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ABSTRACT

The automatized beat detection and localization have been
the subject of multiple research in the field of music infor-
mation retrieval. Most of the methods are based on onset
detection. We propose an alternative approach:

Our method is based on the “Forward-Backward seg-
mentation”: the segments may be interpreted as attacks,
decays, sustains and releases of notes. We process the seg-
ment boundaries as a weighted Dirac signal. Three meth-
ods devived from its spectral analysis are proposed to find
a periodicity which corresponds to the tempo.

The experiments are carried out on a corpus of 100 songs
of the RWC database. The performances of our system on
this base demonstrate a potential in the use of a “ Forward-
Backward Segmentation” for temporal information retrieval
in musical signals.

1. INTRODUCTION

The automatized beat detection and localization have been
the subject of multiple research in the field of music in-
formation retrieval. The study of beat is indeed important
as the structure of a music piece lies in the beat. West-
ern music uses however different levels in the hierarchy of
scale measuring time. We have to distinguish the tatum
which is “the regular time division that mostly coincides
with all note onsets” [3] from the tactus which is defined
as the rate at which most people would clap their hands
when listening to the music [8]. Here, we look for the tac-
tus, which will be named tempo and measured in beat per
minute (BPM).

Several methods have been suggested in order to extract
the tempo information from an audio signal. Most of them
use an onset detection method as onset localization carries
the temporal structure that leads to the estimation of the
tempo. Theses methods use different observation features
in order to propose a list of onset positions. They are very
dependent on that detection. Dixon’s first algoritm [4] uses
an energy based detector in order to track the onset posi-
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tions. Then a clustering is performed on the inter-onset-
interval values. Some best clusters are chosen as possible
hypothesis. A hypothesis is finally validated with a beat
tracking.

In Alonso’s algorithm [1], onset positions are deducted
by using a time-frequency representation and a differen-
tiator FIR filter to detect sudden changes in the dynamics,
timbre or harmonic structure. The tempo is then deduced
using either the autocorrelation or spectral product.

Klapuri [9] proposes a more complex way of extract-
ing the onset positions. The loudness differentials in fre-
quency subbands are computed and combined in order to
create four accent bands. This aims at detecting harmonic
or melodic changes as well as percussive changes. Using
comb filter resonators to extract features, and probalistic
models, the values of tatum, tactus and measure meter are
computed.

Uhle [12] suggests a method based on the segmenta-
tion of the signal into long-term segments corresponding
to its musical structure (for example, the verses and cho-
rus of a song). The amplitude envelope of logarithmically
spaced frequency subbands is computed; its slope signal
aims to represent accentuation on the signal. The analysis
of an autocorrelation function on 2.5 second segments in-
side each long-term segment gives the tatum estimator. A
larger-scale analysis over 7.5 second segments is then per-
formed in order to give values corresponding to the mea-
sure. The local maxima positions of the autocorrelation
function are finally compared with a bank of pre-defined
patterns in order to define the best value of the tempo on
the long term segment.

Dixon [5] has proposed an alternative method to onset
calculation. The signal is splitted into 8 frequency bands
and autocorrelation is performed on each smoothed and
downsampled subband. The three highest peaks of each
band are selected and combined in order to determine the
final tempo estimation.

Another algorithm is that of Scheirer [10]. This algo-
rithm performs a comb filterbank that seeks for periodi-
cally spaced clock pulse that best matches the envelope of
6 frequency subbands.

Tzanetakis [11] suggests a method based on a wavelet
transform analysis. This analysis is performed over 3 sec-
ond signal segments with 50% of overlap. On each seg-
ment, amplitude envelope of 5 octave-spaced frequency
bands is extracted. Autocorrelation is then computed. Three

27

11th International Society for Music Information Retrieval Conference (ISMIR 2010)



kind of autocorrelation analysis are computed in order to
estimate the value of the tempo. The first one is the me-
dian of highest peak of the sum of the envelopes over every
window. The second one returns the median value of the
highest peak on each subband and each segment. The last
one computes several best peaks from the autocorrelation
on the sum of every envelope and then chooses the most
frequent value.

Our method is based on the analysis of an automatic
segmentation of the signal into quasi-stationary segments :
the segments may be interpreted as attacks, decays, sus-
tains and releases of notes. So we propose to process the
segment boundaries in order to find a periodicity which
would correspond to the tempo.

In section 2, we describe the segmentation used as a
front-end, the analysis of this segmentation in the frequency
domain and the different methods we use to extract the
value of the tempo in BPM. In the last part, we present
the results of our experiments on the RWC [6, 7] corpus.

2. METHOD

Our method relies on the detection of quasi-stationnary
segments in the audio signal waveform. A frequency anal-
ysis of the boundaries is then performed in order to find the
most present periodicities and thereby estimate the tempo
consequently.

The algorithm is based on three steps :

• Segmentation

• Boundary frequencial analysis

• Tempo extraction

2.1 Segmentation

We segment the signal using the “Forward Backward Di-
vergence” [2]. The signal is assumed to be a sequence of
quasi-stationnary units, each one characterized by the fol-
lowing gaussian autoregressive model :{

yn =
∑
aiyn−i + en

var(en) = σ2
n

(1)

where yn is the signal and en an uncorrelated zero mean
Gaussian sequence.
As the variance σn is constant over an unit and equals σ,
the model of each area is parametered by the following
vector :

(AT , σ) = (a1, ..., ap, σ) (2)

The strategy is to detect changes in the parameters, using a
distance based on the mutual conditional entropy. A sub-
jective analysis of the segmentation shows a sub note seg-
mentation and the location of attacks, sustains and releases.

For a solo musical sound, the segments of the signal
correspond to the different steps of a note. On Figure 1,
we present a solo note of trombone. The note is segmented
into four parts, which correspond to the attack, the sustain
and the release. Note that the attack and decay phases of

some notes are often grouped together into a single seg-
ment. In such cases, the attack period is too short for the
segmentation algorithm as it imposes a minimal length to
initiate the autoregressive model.

Figure 1. Segmentation of a trombone note. a) Waveform,
b) Spectrogram, c) Time. 1) Attack, 2) Sustain, 3 & 4)
Release. The vertical lines are the boundaries of the seg-
ments. The first boundary correspond to the onset.

As they represent a rupture point of the signal, we as-
sume that onset localizations, containing the tempo infor-
mation, are included in the list of boundaries time. We
therefore focus on positions of the boundaries.

2.2 Boundary Frequencial analysis

The main objective is to find a periodicity in the localiza-
tion of the boundaries that would be the effect of the song’s
rythmical pattern. In order to find the periodicity, a signal
bw(t) is created. This signal is a weighted Dirac signal,
where each Dirac is positioned at the time of a boundary
tk.

The Diracs are weighted in order to give more influence
to the boundaries located at times that are most likely to be
onsets. Asuming that at onset times, an increase of energy
is observed, each Dirac is weighted by the difference be-
tween the energy of the spectrum computed on 20 ms after
and before tk ( resp. e+k and e−k ).

w(tk) = e+k − e
−
k (3)

We obtain bw(t) (see an example on Figure 2) :

bw(t) =
N∑
k=1

δ(t− tk)w(tk) (4)

where N is the count of boundaries, tk is the time of the
kth boundary.

We compute Bw, the Fourier transform of bw to extract
frequency information of this signal.
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Figure 2. Representation of a bw(t)

The expression of the Fourier transform Bw(f) is :

Bw(f) =
∫

R

N∑
k=1

δ(t− tk)e−2iπftw(tk)dt

=
N∑
k=1

e−2iπftkw(tk)

(5)

This formula offers the advantage of being fast to cal-
culate.

2.3 Tempo extraction

2.3.1 Spectrum analysis

We analyse the spectrum Bw on the range of frequencies
30 - 400 BPM (an example is given on Figure 3). We find
the positions of the highest peaks as a base for each deci-
sion.

We then extract the positions and energies of the main
peaks in terms of energy. As it is computed over a long
time, the peaks of the spectrum are high and narrow, which
makes the localization easier.

Figure 3. Spectrum |(Bw(f)|2 of a whole song.

This localization is obtained by detecting the local max-
ima. This algorithm considers a point p and its two direct
neighbors. p is a local maxima if

|Bw(p− 1)|2 < |Bw(p)|2

|Bw(p+ 1)|2 < |Bw(p)|2
(6)

We then choose several of the highest peaks with the
only constraint that the distance between two peaks has to
be greater than 3 BPM. Only a few peaks are really higher
than others in the spectrum, so we choose to select only
the four greatest peaks in terms of energy, the position se-
lected for further peaks would be considered as noise. Let
P = {p1 p2 p3 p4} be the list of selected peak positions
under the constraint : |Bw(pi)|2 > |Bw(pi+1)|2. We ob-
serve that every selected peak carries information that can
be exploited in order to find out the value of the correct
tempo. We finally apply a decision algorithm on P to find
the tempo.
Two strategies are concidered. The first one looks for the
correlation between the length of the segments and each
value p in the temporal domain. The second one tries to
find the best comb matching the spectrum.

2.3.2 “Inter-Boundaries-Intervals decision”

The first approach is in the temporal domain, and uses the
boundaries of the segmentation. Theses boundaries are fil-
tered on their weights in order to keep only the boundaries
where a high increase of energy is experienced: we only
keep the boundaries with a significant weight. This filter-
ing is computed in order to keep instants which are most
likely onset instants. The set I of intervals between each
couple of following boundaries is then computed.

For each pi, we perform the pseudo periods correspond-
ing to 1/4, 1/3, 1/2, 1, 2, and 3 times pi. These pseudo
periods have been chosen as they correspond to the period
of half, quarter, eighth and sixteenth note in duple meter or
triple meter.

The scoreNum(pi) is the number of intervals in I whose
durations correspond to one of these pseudo periods.

The estimated tempo p̂b is given by :

p̂b = argmax
pi,i=1,...,4

(Num(pi)) (7)

2.3.3 “Comb decision”

The second method uses the spectrum and is in frequency
domain. This method is based on the first peak p1, as we
assume that it is always significant for the tempo detection.
We then consider 7 tempi, which are 1

4p1, 1
3p1, 1

2p1, 2p1,
3p1 and 4p1 , as well as p1 itself, noted tpi, i = 1, ..., 7
. We only keep, among this list of tempi, those which are
in the range 30 - 240 BPM, assuming that a value outside
of these bounds would hardly be considered as the main
tempo.
For each tempo value tpi, we compute the product of the
spectrum and a Dirac comb with the 10 harmonic teeth cor-
responding to the tempo value.

The mean amplitude value of the so filtred spectrum
gives a score Ampl(tpi).

The estimated tempo p̂c is given by

p̂c = argmax
tpi,i=1,...,7

(Ampl(tpi)) (8)
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2.3.4 Combination of the strategies

In order to take advantage of both methods, we propose a
combined decision algorithm. Using pc1 and pc2 the two
best tempi returned by the “Comb decision” algorithm, we
apply the “Inter-Boundaries-Intervals” strategy to compare
the two values Num(pc1) and Num(pc2).

The tempo with the best Num is chosen as a final deci-
sion.

3. EXPERIENCE

3.1 Corpus

We choose to test our method on the part of the RWC
database [6, 7] that is BPM-annotated. This corpus has
been created in order to provide a benchmark for experi-
mentation on music information retrieval and is now well
known and widely used in this research field. It therefore
seems interesting to use it in order to facilitate comparisons
between our algorithm’s results and others. This corpus is
a compilation of 100 tracks of Japanese Pop songs. Each
song lasts from 2 minutes 50 seconds to 6 minutes 07 sec-
onds.
As the method needs no learning, our experiment protocol
consists in applying our algorithm on each full track.

3.2 Experiments

The methods are based on the Forward Backward diver-
gence segmentation: in order to implement this algorithm,
we choose to use the parameters defined in [2] for voiced
speech signal. No specific adaptation is performed for mu-
sic.

As previously mentioned, we observe that the highest
peak of the spectrums has a strong link with the tempi.
Over the 100 tracks computed, the highest peak position
is linked with the tempo 98 times: it is located twice on
a position corresponding to the half of the ground-truth
tempo, 3 times on the correct position, 60 times on the
double tempo and 32 times on a position corresponding to
4 times the tempo.

To assess quantitatively each version of our method, we
introduce a confident interval : the tempo value is con-
sidered as “Correct” if its difference with the ground-truth
value at strictly less than 4 BPM. The ratios and multiples
are considered good when their distance to 2, 3, 4, 1/3 or
1/2 is strictly less than 0.03.

Two metrics are computed in order to evaluate the accu-
racy of each method. The first one is the ratio of correctly
estimated tempi over the whole corpus.

Accuracy1 =
# of correctly estimated tempi

L
(9)

where L is the number of evaluated tracks.
The second one is more flexible and assumes that the

tempi corresponding to half, third double and three time
the annotated tempo are correct. This metric is computed
taking take into account that tempo value is subjective and
can vary from one listener to another.

Accuracy2 =
# of correct or multiple tempi

L
(10)

3.2.1 “Inter-Boundaries-Intervals decision”

The filltring of the boundaries involves a threshold: the se-
lectionned boundaries have a weight greater than 10% of
the maximum weight among the boundaries. The detailled
results of the Inter-Boundaries-Intervals decision are visi-
ble in Table 1. The global result are 56 % of Accuracy1
and 95% of Accuracy2.

Ratios with the correct tempo
1/2 1 2 4 No link Acc1 Acc2
7 56 28 1 5 56 95

Table 1. “Inter-Boundaries decision Decision” : Number
of music tracks in function of the ratios between the esti-
mated tempo and the ground truth value. Accuracy1 and
Accuracy2 are deducted.

3.2.2 Comb decision

In order to optimize the results of this method and to be
sure to get the peak value on each hypothesis multiple, the
returned value is the maximum of 7 equally spaced tempi
in a neighborhood of ±1 BPM around each p multiple
value. Applying this method to our corpus and returning
the best two hypothesis, we observe that the ground-truth
tempo is present for 98 of the tracks. The global result of
this method, choosing only the best comb as result, is 64%
for Accuracy1 and 96% for Accuracy2. The detailled re-
sults are visible in Table 2.

Ratios with the correct tempo
1/2 1 2 3 No link Acc1 Acc2
3 64 29 0 4 64 96

Table 2. “Comb Decision” : Number of music tracks in
function of the ratios between the estimated tempo and the
ground truth value. Accuracy1 and Accuracy2 are de-
ducted.

3.2.3 Combination of the strategies

As shown in Table 3, the combination of the two previous
methods largely improves the results. The results in terms
of Accuracy1 is 78% and 93% in terms of Accuracy2.

Ratios with the correct tempo
1/2 1 2 3 No link Acc1 Acc2
13 78 2 0 7 78 93

Table 3. Percentage of the returned values ratio of the
ground truth for the Fusion of the two algorithms
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The differences between their results is essentially due
to the detection of the “double tempo”. This type of error
dissapears. The number of serious errors is stable.

3.3 Discussion

The 2004 MIREX evaluation was the last MIREX session
which the task of tempo estimation was evaluated. These
results were obtained on a corpus of 3199 tempo-annotated
files ranging from 2 to 30 seconds, akd divided into three
kinds : loops, ballroom music and songs exerpts.

The algorithms evaluated during this campaign are de-
tailed and compared in [8]. The Klapuri’s algorithm [9] ob-
tained the best score on this evaluation with an Accuracy1
of 67.29% and an Accuracy2 of 85.01% among the total
set of evaluated signals and reaching 91.18% ofAccuracy2
on the song’s subset.

An exhaustive search for the best combination of five
algorithms, using a voting mechanism, has also be com-
puted. The best combination achieved 68% in terms of
Accuracy1, whereas the best Accuracy2 reached 86%.

The MIREX corpus and the RWC part we use are dif-
ferent (in particular in terms of length). Nevertheless, our
results are comparable and experiments will be realized on
short extracts of the songs in order to define the robustness
of our method.

4. CONCLUSIONS

In this paper, we presented a tempo estimator based on an
automatic segmentation of the signal into quasi-stationnary
zones. The use of this segmentation for the tempo induc-
tion seems to be rather significant: the spectrum of the
Dirac signal derivate from the segmentation shows a pre-
dominant value directly linked with the tempo on 98% of
our tests. The three methods which exploit this property
have good performence. These methods are still rather
simple, so we will investigate some potential improvements:

• Some experiments will be realized in order to eval-
uate the sensitiveness of our method to the use of
short extract. Good results would allow the use of
this method on slipping windows of few dozens of
second. Such treatment could be realized in order to
detect changes in the tempo.

• The use of the phase of Bw(p) seems promissing for
the developpement of a precise onset localizator.
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