
may help in obtaining more coherent answers for isolated
queries. In particular, the answers to any query song be-
longing to a given cover set would coherently contain the
other songs in the set (notice that this property is not en-
sured by the distance measurements nor by batch-mode
query systems). Third, grouping algorithms may profit
from second order cover song associations. For instance,
if cover song pairs s;, s; and s;, s; are independently de-
tected, the cover song relation between s; and sy, could au-
tomatically be inferred. This way, the system would take
advantage of these collaborative effects and, among other
things, increase the overall accuracy. Fourth, grouping al-
gorithms can provide insightful clues to the study of inter
and intra-group relations (e.g. by using hierarchical clus-
tering algorithms [4, 5]).

The Music Information Retrieval Evaluation eXchange
(MIREX) provides a batch-mode query framework for eval-
uating cover song identification systems?. Nonetheless,
some participants have started moving towards the cover
set detection framework. This framework has been indi-
rectly and scantily introduced in [8] and, simultaneously,
in our previous work in [9]. In [8], a multidimensional
scaling analysis was performed on the basis that the con-
figuration of the music collection under study was known
(i.e. the number of cover sets and their cardinality was a
priori defined, and the latter was assumed to be constant
for all sets). This analysis was shown to substantially in-
crease the final system’s identification accuracy. A com-
parable increase was also achieved by the post-processing
step mentioned in [9], whose details we now disclose.

Below, we first present the grouping algorithms that we
use for detecting cover song sets (Sec. 2). We then summa-
rize the followed methodology (Sec. 3) and subsequently
present the obtained results (Sec. 4). We also show two

! In this article we pragmatically use the term distance to refer to any
similarity or dissimilarity measure between cover songs.

2 http://www.music-ir.org/mirex/2008/index.php/
Audio_ Cover Song Identification
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natural outcomes of detecting cover sets (Sec. 5): increas-
ing the accuracy of batch-mode query systems (Sec. 5.1)
and detecting the original song (Sec. 5.2). We finally close
the article with a conclusions section (Sec. 6).

2. STUDIED ALGORITHMS
2.1 K-medoids

The K-medoids algorithm is a common choice when the
computation of means is unavailable, as it solely operates
on pairwise distances and can exhibit some advantages com-
pared to the standard K-means algorithm [4]. We employ
the K-medoids implementation of the TAMO?3 package,
which incorporates several heuristics* to achieve an opti-
mal K value [4]. We use the default parameters and try all
possible heuristics provided in the aforementioned imple-
mentation.

2.2 Hierarchical clustering

We also consider four representative agglomerative hierar-
chical clustering methods [4, 5]: single linkage, complete
linkage, group average linkage (UPGMA), and weighted
average linkage (WPGMA). We use the hcluster® imple-
mentation with the default parameters, and we try different
cluster validity criteria [4] such as® checking descendants
for inconsistent values, or considering the maximal or the
average inter-cluster cophenetic distance.

2.3 Proposed method 1

The present and subsequent methods perform community
detection [6, 7] on a complex network [10]. A weighted
complex network [11] can be easily built from pairwise
distances. Given a music collection S={s;},i=1, ..., Ng,
with Ng songs, we query a cover song identification sys-
tem for each song and obtain a set of answers A = {A4;},
where A; contains Ny, tuples {s;,d(s;,s;)}, s; € S,
ranked from low to high according to the provided dis-
tance measure d. In our case, N4, can be different for
each A; and it can be significantly lower than Ng. As
we do not expect cover songs to have high distances or
ranks in A;, we determine N 4, by applying a distance and
a rank threshold dr, and ryy,, respectively. From A, we
construct a graph G with Ng vertices (V = {v;}, V < 5)
and N4, weighted edges for each vertex (an edge with a
weight w; ; = m, ¢ being an arbitrary small con-
stant, e.g. e =0.01, is assigned between vertices v; and v;
iij C A;ors; C A])

The method performs community detection by just look-
ing at connected vertices in GG in such a way that all con-
nected vertices are assigned to the same community. There-
fore, this algorithm strongly relies on dy, and/or ry, pa-
rameters. This approach presents some analogies with the
common nearest neighbor clustering approach [5].

3http://fraenkel.mit.edu/TAMO
4http://fraenkel.mit.edu/TAMO/documentation/
TAMO.Clustering.Kmedoids.html
Shttp://code.google.com/p/scipy-cluster
Shttp://www.soe.ucsc.edu/~eads/cluster.html
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2.4 Proposed method 2

The aforementioned approach could be further improved
by reinforcing triangular connections in the complex net-
work before the last step of checking for connected ver-
tices. Following the intuitive reasonings advanced in Sec. 1,
the algorithm proposed here tries to reduce the “uncer-
tainty” generated by triplets of vertices connected by two
edges. In other words, it tries to reinforce coherence in a
triangular sense.

If v;,v; and v;, v, are respectively connected, we can
induce more coherence by either creating a connection be-
tween v; and vy (i.e. forcing the existence of a triangle),
or by deleting one of the existing edges. This coherence
can be measured through an objective function fo which
considers complete and incomplete triangles in the whole
graph G. We define fo as a weighted difference between
the number of complete triangles Ng and the number of
incomplete triangles Ny (three vertices connected by only
two links) that can be computed from a pair of vertices:
fo(No, No)=No—aNg. The constant o, which weights
the penalization for having incomplete triangles in G, is set
experimentally.

The method starts by building a complex network G as
described in the previous section. Then, for each pair of
vertices v;, v, the value of fo is calculated for two situ-
ations: (i) when an edge between v; and v; is artificially
created and (i) when such an edge is deleted. Then, the
option which maximizes fq is preserved and the adjacency
matrix of G is updated as necessary. The process of as-
signing cover sets is again the connected vertices criterion.

2.5 Proposed method 3

We can substantially reduce the computation time of pro-
posed method 2 by considering for the computation of fo
only those vertices whose connections seem to be uncer-
tain. If the distance between two songs is extremely high
or low, this means that the cover song detection system
has clearly detected a match or a mismatch. Accordingly,
we just consider the pairs of vertices whose edge weight
is around wt, = ﬁ In particular, for each vertex v;,
a pre-selection of adjacent vertices is performed according
to a certain weight margin wy,, which we set manually.
This way, v; is associated to v; for further processing iff
|w;,j —wrn| < wwma, where |-| indicates absolute value. The
process of building the initial complex network and assign-
ing cover sets is the same as in Sec. 2.3.

2.6 Modularity optimization

We also consider the method in [12], which extracts the
community structure from large networks based on the op-
timization of the network modularity [6, 7, 12]. This algo-
rithm outperforms all other known community detection
methods in terms of computational time while maintain-
ing a high accuracy [12]. We use the implementation by
Aynaud 7 and we build the initial network as in Sec. 2.3.

7http://perso.crans.org/~aynaud/communities/
index.html
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3. METHODOLOGY
3.1 Data

For the generality of our experiments, we employ two
sources of data: artificial and real-world symmetric dis-
tance matrices. Artificial distances are randomly gener-
ated given a predefined noise level 0. More concretely,
the distance d(s;, s;) = d(s;, ;) between songs s; and s;
is drawn from a normal distribution N (u, o) with mean g
and standard deviation ¢ such that

0 ifi =7,
d(si,sj) = § IN(0, 0¢)] ifi > jand s;, s; covers,
1 —|N(0,0¢)| otherwise.

©))
Real-world distances are provided by a state-of-the-art
cover song identification system [13].

3.2 Experimental setups

A cover song music collection can be characterized by cer-
tain parameters constituting a setup [1]: the total number of
songs Ng, the number of cover sets N¢ the collection in-
cludes, the cardinality C' of these cover sets, and the num-
ber of added noise songs® Ny. Because some setups can
lead to wrong accuracy estimations [1], it is safer to con-
sider several of them, including fixed and variable cardi-
nalities. In our experiments we use the setups summarized
in Table 1. For real-world data we use an extension of the
music collection described in [13] which comprises a vari-
ety of genres and styles, as well as different types of cov-
ers. The characteristics of this music collection correspond
to setup 3. For other setups we simply sample cover sets
from setup 3 and repeat the experiments Ny times (num-
ber of trials, average accuracies reported). We either sam-
ple cover sets with a fixed cardinality (C' =4, the expected
cardinality of setup 3) or without fixing it (variable cardi-
nality, C' = ). When using artificial data, we construct
the distance matrix following Eq. (1). As fixed cardinal-
ity we use C' = 4 as well, and as variable cardinality we
take v ~ |2 4 ¢(1/2) ], where || denotes floor value and
e(1/)) corresponds to an exponential distribution® with
rate parameter \.

3.3 Evaluation measures

To evaluate batch-mode query systems we employ the mean
of average precisions (MAP) over all queries [3, 14]. The
average precision for a query s; (AP;) is calculated from
the retrieved answer A; as AP; = ﬁZivjl_lPi(r)Ii(r),
where P; is the precision of the sorted list A; at rank 7,
P;(r)=21%"7_, I;(l), and I; is a relevance function such
that I;(2) =1 if the song with rank z in A; is a cover of s;,
I;(z) =0 otherwise.

8 By noise songs we mean songs that do not belong to any cover set
included in the collection.

9 An exponential distribution is used to imitate the distribution of C'
with setup 3 (see [13]). With A=2, an expected value (v) =4 is obtained.
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Setup Parameters

Ne C Ny Ng Ny
1.1 25 4 0 100 20
1.2 25 v 0 (100) 20
1.3 25 4 100 200 20
1.4 25 v 100 (200) 20
2.1 125 4 0 500 20
22 125 v 0 (500) 20
2.3 125 4 400 900 20
2.4 125 v 400 (900) 20
3 525 v 0 2135 1

Table 1. Experimental setup summary. The (-) delimiters
denote expected value.

To evaluate cover set detection we resort to the classical
F-measure with even weighting [2, 14]: F'= %. Here P
and R correspond to precision and recall, respectively. For
our evaluation, we compute these quantities independently
for all songs and average afterwards. More concretely, for
each song s;, we count the number of true positives TP;
(i.e. the number of cover songs of s; belonging to the the
same group '* as s;), the number of false positives FP;
(i.e. the number of songs belonging to the same group as
s; that are not covers of s;), the number of false negatives
FN; (i.e. the number of cover songs of s; that do not be-

_ TP

long to the same group as s;), and average P; = 5, 155,
R V 11

and R; = 5, 1 FN, ACross all Ng songs ' .

4. RESULTS
4.1 Artificial data

We first evaluate the algorithms’ accuracy as a function of
the noise level o¢ introduced to the artificial data for se-
tups 1.1 to 1.4. Before computing the reported accuracies,
we independently performed a parameter optimization for
each algorithm '%, o¢, and setup. Then, using the optimal
parameters found for a given o¢, we plot average F' over
20 trials versus o¢ (Fig. 1). In general, we observe that the
accuracy for all algorithms starts to drop for o¢ > 0.2 un-
til it reaches an F' < 0.3 for o¢ > 0.5. We also see that the
K-medoids and single-linkage algorithms are less robust to
noise than the others. Low accuracies for the K-medoids
algorithm might be explained by the difficulty to automat-
ically set the correct K value. Furthermore, cover sets with
variable cardinality, such as the ones used for setups 1.2
and 1.4, might further decrease the accuracy [4]. Low ac-
curacies for the single linkage algorithm with respect to
other hierarchical clustering algorithms confirm the find-
ings in the literature [5]. UPGMA, and WPGMA accura-
cies are slightly higher than other algorithms under noise
levels ¢ € [0.2,0.4].

10 Through this subsection by group we mean the cover set detected by
the evaluated algorithm.

' Note that, unlike other clustering evaluation measures [15], F is not
computed on a per-cluster basis, but on a per-song basis.

12 This parameter optimization was not critical to achieve near-optimal
accuracies (see Sec. 4.2). We did not consider proposed method 2 at this
stage due to its computational complexity (see Sec. 4.3).
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Figure 1. Accuracy under different noise levels for setup
1.4. Other setups lead to similar curves. Here and in sub-
sequent tables and figures KM stands for K-medoids, SL
for single-linkage, CL for complete-linkage, UPGMA for
group average linkage, and WPGMA for weighted average
linkage, PM for proposed method, and MO for modularity
optimization.

Algorithm Setup
2.1 2.2 2.3 2.4

KM 0.517 0.497 0.520 0.500
SL 0.656 0.690 0.654 0.683
CL 0.816 0.820 0.814 0.821
UPGMA  0.895 0.900 0.897 0.902
WPGMA  0.879 0.889 0.883 0.893
PM1 0.713 0.723 0.716 0.718
PM3 0.665 0.698 0.668 0.704
MO 0.721 0.735 0.716 0.744

Table 2. Accuracy (F') for artificial data with o¢ =0.25.

To better assess the algorithms’ performance, we show
the accuracies achieved with setups 2.1 to 2.4 under a fixed
noise level of o¢ = 0.25 (Table 2). Here, differences be-
tween accuracies can be better estimated, as we are em-
ploying a bigger music collection and quite a high noise
level. We see that UPGMA and WPGMA definitely per-
form best under the specified o¢.

4.2 Real-world data

To evaluate the algorithms’ accuracy with real-world data
we independently optimized all possible parameters for
each algorithm on setups 1.1 to 1.4. Within this pre-
analysis, we saw that the definition of a distance thresh-
old"® was, in general, the only critical parameter for all
algorithms. Apart from this, all other parameters turned
out not to be critical for obtaining near-optimal accura-
cies. Methods that had specially broad ranges of these
near-optimal accuracies were K-medoids, proposed method
2, and all considered hierarchical clustering algorithms.
We report the accuracies with optimal parameters for
setups 2.1 to 3 (Table 3). We see that accuracies for pro-
posed methods 1 and 3 are comparable to the ones achieved

13 Either cophenetic distances, drp,, or 7y, (see Sec. 2).
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Algorithm Setup
2.1 2.2 2.3 2.4 3

KM 0.637 0.642 0.656 0.666 n.c.
SL 0.776  0.783 0.833 0.828 0.676
CL 0.777 0.768 0.860 0.853 0.756
UPGMA 0.797 0.812 0.865 0.875 0.796
WPGMA  0.800 0.804 0.866 0.862 0.788
PM1 0.804 0.813 0.853 0.853 0.751
PM2 0.761 0.738  n.c. n.c. n.c.
PM3 0.788 0.790 0.841 0.848 0.733
MO 0.808 0.809 0.856 0.858 0.762

Table 3. Accuracy (F') for real-world data. Due to algo-
rithms’ complexity, some results were not computed (de-
noted as n.c., see Sec. 4.3).

by the other algorithms and, in some setups, even better.
Overall, we corroborate the findings of the previous sec-
tion, although differences between algorithms are not so
large now. We hypothesize that these similar (as well as
near-optimal) accuracies are due to the relatively good dis-
tance measure provided by the employed cover song iden-
tification system (we have already seen that these differ-
ences get stressed with artificial data).

4.3 Time performance

In the application of these techniques to big real world mu-
sic collections, computational complexity is of great im-
portance. To qualitatively evaluate this aspect, we report
the average amount of time spent by each algorithm to
achieve a solution for each setup (Fig. 2).

We see that K-medoids and proposed method 2 are com-
pletely inadequate for processing collections with more
than 2000 songs (e.g. setup 3). The steep rise in the time
spent by hierarchical clustering algorithms to find a clus-
ter solution for setup 3 also raises some doubts as to the
usefulness of these algorithms for huge music collections.
Furthermore, the hierarchical clustering algorithms, as well
as the K-medoids algorithm, take the full pairwise distance
matrix as input. Therefore, with a music collection of, say,

Time [log1 0(sec)]

—k—®
12 13 14 21 22 23 24 3
Setup

Figure 2. Average time performance for each considered
setup. Algorithms were run with an Intel(R) Pentium(R) 4
CPU 2.40GHz with 512M RAM.
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10 million songs, this distance matrix might be difficult to
handle. In contrast, algorithms based on complex networks
such as modularity optimization and proposed methods 1
and 3, only need a single list of answers A. Moreover, the
length of the elements of this list can be very small due
to dry and rq, defined above (e.g. in our tests we found
unnecessary to consider 71, > 3). It should also be noticed
that the resulting network is sparse, i.e. the number of links
is much lower than Ng? [10] and, therefore, calculations
on such graphs can be strongly optimized both in mem-
ory requirements and computational costs as demonstrated,
for instance, by [12]. Thus, methods based on complex
networks, despite not achieving the highest accuracies for
cover set detection, represent a robust and scalable option
for processing big music collections.

5. OUTCOMES
5.1 Accuracy increase

In this section we show that the detection of cover song sets
can improve the accuracy of batch-mode query systems. In
particular, we study the relative MAP increase for the best
cover set detection algorithms found. For comparison pur-
poses, we take the output A of an initial batch-mode query
system and transform it according to the grouping solution
achieved. More concretely, we divide the distances in each
A; by the maximum distance value found and add an arbi-
trary constant 5 > 1 to the songs that are not detected as
belonging to the cover set where s; is included.

We plot the relative MAP increment versus the cardi-
nality C' of the cover sets for artificial data in Fig. 3. We
show that one can get a MAP accuracy improvement of up
to 25%. A comparable improvement can also be achieved
in the case C'=v. In general, it can be seen that the higher
the cardinality, the higher the improvement we can get by
detecting cover sets. Improvements for real-world data are
much more modest as we do not have many sets with high
C. With setup 2.4, average improvements are 2.8% for
UPGMA, 2.1% for WPGMA, 5.1% for proposed method
1, and 4.9% for modularity optimization.

30
25
> &
2 20 %
L
2 15 % | —©— UPGMA
- —— WPGMA
< 10 PM1
P MO
o
Z 5
=
2 0
-5

Figure 3. Relative MAP increment with artificial data. We
use o¢ = 0.25 and, except C, the same parameters as in
setups 2.3 and 2.4.
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A further out-of-sample test was done within the
MIREX 2008 audio cover song identification contest,
where we submitted two versions of the same system [9]
and obtained the two highest accuracies '# achieved to date.
The first version corresponded to the algorithm we use here
for obtaining the real-world data [13]. The second version
comprised the same algorithm, plus an additional post-
processing step performing cover set detection based on
proposed method 1 (the only method we had available at
that time) and the maximum distance value normalization
described in the present section. The MAP achieved with
the former was 0.66 while the MAP of the latter was 0.75,
which corresponds to a 13.6% relative increment. This
increment is higher than the one achieved here with real-
world data most probably because in the MIREX task
C'=10.

5.2 Original detection

In the clustering context, many applications exploit com-
pact cluster descriptions such as centroids or medoids [4,
5]. Analogously to cluster centroids and medoids, the cover
set centroids and medoids can be determined. This way,
the centroid of a cover set would correspond to the “aver-
age realization” and the medoid would correspond to the
“prototype” I of the underlying musical piece. We here
focus on the latter and leave the former for future consid-
eration. In general, we could consider this prototype to be
the most referential, influential, or inspirational song in a
cover set (e.g. the musical piece covered by the majority of
the other pieces). We here make an oversimplification and
assume that the medoid of a cover song set corresponds to
the original version.

To evaluate this option for detecting original songs we
manually check for original versions in setup 3 of the used
real-world data (we find 426 originals out of 525 cover
sets) and we consider an ideal cover set detection algo-
rithm (with all cover sets correctly estimated) as well as
the best performing algorithms found in previous sections.
For these last ones, we discard for evaluation the detected
sets that do not contain an original.

To automatically determine the original song we take all
possible pairwise distances within songs in a detected set
and select the one which has a minimal distance sum to the
other songs in the set. Let S={3;},j=1,...,C, be a set
of detected covers with cardinality C'. Then, the index i of
the prototype song corresponds to '¢

C

i = argmin Z d(3;, 8x) 2
J kzl,
k#j

The results in Table 4 show the percentage of hits and
misses, which can be compared to the null hypothesis of
randomly selecting one song in the set. We observe that,

14 http://www.music-ir.org/mirex/2008/index.php/
Audio Cover Song Identification Results

15 Standard, typical, or best example.

16 Notice that analogous formulae can be derived by employing the no-
tion of betweenness or closeness centrality in a complex network [10,11].
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Algorithm c

2 3 4 5 6
Ideal 50.0 51.8** 39.2*  36.8* 41.7**
UPGMA  50.0 58.0* 55.0* 60.4** 50.4**
WPGMA  50.0 559* 46.6% 63.27F 47.5%F
PM1 50.0 62.7** 61.3** 70.0* 50.0**
MO 50.0 62.8* 61.0* 70.0* 50.0**
Null 50.0 333 25.0 20.0 16.7
Ref. N¢ 187 85 51 38 24

Table 4. Accuracies (%) for the original song detection
task depending on C. The * and ** symbols denotes sta-
tistical significance at p < 0.05 and p < 0.01, respectively.
The last line shows a referential N corresponding to the
number of cover sets obtained with an ideal grouping solu-
tion.

in general, accuracies are around 50% with all considered
cardinalities. This exactly corresponds to the null hypoth-
esis of sets with C' = 2 but, as soon as C > 2, accuracies
become higher than the null hypothesis and statistical sig-
nificance arises (statistical significance is assessed with the
binomial test [16]). Discarding cover sets with no original
song explains why accuracies for the algorithms studied
here become slightly higher than the ones achieved by the
ideal grouping algorithm. We hypothesize that our algo-
rithms tend to split the ideal cover sets into “more coher-
ent” or compact subsets and, therefore, within these, the
method of Eq. 2 can better determine the original song.

6. CONCLUSIONS

In this paper we propose and study a framework for cover
song identification based on the notion of cover sets that
subsumes the current batch-mode query framework (the
latter is naturally incorporated as an important part of the
former). Through comprehensive experiments we show
that the detection of cover sets is feasible, that it does not
require extensive parameter tuning, and that it is quite ro-
bust to noisy distance measurements. Furthermore, we
propose three versions of an unsupervised community de-
tection algorithm that, when compared to existing state-of-
the-art methods, achieve comparable accuracies with sim-
ilar computation time (proposed method 3) or even faster
(proposed method 1). We evidence that this new frame-
work can provide new outcomes and can give raise to new
applications. In addition to showing that cover set de-
tection can substantially increase the accuracy (and co-
herence) of current systems, we here provide a proof-of-
concept application to detect the original song within a
cover set, which is inspired by the notion of cluster
medoids.

Finally, we would like to highlight that, in spite of fo-
cusing on cover songs, the intuitive reasonings followed
thoughout the paper could be as well applied to any IR
batch-mode query system, and especially to other MIR sys-
tems (e.g. query-by-humming, query-by-example, audio
fingerprinting, or music similarity).

[12]

[13]

[14]

[16]
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