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ABSTRACT

A computational rhythm analysis system is proposed to
characterize the suitability of musical recordings for rhyth-
mic auditory stimulation, a neurologic music therapy tech-
nique that uses rhythm to entrain periodic physical motion.
Current applications of RAS are limited by the general in-
ability to take advantage of the enormous amount of dig-
ital music that exists today. The system aims to identify
motor-rhythmic music for the entrainment of neuromuscu-
lar activity for rehabilitation and exercise, motivating the
concept of musical “use-genres.” This work builds upon
prior research in meter and tempo analysis to establish a
representation of rhythm chroma and alternatively describe
beat spectra.

1. INTRODUCTION

Digital multimedia is now an integral, and somewhat in-
escapable, aspect of modern life. Personal handheld de-
vices are designed to streamline the acquisition, manage-
ment and playback of large volumes of content as cutting-
edge computing devices approach ubiquity. This trend, in
tandem with the commercial success of devices like the
iPod and iPhone, has encouraged an environment where
both content providers and end-consumers have access to
enormous digital music collections. As a result, individ-
uals are consuming and purveying more music than ever
before and this realization introduces the classic logisti-
cal issue of content navigation; when a library becomes
sufficiently large, more complex paradigms must be devel-
oped to facilitate the searching, indexing, and retrieval of
its items.

Conventional music library systems employ metadata
to organize the content maintained within them, but are
typically limited to circumstantial information regarding
each music track – such as the artist’s name or the year
it was produced – in addition to the somewhat amorphous
attribute of genre. Understandably, stronger information
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concerning the specific nature of a track allows for more
insightful and context-driven organizations or queries of a
library.

The need for content-specific metadata introduces the
challenge that someone, or something, must extract the rel-
evant information necessary. One approach, like the one
taken by the Music Genome Project, is to manually anno-
tate a predetermined set of attributes by a diligent group
of human listeners, a scheme with clear benefits and draw-
backs. While this method is substantiated by the obser-
vation that no computational system has yet matched it-
sreliability, it simply takes a human listener far too much
time to parse music. As an example, it would require about
68 years to listen to every track currently available in the
iTunes Store, 1 which now contains some 12 million tracks.

Needless to say, the development of computational al-
gorithms to extract meaningful information from digital
music provides the ability to process content as fast as an
implementing machine can manage. Many efforts over the
last twenty years proceed to these ends in varying levels
of scope and success. As mentioned however, no single
solution has been able to rival the performance and ver-
satility of even moderately skilled human listeners. It has
been proposed previously that, in this period of continued
research toward improved machine-listening technologies,
algorithms are likely to perform best when developed for a
specific application.

It is in this spirit that a computational system is pro-
posed to characterize the suitability of musical recordings
for rhythmic auditory stimulation, a neurologic music ther-
apy technique that uses rhythm to entrain periodic physi-
cal motion. The remainder of the paper is structured as
follows: Section II addresses the background of motor-
rhythmic music as a use-genre and the physiological moti-
vations; Section III briefly reviews relevant computational
models of human rhythm perception and details the pro-
posed system; Section IV explores the evaluation and visu-
alization of the algorithm results; and Section V discusses
the system behavior, observations, and directions of future
work.

1 With an average track duration of 3 minutes.
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2. BACKGROUND

Music and motion share a long and intertwined relation-
ship throughout human history. Dance comprised an in-
tegral role in many ancient civilizations for spiritual and
social purposes and work song served to synchronize the
physical labor of crews, as was common on sea-faring ves-
sels. In modern times, physical exercise is often tightly
coupled with music, ranging from joggers with personal
media players to fitness classes.

Many individuals empirically find that music facilitates
exercise, and recent advances in music therapy and neuro-
science give this notion credence. Through an increased
understanding of the underlying mechanisms involved in
a human’s physiological response to music, current knowl-
edge supports the position that rhythm serves as a powerful
external timing mechanism capable of entraining gait pa-
rameters and neuromuscular activity [1]. Building upon
this principle, rhythmic auditory stimulation (RAS) is “a
neurological technique using the physiological effects of
auditory rhythm on the motor system to improve the con-
trol of movement in rehabilitation and therapy” [2].

The impact of rhythmic auditory stimuli on movement
can be summarized as three primary components. Sensory
motor control provides priming and timing cues to indi-
vidual in guiding a motor response. Motor programs are
thought to be developed in the brain to control complex
motor movement, where rhythmic stimuli encourage the
creation of more efficient and fluid programs for cyclical
movement. Also, RAS supports goal-directed movement
where motion is cued by anticipation, a key musical ele-
ment, rather than by explicit events like heel strikes.

Appropriate music to achieve RAS, best described as
motor-rhythmic, must exhibit certain criteria: a strong beat-
percept, regular meter, little to no tempo deviation, and
maintain a tempo that encourages the desired entrainment
frequency, referred to in the literature as an individual’s
resonant frequency or limit cycle. The ability to succinctly
describe a class of musical content for a specific applica-
tion motivates its distinction as a use-genre.

A fundamental problem faced in RAS-based research
and applications is the inability to harness the abundance
of available digital music as external entrainment stimuli,
as no solution exists to characterize music for this purpose.
It is for this reason that nearly all uses of RAS are confined
to closely-monitored clinical settings that heavily rely on
human supervision to provide, and sometimes compose,
appropriate motor-rhythmic music. An automated system
would not only facilitate the practice of RAS as a clinical
rehabilitation technique, but also allow the integration of
RAS methodologies on a significantly broader scale, such
as exercise classes or personal fitness technologies.

Some previous systems attempt to link the rhythm, and
more specifically the tempo, of music and physical motion
in the form of running [3]. Each effort, however, incor-
porates the assumption that all content is accurately and
sufficiently described by a single tempo value. Quickly
considering the great diversity of musical content avail-
able, it is intuitive to conclude that this is inadequate. With

these goals in mind, we seek to develop a system capable
of quantifying the motor-rhythmic attributes of digital mu-
sic content for use in applications of RAS.

3. PROPOSED SYSTEM

Computational rhythm analysis algorithms for digital mu-
sic recordings have been extensively researched over the
last twenty years. Early systems were developed to per-
form tempo extraction of individual tracks and excerpts to
ascertain a single tempo value, and beat tracking to an-
notate the location of musical pulses in a recording, both
achieving notable success. More recent efforts aim to im-
prove upon these results by employing alternate mecha-
nisms to fulfill various system tasks or seek to determine
further information, such as meter [4] and beat spectrum
[5]. A more thorough review of recent leading systems is
provided in [6].

Being that human rhythm analysis remains the best per-
forming system, explicit modeling of the human auditory
system would appear to be a viable approach toward the
development of a machine-listening algorithm for rhyth-
mic analysis. By reducing the task of rhythm perception
to the functional components of the overall biological pro-
cess, each stage can be approximated computationally. At
the most rudimentary level, human rhythm perception is
achieved in a two-stage process of event perception and
periodicity estimation.

The idea of determining meaningful events in music
perception is admittedly a loaded topic. However, a seman-
tic debate can be mostly avoided in considering that there
are arguably three orthogonal dimensions in basic music
perception: rhythmic, tonal and timbral. In the context of
characterizing the suitability of music for RAS, the focus
of meaningful events can – and should – be constrained
primarily to rhythmic, or energy-based, events. Neglecting
the other two dimensions serves to emphasize the impor-
tance of rhythmic content.

Periodicity estimation can be computationally achieved
in a variety of different manners depending on performance
concerns, such as causality and complexity. One common
school of thought regarding human beat induction claims
that the phenomena of felt-beat it is achieved through the
resonating, or entrainment, of oscillator banks in the brain
as an interval-period based process [2]. This is a particu-
larly attractive option given the correlation between the os-
cillations of the human body as a dynamic mechanical sys-
tem during movement and those of a mathematical model.

Coincidentally, these are essentially the main system
components presented by Scheirer in [7] and Klapuri et
al in [4]. Building upon the work outlined therein, the pro-
posed system proceeds in the following manner: an input
signal is first decomposed into twenty-two subband com-
ponents via a maximally-decimated filterbank closely ap-
proximating the critical bands of the cochlea and rhyth-
mic events are derived for each. These onset events are
reduced to a single stream of pulses and periodicity esti-
mation is performed using a bank of modified comb-filter
oscillators. The resulting beat spectra is transformed into
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a human listener would easily discern between the two tones and perceive a

rhythm, a computer model using only a filterbank for segregation will not.

Alternatively, tonal or timbral onsets are not necessarily indicative of

motor-rhythmic music, but rather transient energy that can be traced to the

transduction of acoustic events in the cochlea.

With this in mind, a higher-resolution filterbank is presented to

decompose the acoustic waveform into a more accurate representation of motor

rhythmic music perception. Approximating the critical bandwidths of the

cochlea, a multi-level dyadic filterbank is designed to produce twenty-two

maximally decimated channels, as shown in Figure 14.
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Figure 14. A Perceptually–Motivated Dyadic Filterbank - Diagram of the
multi-rate decomposition of an input audio waveform using two complementary
half-band filters.

There are several noteworthy advantages in this signal-decomposition

approach. While the desire for a high-resolution filterbank that models human

Figure 1. A perceptually-motivated dyadic filterbank for
the decomposition of an input audio waveform.

Band Range (Hz) Band Range (Hz)
1 0 – 125 12 1750 – 2000
2 125 – 250 13 2000 – 2500
3 250 – 375 14 2500 – 3000
4 375 – 500 15 3000 – 3500
5 500 – 625 16 3500 – 4000
6 625 – 750 17 4000 – 5000
7 750 – 875 18 5000 – 6000
8 875 – 1000 19 6000 – 8000
9 1000 – 1250 20 8000 – 10000
10 1250 – 1500 21 10000 – 12000
11 1500 – 1750 22 12000 – 16000

Table 1. Frequency ranges for the resulting subband com-
ponents.

rhythm chroma over time, from which global features are
calculated to compactly describe the entirety of a music
track.

3.1 Cochlear Modeling

At this point in time, it is commonly held that the hu-
man auditory system is reasonably understood so far as the
point where electrical signals are encoded and transmitted
to the brain via the auditory nerve. Most stages prior to
neural processing though, such as diffraction of the pinnae
or dynamic compression from the bones of the inner ear,
are not overly integral to the perception of rhythm. How-
ever, the cochlea does perform a coarse frequency decom-
position as transduction occurs across the critical bands of
the organ. Scheirer observed that the perception of rhythm
is maintained when amplitude modulating white noise with
the envelopes of as few as four subbands of an audio wave-
form [7]. Therefore, it is proposed that monitoring the fluc-
tuation of energy in each critical band serves as a reason-
able approximation of preconscious observation of mean-
ingful rhythmic events.

Motivated in part by the system developed by Tzane-
takis et al [8], a multi-resolution time-domain filterbank
is used to decompose an input waveform into twenty-two
subbands. Whereas wavelet processing implements com-
plimentary half-band filters and a true pyramidal structure,
the filterbank divides frequency content similarly to the
cochlea, the ranges of which are listed in Table 1 and dia-
gramed in Figure 1.

It is important to note that, given the cascaded nature of

the structure, non-linear phase distortion introduced by IIR
filters is unacceptable and errors will propagate differently
in each band. This is particularly troublesome in the con-
text of a system developed to analyze the temporal relation-
ship between events. Therefore, half-band FIR filters of
Daubechies’ coefficients are chosen, and appropriate all-
pass filters are designed to flatten the group delay at each
successive level to ensure alignment of the resulting sub-
band components. The accumulative delay and complexity
of the filterbank decomposition is mainly dependent on the
length of the Daubechies’ filter shape selected (N = 40 in
our experiments), though the impact of using different fil-
ter lengths on performance has yet to be explored.

3.2 Rhythm Event Detection

Following decomposition, each subband signal is processed
identically to identify rhythm event candidates. Consistent
with [7] and [4], subband envelopes are calculated by half-
wave rectifying and low-pass filtering each subband wave-
form with a half-Hanning window, defined by Equations 1
and 2.

XHWRk [n] = max(Xk[n], 0) (1)

Ek[n] =

Nk−1∑
i=0

XHWRk [n] ∗Wk[i− n] (2)

Subband envelopes are then uniformly down-sampled
to 250 Hz, influenced by the temporal resolution of the hu-
man auditory system, and compression is applied to the re-
sulting signals according to Equation 3. Event candidates
are calculated by filtering the subband envelopes with the
Canny operator defined in Equation 4, commonly used in
digital image processing for edge detection and first ap-
plied to audio processing in [9]. The frequency response
of the Canny operator is more desirable than that of a first-
order differentiator, being band-limited in nature and serv-
ing to attenuate high-frequency content.

ECk [n] =
log10(1 + µ ∗ Ek[n])

log10(1 + µ)
(3)

C[n] =
−n
σ2

exp(−n
2

2σ2 ), where n = [−L,L] (4)

At this stage, event candidates effectively represent the
activation potential of their respective critical bands in the
cochlea. Though there are multiple hair cell transduction
theories concerning the significance of place and rate on
pitch perception, the fact remains that temporal masking
is caused by the necessary restoration time inherent to the
chemical reaction associated with neural encoding. Known
as the precedence effect, sounds occurring within a 50 mil-
lisecond window–about 10 milliseconds before and 40 mil-
liseconds behind–are perceived as a single event. This phe-
nomena is modeled by a sliding window to eliminate im-
perceptible or unlikely event candidates.

Rhythm event detection concludes with the summation
of subband events to a single train of pulses and a zero-
order hold to reduce the effective frequency of the pulses.
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Figure 2. Magnitude response of a typical comb-filter
(dashed line) and cascaded with a Canny filter (solid line).

A single-sample pulse is the half-wave rectified counter-
part to a single period of the highest frequency that can be
represented by the current sampling rate. Rhythmic fre-
quency content, such as the tactus or felt-beat, typically
exists on the range of .25–4 Hz (or 30–240 BPM), with
tatum and metrical levels falling just above and below that
range, respectively. Therefore, a zero-order hold of 50 ms
is applied to band-limit the signal, constraining frequency
content to 20Hz while maintaining the temporal accuracy
necessary.

3.3 Periodicity Estimation

In continuing with modeling preconscious rhythm audi-
tion, periodicity estimation is performed using a set of tuned
comb-filters spanning the frequency range of interest. This
method was pioneered as a computational model of rhythm
induction by Scheirer in [7], and has since been incorpo-
rated in a variety of derivative works due to reliability and
modest computational complexity. Importantly, modifica-
tions are introduced here to improve performance and tai-
lor the model to better suit the target application.

Unlike previous systems that aim to set a constant reso-
nance half-life across each oscillator, we propose that per-
ceived resonance of a pulse train is dependent not on time
but the number of pulses observed. It seems intuitive that
a 40 BPM click track at 40BPM should take longer to per-
ceive at the same strength as one at 180 BPM. Though
a more perceptually-motivated method may better capture
this nuance, the value of α is set at 0.825 to require a pe-
riod of regularity before resonating, while maintaining the
capacity to track modulated tempi.

Beat spectra is computed over time for each delay lag T ,
as defined by the comb-filter difference equation in Equa-
tion 5, varied linearly from 50–500 samples, inversely span-
ning the range of 30–300 BPM. Each comb-filter is also
cascaded with a band-pass filter – the Canny operator –
to augment the frequency response of the periodicity es-
timation stage. As shown in Figure 2, this attenuates the
steady-state behavior of the comb-filter effectively lower-
ing the noise floor, while additionally suppressing reso-
nance of frequency content in the range of pitch perception
over 20Hz. The Canny filter is also corrected by a scalar
multiplier to achieve a passband gain of 0 dB.

yk[n] = (1 − α) ∗ x[n] + α ∗ yk[n− Tk] (5)
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Figure 3. Example of a tempogram and chroma for
bonus5.wav, from the MIREX practice data set.

Instantaneous tempo is calculated by low-pass filtering
the energies of each oscillator over time. Scheirer previ-
ously described this process of determining the energy in
the delay line over the length of the resonance period, and
is analogous to computing an unweighted-average. A Han-
ning window of length Wk, set corresponding to the de-
lay lag of its respective comb-filter channel and given in
Equation 6, serves as an estimation of “resonance mem-
ory.” This time-frequency representation is referred to as
a tempogram and estimates perceived tempo strength over
time, an example of which is shown in Figure 3.

Rk[n] =
1

Wk

Tk−1∑
i=0

wk[i] ∗ (yk[n− i])2 (6)

3.4 Chroma Transformation

As observed by Kurth et al [5], the duality of pitch and
rhythm allows the representation of beat spectra in terms of
chroma. In the same way that all pitches can be described
as having a height and class, various metrical levels exhibit
a similar relationship. Octave errors, a typical issue faced
in tempo extraction, are mitigated by eliminating the sub-
jective aspect of rhythm and reducing the task to a purely
objective one. Fundamental tempo class is especially im-
portant to RAS-applications, and is the ultimate focus of
the system.

Rhythm chroma is computed by first transforming beat
spectra to a function of frequency, rather than period, scaled
by the base-2 logarithm and referenced to 30 BPM. Three
tempo octaves (30–60, 60–120, and 120–240 BPM) are
collapsed by summing beat spectra with identical chroma,
as detailed in Equation 7. Understanding this representa-
tion is facilitated by plotting amplitude as a function of
log2 tempo class in the polar coordinate system, shown in
Figure 3, such that the harmonic structure of a given input
becomes readily apparent.

For clarity, rhythm chroma consists of a radial ampli-
tude and an angular frequency, referred to as a class and
measured in units of degrees or radians. The transforma-
tion from tempo, in BPM, to class, in normalized radians,
is defined by Equation 8. This is a many-to-one mapping,
and is not singularly invertible. Visualizing rhythm chroma
in this alternative manner allows for deeper insight into the
nature of musical content and the extraction of novel fea-
tures, and will be discussed in greater detail shortly.

72

11th International Society for Music Information Retrieval Conference (ISMIR 2010)



  0.05

  0.1

  0.15

  0.2

30

210

60

240

90

270

120

300

150

330

180 0

  0.02

  0.04

  0.06

  0.08

  0.1

30

210

60

240

90

270

120

300

150

330

180 0

Figure 4. Chroma diagrams for a 148 BPM click track,
before and after tempo automation. Note the difference in
scale and amplitude of the fundamental.

Ψn[ω] =
1

L

L−1∑
i=0

Rn[ω + 2π ∗ k] (7)

ωclass = log2

BPM

BPMreference
(8)

3.5 Feature Vector Representation

A single rhythm chroma is obtained for a track by sum-
ming over time and normalizing by the length. Several key
features of interest are emphasized by producing a global
chroma, though this set presented is not intended to be
exhaustive by any means. Beat strength is effectively de-
scribed by the amplitude of the largest lobe, and fundamen-
tal tempo class is given by the angle of this peak. Other
lobes are actually subharmonics of the fundamental, and
provide further information about the rhythmic composi-
tion. It is important to note that the radius and angle of all
harmonics, the fundamental as well as the partials, are sig-
nificant, as they describe what is best referred to as rhyth-
mic timbre. Amplitude ratios between the fundamental and
the various partials serve as a metric of beat salience– the
clarity of the prevailing rhythmic percept– as well as a con-
fidence interval regarding system reliability.

An added benefit of averaging the rhythm chroma is
found in the fact that frequency modulations of the funda-
mental chroma manifest as a widening of the primary lobe.
Due to the behavior of comb-filter resonance, tempo devi-
ations will inherently attenuate the amplitude of the funda-
mental. From these observations, optimal music for RAS
will exhibit a large, narrow and clearly-defined fundamen-
tal with smaller, though still clearly-defined, partials.

4. EVALUATION

Since there are, to our knowledge, no previous attempts to
mathematically quantify the motor-rhythmic attributes of
musical content, system behavior is explored for a small
set of content defined as ground-truths. Initially, we ex-
amine the responses for a constant-tempo click track and a
frequency-modulated version of itself. For familiarity, se-
lect content from the MIREX tempo tracking practice data
is then processed by the proposed system.

Time

BP
M

Figure 5. Image of the tempo automation used to mod-
ulate the tempo of the click track, and the corresponding
chromagram after analysis.

The prominent role of metronomes and click tracks in
past RAS research is indicative of the fact that they are
the most basic form of motor-rhythmic stimuli. A thirty-
second audio click track was created using a sampled clave
in Propellorhead’s Reason software and the tempo was set
at 148 BPM. The software also offers the capability of
tempo automation and allowed for the creation of a sec-
ond, frequency-modulated click track to model an expres-
sive performance. As shown in Figure 4, the constant-
tempo click track produces a chroma with clearly defined
fundamental and several smaller subharmonics, while the
chroma lobes of the frequency-modulated click track are
smeared and roughly half the amplitude. While salient,
given the ratio of the significant peaks, the widening of the
lobes is a direct result of the tempo variance in over time.
Importantly, a chromagram is shown above the tempo au-
tomation curve used to modulate the tempo of the click
track in Figure 5. Though the chromagram incurs some
delay in tracking the modulation of the click track, the sys-
tem is able to follow the tempo throughout.

Though informative and worthwhile examples to con-
sider, click tracks are not the primary focus of this system
and it is necessary to also examine the chroma of real mu-
sic data. For ease of access and familiarity within the re-
search community, musical content is selected from prac-
tice data available on the MIREX website [10]. The set
of excerpts contains a variety of different styles, but there
are two tracks in particular – train8.wav and train12.wav
– that serve as prime examples of what is and what is not
motor-rhythmic music.

Figure 6 shows the chroma for the two separate tracks.
It is evident from the diagram that train8.wav, an elec-
tronic piece by Aphex Twin, is significantly more motor-
rhythmic than train12.wav, an orchestral performance of a
composition by J. S. Bach, with a beat strength nearly 40
times greater in amplitude. Despite the lack of harmonic
definition in the chroma of the orchestral track, this system
is capable of identifying the correct fundamental class for
both excerpts according to metadata provided.
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Figure 6. Instances of good (left) and poor (right) motor-
rhythmic music.
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Figure 7. Chroma representations for non-binary meter
tracks performed in 6/8 (left) and 7/8 (right).

5. DISCUSSION

Content analysis algorithms for the computation of feature-
specific metadata will no doubt play a vital role in the fu-
ture as digital music libraries continue to increase in vol-
ume seemingly without bound. The system presented here
details one such application of a relatively straightforward
use-genre that extends previous machine listening efforts.
The task of characterizing music for RAS benefits greatly
from the circumstances of the context in which it is used,
wherein the most relevant attributes of motor-rhythmic mu-
sic are objectively quantifiable.

Furthermore, representing the global rhythm in terms of
chroma allows for a compact description of the temporal
structure of music. Succinctly stated, the degree of tempo
variation inherent in a track influences both the width and
height of the chroma partials. Any music track can be rea-
sonably approximated as a set of rhythmic partials with
corresponding amplitudes, angles, and widths.

5.1 Future Work

One of the more interesting observations to result from
this work is the realization that the harmonic structure of
rhythm chroma may provide information about the meter
and other time segmentations. Figure 7 shows the global
chroma of two tracks of note from the MIREX practice
data set: train5.wav and bonus3.wav. These tracks are of
particular interest as they are not binary meter; the former
is 6/8 and the latter is 7/8. The chroma of train5.wav
is really only comprised of a fundamental and a closely-
competing subharmonic at a difference angle of about 150◦.

Alternatively, bonus3.wav is comprised of a variety of sub-
harmonics, but the partial located 70◦ from the fundamen-
tal is not even remotely present in any other chroma repre-
sentations observed. More work is necessary to determine
the true depth of the information contained within these
data.
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