
music21: A Toolkit for Computer-Aided Musicology and
Symbolic Music Data

Michael Scott Cuthbert Christopher Ariza
Music and Theater Arts

Massachusetts Institute of Technology
{cuthbert, ariza}@mit.edu

ABSTRACT

Music21 is an object-oriented toolkit for analyzing,
searching, and transforming music in symbolic (score-
based) forms. The modular approach of the project allows
musicians and researchers to write simple scripts rapidly
and reuse them in other projects. The toolkit aims to pro-
vide powerful software tools integrated with sophisticated
musical knowledge to both musicians with little pro-
gramming experience (especially musicologists) and to
programmers with only modest music theory skills.

This paper introduces the music21 system, demon-
strating how to use it and the types of problems it is well-
suited toward advancing. We include numerous examples
of its power and flexibility, including demonstrations of
graphing data and generating annotated musical scores.

1. INTRODUCTION: WHY MUSIC21?

Computers have transformed so many aspects of musi-
cology—from writing and editing papers, to studying
manuscripts with digital files, to creating databases of
composers’ letters, to typesetting editions—that it is in-
credible that most analytical tasks that music historians
perform remain largely untouched by technology. The
study of the rich troves of musical data in scores,
sketches, intabulations, lead-sheets, and other sources of
symbolic music data is still done almost exclusively by
hand. Even when databases and spreadsheets are em-
ployed, they are usually created for a single purpose.
Such specialized approaches cannot easily be reused.

Computer scientists often assume that, compared to
working with scanned images of scores or sound files,
manipulating symbolic data should be a cinch. Most of
the information from a score can easily be converted to
text-based or numeric formats that general-purpose statis-
tical or information-retrieval tools can manipulate. In
practice the complexities of music notation and theory
result in these tools rarely being sufficient.

For instance, a researcher might want to compare
how closely the music of two composers adheres to a par-
ticular scale (say, the major scale). What begins as a
straightforward statistical problem requiring little musical
knowledge—simply encode which notes are in the scale
of the piece’s key and which are not—can quickly grow
beyond the capabilities of general statistics packages.
Suppose that after some initial work, our researcher de-
cides that notes on stronger beats should be weighed
more heavily than those on weaker beats. Now she must
either add the information about beats by hand to each
note or write a new algorithm that labels the beats. Beat

labeling is another task that initially seems easy but rapid-
ly becomes extremely troublesome for several reasons.
Are grace-notes accented or unaccented? Only a musical-
ly-trained ear that also knows the norms of an era can tell.
Incompletely-filled measures, such as pickup measures
and mid-bar repeats, present problems for algorithms. As
the researcher’s corpus expands, the time spent on meta-
research expands with it. What began as a straightforward
project becomes a set of tedious separate labors: trans-
forming data from multiple formats into one, moving
transposing instruments into sounding pitch, editorial ac-
cidentals in early music, or finding ways of visualizing
troublesome moments for debugging.

Researchers in other fields can call upon general-
purpose toolkits to deal with time-consuming yet largely
solved problems. For instance, a scientist working with a
large body of text has easy access to open-source libraries
for removing punctuation, converting among text-
encoding formats, correcting spelling, identifying parts of
speech, sentence diagramming, automatic translation, and
of course rendering text in a variety of media. Libraries
and programs to help with the musical equivalents of
each of these tasks do exist, but few exchange data with
each other in standardized formats. Even fewer are de-
signed in modern, high-level programming languages. As
a result of these difficulties, computational solutions to
musicological problems are rarely employed even when
they would save time, expand the scope of projects, or
quickly find important exceptions to overly broad pro-
nouncements.

The music21 project (http://web.mit.edu/music21)
expands the audience for computational musicology by
creating a new toolkit built from the ground up with intui-
tive simplicity and object-oriented design throughout.
(The “21” in the title comes from the designation for
MIT’s classes in Music, Course 21M.) The advantages of
object-oriented design have led to its wide adoption in
many realms of software engineering. These design prin-
ciples have been employed in music synthesis and gener-
ation systems over the past 25 years [2, 9, 10] but have
not been thoroughly integrated into packages for the
analysis of music as symbolic data. Humdrum, the most
widely adopted software package [6], its contemporary
ports [7, 11], and publications using these packages show
the great promise of computational approaches to music
theory and musicology. Yet Humdrum can be difficult to
use: both programmers and non-programmers alike may
find its reliance on a chain of shell-scripts, rather than ob-
ject-oriented libraries, limiting and not intuitive.

Nicholas Cook has called upon programmers to
create for musicologists “a modular approach involving

637

11th International Society for Music Information Retrieval Conference (ISMIR 2010)

an unlimited number of individual software tools” [3]. A
framework built with intuitive, reusable, and expandable
objects satisfies Cook’s call without sacrificing power for
more complex tasks.

As a new, open-source, cross-platform toolkit written
in Python, music21 provides such a modular approach,
melding object-oriented music representation and analy-
sis with a concise and simple programming interface.
Simplicity of use, ease of expansion, and access to exist-
ing data are critical to the design of music21. The toolkit
imports Humdrum/Kern, MusicXML [4], and user-
defined formats (with MIDI and MuseData forthcoming).
Because it is written in Python, music21 can tap into
many other libraries, integrating internet resources (such
as geomapping with Google Maps), visualization soft-
ware, and sophisticated database searches with musical
analysis.

This brief paper gives an overview of the music21
toolkit. Through examples of musicological applications
that the system enables, the main distinguishing features
are illustrated: simplicity of use and expansion.

2. SCRIPTING AND OBJECTS

Music21 is built in Python, a well-established program-
ming language packaged with Macintosh and Unix com-
puters and freely downloadable for Windows users. The
toolkit adds a set of related libraries, providing sophisti-
cated musical knowledge to Python. As shown in Figure
1, after adding the system with “from music21
import *”, straightforward tasks such as displaying or
playing a short melody, getting a twelve-tone matrix, or
converting from Humdrum’s Kern format to MusicXML
can each be accomplished with a single line of code.

Display a simple melody in musical notation:
 tinyNotation.TinyNotationStream(
 "c4 d8 f g16 a g f#", "3/4").show()

Print the twelve-tone matrix for a tone row (in this case the
opening of Schoenberg’s Fourth String Quartet):
print(serial.rowToMatrix(

 [2,1,9,10,5,3,4,0,8,7,6,11]))
or since most of the 2nd-Viennese school rows are already
available as objects, you could instead type:
print(serial.RowSchoenbergOp37().matrix())

Convert a file from Humdrum’s **kern data format to Mu-
sicXML for editing in Finale or Sibelius:
 parse('/users/documents/composition.krn').
 write('xml')

Figure 1. Three simple examples of one-line mu-
sic21 scripts.

Though single-line tasks are simpler to accomplish in
music21 than in existing packages, the full power of the
new toolkit comes from bringing together and extending

high-level objects. The framework includes many objects,
including Pitches, Chords, Durations, TimeSignatures,
Intervals, Instruments, and standard Ornaments. Through
method calls, objects can perform their own analyses and
transformations. For instance, Chords can find their own
roots, create closed-position versions of themselves,
compute their Forte prime forms, and so on. Researchers
can extend objects for their own needs, such as altering
the pitch of open Violin strings to study scordatura, spe-
cializing (subclassing) the Note class into MensuralNote
for studying Renaissance Music, or grouping Measures
into Hypermeters. The object-oriented design of mu-
sic21 simplifies writing these extensions.

3. STREAMS: POWERFUL, NESTABLE,
CONTAINERS OF TIMED ELEMENTS

At the core of music21 is a novel grouping of musical
information into Streams: nestable containers that allow
researchers to quickly find simultaneous events, follow a
voice, or represent instruments playing in different tempi
and meters. Elements within Streams are accessed with
methods such as getElementById(), an approach simi-
larly to the Document Object Model (DOM) of retrieving
elements from within XML and HTML documents. Like
nearly every music21 object, Streams can immediately
be visually displayed in Lilypond or with programs that
import MusicXML (such as Finale and Sibelius).
Through the Stream model, a program can find notes or
chords satisfying criteria that change from section to sec-
tion of a piece, such as all notes that are the seventh-
degree of the current key (as identified either manually or
with an included key-detection algorithm) and then re-
trieve information such as the last-defined clef, dynamic,
or metrical accent level at that point.

 Many tools to visualize, process, and annotate
Streams come with the music21 framework. These tools
include graphing modules, analytical tools, and conveni-
ence routines for metrical analysis [8], phrase extraction,
and identification of non-harmonic tones. Figure 2 de-
monstrates the use of metrical analysis, derived from
nested hierarchical subdivisions of the time signature [1],
to annotate two Bach chorales in different meters.

from music21.analysis import metrical
load a Bach Chorale from the music21 corpus of supplied pieces
bwv30_6 = corpus.parseWork('bach/bwv30.6.xml')

get just the bass part using DOM-like method calls
bass = bwv30_6.getElementById('Bass')

get measures 1 through 10
excerpt = bass.getMeasureRange(1,10)

apply a Lerdahl/Jackendoff-style metrical analysis to the piece.
metrical.labelBeatDepth(excerpt)

display measure 0 (pickup) to measure 6 in the default viewer
(here Finale Reader 2009)
excerpt.show()

638

11th International Society for Music Information Retrieval Conference (ISMIR 2010)

#
b
a
e
m
e

F
la
S
tw
w

m
ta
p
a
lo
a
w

perform the same
bwv11_6 = cor
alto = bwv11_
excerpt = alt
metrical.labe
excerpt.show(

Figure 2. Ana
abeler, are inc

Streams (includ
wo Bach chora

with dots corres

4

In addition
modern progra
akes advantag

proaches to sof
and documenta
ongevity of the

as the ability o
work of contrib

e process on a diffe
rpus.parseWor
_6.getElement
to.getMeasure
elBeatDepth(e
()

alytical tools, s
cluded with mu
ding Scores an
ales, each in a
sponding to the

4. FURTHER

n to providing
amming langu
ge of some of
ftware distribut
ation. These a
e system acros

of the system t
butors.

ferent chorale in 3/
rk('bach/bwv1
tById('Alto')
eRange(13,20)
excerpt)

such as this m
usic21 and w
nd Parts). Her

a different mete
eir metric stren

R FEATURES

sophisticated
age, the musi

f the best cont
tion, licensing,
approaches as
ss multiple pla
to grow and in

/4 time
11.6.xml')
)
)

metrical accent
ork with most
re, excerpts of
er, are labeled
ngths.

resources in a
ic21 package
temporary ap-
, development,
sure both the
tforms as well
ncorporate the

t
t
f
d

a
e
-
,
e
l
e

4.1 An I
Researc
Music

tion of fr
including
numerou
Renaissa
corpus p
URL bo
ries, ava
when fir
searcher
and Mus
only gro
depth of

4.2 Perm
Mus

together
toolkit is
software
is releas
(LGPL),
software
synchron
dexed, a
classes,
test r
web.mit.
cumentat
requests,

Better th
specific
example
utility.

5.1 Find
The sc

part of a
op. 133,
nant seve
the chor
and the
across ba

op133 =

violin2

an empt
display

for thi
get a l

 # and re
 notes
 skipU
 skipR

 pitch

Integrated an
hers
c21 comes wit
freely-distributa
g a complete
us Beethoven
ance polyphon
package even
okmarks to m

ailable online,
rst requested a

for future use
sicXML files.
w the tools for

f the corpus of w

missive Licens
ic21 is a tool
in a wide ran

s only achieved
e components i
sed under the
 allowing its u

e. So that imple
nized, the tool
and searchable
automatically

routines. Th
.edu/music21)
tion and relea
, and bug repor

5.

han an explana
examples illus
s are chosen

ding Chords w
cript in Figure
a MusicXML s

to find measu
enth chords in
rd in closed p

Forte prime
arlines would a

corpus.pars
 'beet
= op133.get

ty container for la
= stream.St

sMeasure in
list of consecutive
ests (and putting n
= thisMeasu

nisons = Tru
ests = True,

es = stream.

d Virtual Cor

th a corpus pac
able music for
collection of
String Quarte

ny. The virtual
further. Simila

music resources
can be autom

and then made
e. The corpus
Future system
r analysis, but
works.

se and Full Do
lkit: a collectio
nge of context
d if users can
in their own w
e Lesser Gen
se within both
ementation and
lkit also featu
documentation
created from
he music2
hosts up-to-d

ase links. Cod
rts are housed

EXAMPLES

ation of high-l
strate the toolk
for both their

within Melodic
3 searches the

score of Beeth
ures that melod

consecutive n
position, the su

form. (Runni
add just a few l

eWork(
hoven/opus13
ElementById(

ter display
ream()

violin2.meas

notes, skipping un
nothing in their pla
re.findConse
e, skipOctav
noNone = Tr

Stream(notes

rpus of Music

ckage, a large c
analysis and t
the Bach Ch

ts, and examp
l corpus exten
ar to a collect
s, additional re

matically down
e available to t
 includes both

m expansions w
also the bread

ocumentation
on of tools tha
ts. The promis
expand and int

work. Thus, mu
eral Public L
free and comm

d documentatio
ures high-quali
n of all modul
the source cod
21 site
date informatio
de browsing, f
at Google Cod

S

level features,
kit’s promise.
novel and pr

c Fragments
e entire second
hoven’s Große
dically express
notes. It then di
urrounding me
ing the same
lines of code).

3.xml')
'2nd Violin'

ures:

nisons, octaves,
aces)
cutiveNotes(

ves = True,
rue)

).pitches

for

collec-
testing,
horales,
ples of
nds the
tion of
eperto-

nloaded
the re-
h Kern

will not
dth and

at work
se of a
tegrate
sic21

License
mercial
on stay
ity, in-
les and
de and
(http://

on, do-
feature

de.

a few
These

ractical

d violin
e Fuge,

domi-
isplays
easure,

query

)

639

11th International Society for Music Information Retrieval Conference (ISMIR 2010)

d

F
m

5

to
c
n
u
(
c
ty
lo
s
T
in
tw
g
ti
f

f
f
#
m

n
g

g

for i in ra
 # makes eve
 testChord
 testChord

 if testCh
 # A domi

 # We labe
 # and the f
 testCho

 primeFo
 thi
 firstNo
 firstNo

 # Then we
 # by the m

 chordMe
 chordMe
 test
 display
 display
display.show(

Figure 3. The r
melodically.

5.2 Distributio
Figure 4 de

o help visualiz
cern. These gra
notes, and how
used. From two
a minuet, in re

can be seen tha
ype of bell-cu
ow notes, and

stral space. Ch
The difference
nquiry is wort
ween duration

graphing metho
ion tool for th

formats.

from music21.
from music21.
display 3D grap
mozartStream
 xml.mozar
notes = mozar
g = graph.Plo
 notes, co
g.process()

ange(len(pitc
ery set of 4 notes in
d = chord.Cho
d.duration.ty

hord.isDomina
nant-seventh chor

el the chord with th
first note of the m
ord.lyric = "
 thisMeasu

orm = chord.C
isMeasure.pit
ote = thisMea
ote.lyric = p

e append the chor
measure containing

easure = stre
easure.append
tChord.closed
y.append(chor
y.append(this
()

results of a sea

ons of Notes b
emonstrates th
ze trends that a
aphs plot three

w frequently the
o small excerpt
ed) and by Ch
at pitches in th

urve distributio
many notes to

hopin’s usage j
s in pitch usa
th pursuing fur
and pitch app

ods help resear
heir data, easil

.musicxml imp

.humdrum impo
phs of count, pitch,
= music21.pa

rtTrioK581Exc
rtStream.flat
ot3DBarsPitch
olors=['r'])

ches) - 3):
nto a whole-note c
ord(pitches[i
ype = "whole"

antSeventh():
rd was found in thi

he measure numbe
measure with the Fo
"m. " + str(
ure.measureNu
Chord(
tches).primeF
asure.notes[0
primeForm

rd in closed positio
g the chord.

eam.Measure()
d(
dPosition())
rdMeasure)
sMeasure)

arch for chords

by Pitch and D
he ability of mu
are otherwise d
e features: pitc
ese pitches and
ts of pieces in
opin (a mazurk
he Mozart exa
n, with few hi

oward the midd
jumps through
age suggest th
rther, but no c
ears. Music21

rchers find the
ly switching a

port testFile
ort testFiles
, and duration
arse(
cerpt)
t.stripTies()
hSpaceQuarter

chord
i:i+4])
"

:
is measure.

er
orte Prime form

umber)

FormString
0]

on followed

)

s expressed

Duration
usic21 graphs
difficult to dis-
ch, duration of
d durations are
3/4 by Mozart
ka, in blue), it

ample follow a
igh notes, few
dle of the regi-
hout the piano.
at this line of
connection be-
1’s easy-to-use
best visualiza-

among diverse

es as xml
s as kern

)
rLength(

s
-
f
e
t
t
a

w
-

f
-
e
-
e

perform
chopinS
notes =
g = grap
 not
g.proce

Figure 4
Mozart a

The
distinctiv
tween pi
treme e
d’intensi
first wor
tween pi
(isolated

the same process o
tream = musi
chopinStrea

ph.Plot3DBar
es, colors=[
ss()

4. Differences
and Chopin.

Mozart and
ve individual
itch and durati
example is M
ités” from Qua
rk of total ser
itch and durat

d for clarity), is

on a different work
c21.parse(ke
m.flat.strip
sPitchSpaceQ
'b'])

s in pitch dist

Chopin examp
usage, show
ion. Many oth

Messiaen’s “M
atre études de
rialism. A per

tion, as found
s plotted in Fi

k
rn.mazurka6)
Ties()
uarterLength

tribution betwe

ples, while sh
little correlatio
er pieces do. A

Mode de vale
rythme, perha

rfect correlatio
in the middle
gure 5. An asp

h(

een

howing
on be-
An ex-
urs et
aps the
on be-
e voice
pect of

640

11th International Society for Music Information Retrieval Conference (ISMIR 2010)

the composition that is difficult to observe in the score
but easy to see in this graph is the cubic shape (-x3) made
through the choice of pitches and rhythms. This shape is
not at all explained by the serial method of the piece. Al-
so easily seen is that, although Messiaen uses lower notes
less often, there is not a perfect correlation between pitch
and frequency of use (e.g., 21 B-flats vs. 22 A-flats).

messiaen = converter.parse(
 'd:/valeurs_part2.xml')
notes = messiaen.flat.stripTies()
g = graph.PlotScatterWeightedPitch\
 SpaceQuarterLength(notes, xLog = False,
 title='Messiaen, Mode de Valeurs,
 middle voice')
g.process()

Figure 5. A graph of pitch to duration relationships in
Messiaen, “Mode de valeurs,” showing the correlation
between the two note attributes.

5.3 Pitch Class Density Over Time
In Figure 6, pitch class usage, over the duration of

the composition in the cello part of a MusicXML score of
Beethoven’s Große Fuge, is graphed. Even though the
temporal resolution of this graph is coarse, it is clear that
the part gets less chromatic towards the end of the work.
(We have manually highlighted the tonic and dominant in
this example.)

beethovenScore = corpus.parseWork('opus133.xml')
celloPart = \
 beethovenScore.getElementById('Cello')

given a “flat” view of the stream, with nested information
removed and all information at the same hierarchical level,
combine tied notes into single notes with summed durations
notes = celloPart.flat.stripTies()

g = graph.PlotScatterPitchClassOffset(notes,
 title='Beethoven Opus 133, Cello')
g.process()

Figure 6. A graph of pitch class usage over time in
Beethoven’s Große Fuge.

5.4 Testing Nicolaus de Capua’s Regulae of Musica
Ficta

This example shows a sophisticated, musicological
application of music21. Among his other writings, the
early-fifteenth century music theorist Nicolaus of Capua
gave a set of regulae, or rules, for creating musica ficta
[5]. Musica ficta, simply put, was a way of avoiding tri-
tones and other undesirable intervals and create more
conclusive cadences through the use of unwritten acci-
dentals that performers would know to sing. Unlike the
rules of most other theorists of his time, Nicolaus’s four
rules rely solely on the melodic intervals of one voice.
Herlinger’s study of Nicolaus’s rules suggested that they
could be extremely successful at eliminating harmonic
problems while at the same time being easy enough for
any musician to master. However, as is conventional in
musicology, this study was performed by hand on a few
excerpts of music by a single composer, Antonio Zachara
da Teramo. Using music21 we have been able to auto-
matically apply Nicolaus’s rules to a much wider set of
encoded music, the complete incipits and cadences of all
Trecento ballate (about 10,000 measures worth of music)
and then automatically evaluate the quality of harmonic
changes implied by these rules. Figure 7 shows an ex-
cerpt of the code for a single rule, that a descending ma-
jor second (“M-2”) immediately followed by an ascend-
ing major second (“M2”) should be transformed into two
half-steps by raising the middle note:

n1, n2, and n3 are three consecutive notes
i1 is the interval between n1 and n2
i2 is the interval between n2 and n3

i1 = generateInterval(n1,n2)
i2 = generateInterval(n2,n3)

we test if the two intervals are the ones fitting the rule
if i1.directedName == "M-2" and \
 i2.directedName == "M2":

 # since the intervals match , we add an editorial accidental
 n2.editorial.ficta = \
 Accidental("sharp")

641

11th International Society for Music Information Retrieval Conference (ISMIR 2010)

we also color the affected notes so that if we display the music
 # the notes stick out. Different colors indicate different rules
 n1.editorial.color = "blue"
 n2.editorial.color = "forestGreen"
 n3.editorial.color = "blue"

Figure 7. Applying ficta accidentals with music21.

The results of applying one or all the rules to an in-
dividual cadence or piece can be seen immediately. Fig-
ure 8 shows the rules applied to one piece where they
create two “closest-approaches” to perfect consonances
(major sixth to octave and minor third to unison). These
are the outcomes one expects from a good set of regulae
for musica ficta.

 # get a particular worksheet of an Excel spreadsheet
ballataObj = cadencebook.BallataSheet()
 # create an object for row 267
pieceObj = ballataObj.makeWork(267)
 # run the four rules (as described above)
applyCapua(pieceObj)
 # display the first cadence of the piece (second snippet) by
 # running it through Lilypond and generating a PNG file
pieceObj.snippets[1].lily.showPNG()

Figure 8. Music21 code for automatically adding musica
ficta to Francesco (Landini), De[h], pon’ quest’amor,
first cadence.

In other pieces, Nicolaus’s rules have an injurious effect,
as Figure 9 shows. With the toolkit, we were able to run
the rules on the entire database of Trecento ballatas and
determine that Nicolaus’s rules cannot be used indiscri-
minately. Far too many cases appeared where the pro-
posed ficta hurt the harmony. One of the main advantages
of the music21 framework is making such observations
on large collections of musical data possible.

Figure 9. Francesco, D’amor mi biasmo, incipit after au-
tomatically applying ficta accidentals.

6. FUTURE WORK

The first alpha releases of music21 introduce fun-
damental objects and containers and, as shown above,
offer powerful tools for symbolic music processing.

The next stage of development will add native sup-
port for additional input and output formats, including
MIDI. Further, libraries of additional processing, analy-
sis, visualization routines, as well as new and expanded
object models (such as non-Western scales), will be add-
ed to the system. We are presently focusing on creating
simple solutions for common-practice music theory tasks
via short music21 scripts, and within a year hope to be
able to solve almost every common music theory problem
encountered by first-year conservatory students.

7. ACKNOWLEDGEMENTS

The authors thank the Seaver Institute for their ge-
nerous funding of music21. Additional thanks are also
extended to three anonymous reviewers for their helpful
comments.

8. REFERENCES

[1] Ariza, C. and M. Cuthbert. 2010. “Modeling Beats,
Accents, Beams, and Time Signatures Hierarchically
with music21 Meter Objects.” In Proceedings of the
International Computer Music Conference. San
Francisco: International Computer Music Association.

[2] Buxton, W. and W. Reeves, R. Baecker, L. Mezei.
1978. “The Use of Hierarchy and Instance in a Data
Structure for Computer Music.” Computer Music
Journal 2 (4): 10-20.

[3] Cook, N. 2004. “Computational and Comparative
Musicology.” In Empirical Musicology: Aims,
Methods, Prospects. N. Cook and E. Clarke, eds. New
York: Oxford University Press. 103-126.

[4] Good, M. 2001. “An Internet-Friendly Format for
Sheet Music.” In Proceedings of XML 2001.

[5] Herlinger, J. 2004. “Nicolaus de Capua, Antonio Za-
cara da Teramo, and musica ficta.” In Antonio Zacara
da Teramo e il suo tempo. F. Zimei, ed. Lucca: LIM.
67–89.

[6] Huron, D. 1997. “Humdrum and Kern: Selective
Feature Encoding.” In Beyond MIDI: the Handbook
of Musical Codes. E. Selfridge-Field, ed. Cambrdige:
MIT Press. 375-401.

[7] Knopke, I. 2008. “The PerlHumdrum and
PerlLilypond Toolkits for Symbolic Music
Information Retrieval.” ISMIR 2008 147-152.

[8] Lerdahl, F. and R. Jackendoff. 1983. A Generative
Theory of Tonal Music. Cambridge: MIT Press.

[9] Pope, S. T. 1987. “A Smalltalk-80-based Music
Toolkit.” In Proceedings of the International
Computer Music Conference. San Francisco:
International Computer Music Association. 166-173.

[10] Pope, S. T. 1989. “Machine Tongues XI: Object-
Oriented Software Design.” Computer Music Journal
13 (2): 9-22.

[11] Sapp, C. S. 2008. “Museinfo: Musical Information
Programming in C++.” Internet:
http://museinfo.sapp.org.

642

11th International Society for Music Information Retrieval Conference (ISMIR 2010)

