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Abstract

System models have recently been introduced to model organisations and evaluate their vulnerability
to threats and especially insider threats. Especially for the latter these models are very suitable, since
insiders can be assumed to have more knowledge about the attacked organisation than outside attack-
ers. Therefore, many attacks are considerably easier to be performed for insiders than for outsiders.
However, current models do not support explicit specification of different behaviours. Instead, be-
haviour is deeply embedded in the analyses supported by the models, meaning that it is a complex,
if not impossible task to change behaviours. Especially when considering social engineering or the
human factor in general, the ability to use different kinds of behaviours is essential. In this work we
present an approach to make the behaviour a separate component in system models, and explore how
to integrate in existing models.
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1 Introduction

Insider threats pose difficult problems for organisations. By their very nature, insiders have access to
and knowledge about the organisation’s infrastructure, data, and workflows, and they use these in their
everyday work to fullfil tasks. Determining whether a certain action by an insider is legitimate (regular
work) or illegitimate (insider attack), is close to impossible because the insider’s purpose for performing
the action is not observable. This problem exists both if the action involves assets that the insider is not
allowed to access, and even more so, if the access to the asset is allowed.

Organisations often distinguish between threats originating from the inside and the outside. While
this in principle makes sense (and many organisations are much better prepared against attacks from
the outside than against those from the inside), it is also risky. If an outsider is able to get an insider
to perform a certain action, the insider becomes, voluntarily or involuntarily, part of the attack. Social
engineering is a typical kind of attack used in these scenarios [16]; it aims at making an insider perform
an action that he is allowed to perform, were it part of his daily work.

For various reasons, neither regulating insider actions nor surveilling them are viable options. Uber-
regulation easily results in disgruntled employees, and the human mind can be ingenious when having
to circumvent security precautions and policies. Uber-surveillance, on the other hand, is illegal in many
parts of the world, and even if it is admissible, it is unclear how to draw meaningful conclusions from
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huge amounts of the logged or observed data. The risk of both false positives and false negatives easily
becomes too high.

What seems a viable option is to analyse an organisation’s vulnerability to insider threats before an
attack, or to use tool support after an attack to narrow down which actions might have occurred as part of
the attack [18]. To support the analysis of organisation, several system models have been introduced that
model organisations’ infrastructure and actors. Examples for such models include ExASyM [18], Por-
tunes [7], and ANKH [17]. All these models follow similar ideas, namely the modelling of infrastructure
and data, and analysing the modelled organisation for possible attacks.

In all the system models mentioned above, the attacker is assumed to be almighty: he has perfect
knowledge about the infrastructure, he knows the policies enforced, and he knows where data and keys
are located. This can be compared to white box-testing of software components or Dolev-Yao attackers
in protocol analysis [8]. Assuming so strong an attacker model implies that the system models only can
give upper bounds for vulnerabilities, since the analysis has to assume that all actions that are allowed to
be performed in the model also will be performed by some actor.

The system models mentioned above have another, more important shortcoming: the attacker model
and the attacker behaviour are tightly integrated into the system model and the analysis. This is an unde-
sirable property; it means that experimenting with different (insider) behaviours and types of insiders is
close to impossible [4]. It is exactly this tight integration that hampers the models’ applicability to anal-
yses of an organisation’s vulnerability to different kinds of attacks, to analyses of the effect of changed
employee behaviour.

In this work we propose a modular system model that makes actor behaviour an explicit component
of the model. This modularisation provides the necessary support to investigating the effect of different
kinds of behaviours. By using this modular approach, system models will be able to perform new kinds
of behaviour-based analyses. But the modular system model also supports implementing the analyses
and behaviours that the current models provide, thus enabling a smooth transition.

The rest of this paper is structured as follows. After an overview of system models in the next section,
we discuss different kinds of insiders in Section 3. In Section 4 we present the new, modular design of
system models, and describe our experiences with the application of this design to a new version of
ExASyM in Section 5. Section 6 concludes the discussion, and presents current and future research
directions.

2 Background

In this section we briefly describe the three main formalisms for modelling organisations and analysing
security threats in them: ExASyM [18], Portunes [6], and ANKH [17]. The section concludes with a
discussion of the limitations of those formalisms.

The ExASyM modelling formalism was initially designed with a focus on modelling not only the
logical structure and the actors interacting with or within a system, but also the physical infrastructure of
the system, enabling convenient and precise modelling of organisations and their physical environments.
ExASyM models consist of separate domains for infrastructure (physical objects), actors (processes and
humans), and data items (data and keys) [18, 19]. Elements that belong to different domains can be
connected: actors can be at different locations or move between them; data can be carried by actors
or be placed in a location. A number of analyses can be applied to ExASyM models to reason about
different security properties [18], including graph-based analyses and fully automated static program
analyses [19]. The semantics of ExASyM is formalised using a variant of the Klaim family of process
calculi [1, 5, 10]. In addition to facilitating formal reasoning and proofs of correctness, the formal
semantics also provides a foundation for developing advanced analyses and the application of formal
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methods.
Portunes is another formalism for modelling systems that comprises the physical, digital, and social

domains into a single environment [6]. Similar to ExASyM, the formal semantics is based on the Klaim
family of languages [1, 5, 10]. Accordingly, models in Portunes consist of nodes, actions, and processes.
However, it extends the Klaim base-calculus with support for mobility of nodes instead of processes.
It also uses the concept of layers and containment in order to represent to which domain an actor or
data element belongs. The social domain is represented by low-level policies that describe under what
conditions a person trusts another person. In this way one can delegate a task to someone else; in Portunes
this is used to introduce a concept for representing social engineering.

The ANKH model [17] was inspired by the actor-network theory of Bruno Latour [13, 14]. In
contrast to the above two models, it has a flat structure: there is no difference between locations, objects,
and data. The formal representation is a hypergraph where the hyperedges describe groups of entities
that have direct access to each other, e.g., all entities that are in the same room. The modelling formalism
is heavily based on policies, which therefore must be well defined in order to avoid unrealistic cases. For
example, it should not be possible, if having two walls in the same room, one of them to gain access to
another room through the other wall.

All the aforementioned modelling languages have a common characteristic that we address in our
work: the analyses they provide are not modular. This means that it is not easily possible to extend or
parametrize the analyses with, e.g., new behaviours, because the behaviour assumed by these models is
deeply embedded into the models and analyses. Also, new model properties can be difficult to add, but
these shortcomings seem less important as they in principle can be overcome by extending the language.
In ExASyM, for example, it is difficult to model a physical object that changes its owner. Even though
it would be possible to represent the action, there is no straightforward way to model the movement of
objects since objects cannot move with actors. In Portunes and ANKH, on the other hand, there is no
direct way to model dynamically produced artifacts, e.g., a prank email, which makes it difficult to model
certain attack scenarios.

As just mentioned, behaviour of actors is not modular, i.e., it is fixed in the models. This appears to
be a major problem as, for example, it is not possible to define different types of actors’ behaviour so
that the vulnerabilities of the system can be examined with respect to each of them. In ANKH policies
are of outmost importance. Any approach of representing human behaviour would naturally depend on
such policies. The possibilities of expressing attacker’s behaviour would be either heaviliy restricted or
require significant amount of work in order to define good enough policies. On the other hand, well
defined policies also mean high level of granularity which could be more error-prone. Once we try to
generate attacks from system models, having too many details may lead to a generation of attacks that
are practically impossible.

The concept of human behaviour supported in the models is rather restricted and unnatural. None
of the formalisms have explicit support for modelling a wide range of social aspects. In Portunes, for
example, by using low-level policies, the social aspect is limited only to delegation, but other than this
it would be very difficult, if possible at all, to model an attacker’s behaviour. The other models have
similar restrictions, hindering modellers to represent human factor in the models. However, modelling
the human factor becomes increasingly important when analysing security threats [21].

The access to certain locations or data can in all models be defined by access control policies. How-
ever, there is no clear way to define the actor’s decision in case of several possible actions, neither is
there a way to estimate what is the probability of a certain action to happen over time. ExASyM, for
example, has a pessimistic approach: all actions that can be performed in the model, will be performed
by the analysis. Portunes has an explorer style, i.e., exploring all possibilities thus creating a too broad
world which might lead to unrealistic scenarios or potentially high level of complexity of the analysis.

In conclusion, none of the system models discussed are flexible enough when it comes to speci-
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fying and parametrizing behaviour. What is needed is exactly modularity to make human behaviour a
parameter of the modelled system.

3 Kinds of Insiders

Bishop et al. emphasise that the distinction between insider and outsider is not a result from a binary
function [2]. Instead, it is more realistic to distinguish between different kinds of attackers with respect
to the level of insiderness. These levels are based on different parameters such as access, knowledge,
and trust [2]. Mundie et al. also introduce different components in their attempt to define an ontology
for insider threat [12].

The system models discussed in Section 2 consider only one single kind of attacker. It is assumed that
they know everything, i.e., they represent the strongest possible attacker with respect to the model. This
assumption is partly justified by the fact that it is very hard to collect data to explain human behaviour.
However, as discussed above, assuming a strongest possible attacker also means that the analyses on
system models will deem most organisations to be vulnerable to most attacks. This happens because
an attacker with legal access to large parts of the organisation, such as a CEO or a cleaning lady, also
has the possibility to attack large parts of the organisation. In real life this problem is solved by, e.g.,
trust or background checks. In the analyses of system models, we need to assume that the actor might
perform the actions, thus raising an alert. Therefor we need other concepts in system models to solve
this problem [20].

As mentioned earlier, the Dolev-Yao attacker is the most powerful attacker when talking about pro-
tocol analysis [3]. In the formalisms described above the insider knows how to get to any location, for
example what key is needed to open a certain door, where the key is located, and how to get it. In this
case, we can think metaphorically of a Dolev-Yao insider. However, such kind of insider defines the
upper bound of the attacker’s abilities, which is not realistic in real life. In addition, modeling such
an attacker would make the system vulnerable to most kinds of attack thus making the model useless.
Instead we would like to define different types of actors, i.e., actors with typical kinds of behaviour.

Some studies already exist that could provide the data to define typical kinds of insiders. Magk-
laras et al. classify insider misuse as either intentional or accidental [15]. A study shows that accidental
security incidents by insiders happen more often than malicious insider attacks [11]. Existing research
on personality traits in relation to insider threats introduce a classification of the insiders based on moti-
vational categories. For instance, one category in the topology is the explorer type. Driven by curiosity,
they are benign and often perpetrate without realizing an attack [22].

By defining seperate groups of attackers it would be then possible to examine how vulnerable a
system is towards different behaviours. One relevant evaluation parameter is, for example, the likelihood
of social engineering [16].

4 Towards new models

In this section we introduce our approach to a new, modular model structure. It is to some extent inspired
by the already existing formalisms presented in Section 2, but in addition it aims at providing a more
straightforward and structured way of modelling human behaviour and including it in the analysis.

The biggest difference compared to the layout of the existing system models and analysis is exactly
this externalization of behaviour. While in their current version, the different models all deeply integrate
the behaviour into the analysis, and as argued above make it hard or impossible to change the behaviour,
we extend the model with a behaviour component, which determines the actors’ behaviour whenever
queried by the system model.
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The other extension over existing models, and also closely related to the addition of a behaviour
component, is the introduction of quantitative properties for entities such as actors, actions, and locations.
Supporting quantities in the model opens opportunities for new classes of questions one can ask the
model. Depending on the quantities chosen, it would allow not only to ask whether a possibility of an
attack exists, but also to get estimation about, for example, the cheapest attack in terms of cost, time, or
risk of detection. We believe that this extension is a step closer to a more realistic approach to system
analysis for vulnerabilities, as it also enables the modeller to use parametrisation of the model with
behaviour of actors.

In the rest of this section we describe these extensions in more detail, and then integrate them into
ExASyM in Section 5. It is important to note that these extensions are independent from the underlying
model, and can be added to any of the models discussed above, as well as to other system models.

4.1 Enhancing Models with Quantities

In their current version, the models presented in Section 2 do not support quantities other than connec-
tions and numbers of edges or paths. As soon as we want to answer more specialised questions or expect
more meaningful answers than that an attack is possible or how certain keys are used in the attack, we
need to provide this kind of additional information manually.

In a first step we add a set of “straightforward” metrics to the models, including:

• For actions the time to perform this action, the risk of detection when performing it, and the cost

Figure 1: The new system model structure. The most noteworthy changes are the explicit behaviour
component and the quantitative data, that extend the core consisting of infrastructure, assets, policies,
and actors. Each actor has a separate behaviour that is queried whenever the analysis or simulation
needs to perform an action. The data associated with the behaviour then determine, which action will be
performed. The goal describes, which mode the actor is in, e.g., minimizing risk of detection or time for
actions. Both actors and assets are associated with locations that describe where they are located in the
model.
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of performing it;

• For actors the likelihood of a social engineering attack to be successful and the risk appetite of the
actor; and

• For locations the risk of detection at this location (for example due to surveillance cameras).

It is important to note that most of these annotations depend on some kind of context. The time it takes
to perform a certain action certainly depends on the actor, on the location, on the risk appetite, and many
other factors.

We do not currently consider where these numbers come from; as mentioned before, many studies
exist that analyse insider behaviour, and these can be used to provide data for the models, as could be
sociological analyses and surveys. While this is ongoing work, the model in this form can already now
be used for simulations and experiments.

4.2 Explicit Behaviour

The second and more fundamental change to the model structure supported in existing models is the
explicit addition of a component deciding the behaviour of actors. This change can go along with a fur-
ther restructuring that also introduces separate components representing infrastructure, data, and actors,
respectively.

Figure 1 shows the explicit structure of the framework and the interaction between components. The
behaviour component takes as input the actor, the actor’s location, the data known, and the state of the
system, and returns which action the actor decides to perform. Each actor has a separate behaviour that
is queried whenever the analysis or simulation needs to perform an action. The goal describes, which
mode the actor is in, e.g., minimizing risk of detection or time for actions.

Models with such an explicit behaviour component ease experiments and analyses of systems with
different kind of attackers, simply by replacing the behaviour. It becomes straightforward, for example,
to model actors who are opportunists, who just want to obtain the item of interest and get out again, or
to model behaviour driven by resource constraint such as time or risk of detection. Also the behaviour
attributed to insiders, namely that they tend to repeat actions as long as they are not caught [9], and that
they become less risk-aware over time, can easily be modelled.

Another interesting aspect to investigate is the effect of mixed behaviours, for example, an attacker
minimising the risk of detection until the attack has succeeded or the attacker has been detected, and then
minimising the time needed to leave the organisation.

5 Restructuring a System Model

We now apply the structure introduced in the previous section to ExASyM, to obtain a modular system
model, in which the behaviour of actors is a parameter of the model. The model described here has been
implemented in [23] as a restructuring of the original model [18].

After adding a behaviour component to the system, the analyses available in ExASyM had to be
adapted accordingly. One of the main goals of the restructuring was to ease the addition of new analyses,
and to provide APIs to support access to the model’s functionality, including the behaviour. The work
in [23] showed that the adaptation of the existing analyses in the new model was straightforward.
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5.1 Different Kinds of Behaviours

The new behaviour component eases experiments with different kinds of behaviours, and also with phase
shifts between different behaviour within the same analysis.

5.1.1 Analysing Processes

One of our first approaches to identifying insider threats in system models was the analysis of a given
process describing actions of an actor in the modelled organisation [19]. This can be compared to static
analysis of programs; while this approach makes sense in the case of programs, it is unclear how one
would obtain the necessary process representing a complete trace of actions of an actor performed during
an attack.

Representing and analysing this “predetermined” behaviour in the new, modular ExASyM are
straightforward. The behaviour is instantiated with the process P that one wants to analyse, and ev-
ery time the model queries for the next action of the actor, the next action in the process P is returned. In
this scenario, the behaviour does completely ignore the state of the system and the location of the actor
when picking the next action.

5.1.2 The Greedy Explorer

When moving away from processes, the static analysis approximates all possible actions performed by
actors in the system. To do so, the analysis must assume that every action that can be performed in
the model also will be performed [18]. Also this scenario is easily re-implemented using the external
behaviour component. Whenever the model asks the actor for the next action, the actor gets the location
where he is currently located, obtains all actions permitted at this location by the access control policy,
and iteratively returns the admissible actions.

The original algorithm is shown in Figure 2 and shows the interweaving of the behaviour with the
analysis. Introducing a separate behaviour component induces almost no changes in the existing anal-
yses. At the same time it helps separating the core of the analysis (at which locations do we check for
actions to perform) from the actual decision, which actions will be performed. This is an immediate
result of the modularization of the system model. Another side effect is that we can simulate actors with
different behaviours.

5.1.3 More Advanced Approaches

The real benefit of the modular behaviour component becomes apparent when considering new be-
haviours such as mixed behaviour with different phases, as discussed above, or history-based behaviour,
which takes previous actions into account. All these could have been introduced also in the original
ExASyM model, but at the cost of changing the behaviour of all actors. As part of [23] also an AI was
implemented, and we are currently evaluating whether this more complex behaviour implementations
contribute to more insights and a better understanding of vulnerabilities.

5.1.4 Lessons learned

The addition of an external behaviour component to ExASyM, and the reimplementation of existing
analyses as well as new analyses was surprisingly easy. The code for existing analyses became much
clearer, since the representations of actors and data contain all their locations, so it is the behaviour
component that decides what to do in case of an actor possibly being located in different locations, not
the analysis. This in itself makes adding the behaviour component a worthwhile task.
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1: equivalent()
2: /* perform (log-)equivalent actions */

3: changed = true

4: while changed do
5: changed = false

6: for all actors n do
7: for all locations l that n might be located at do
8: for all locations l′ reachable from l in one step do
9: simulate all actions that n can perform on l′

10: for each action set changed if n at location l learns a new data item
11: end for
12: end for
13: end for
14: end while

Figure 2: The greedy explorer algorithm presented in [18]. For each actor in the system we check for
all locations he can be located at whether he can perform any actions, and if yes, perform them. When
switching to the external behaviour component, the only change necessary is in line 9, where we query
the behaviour for actor n at location l for actions that can be performed at l′.

1: for all actors n do
2: for all actions a in behaviour(n) do
3: simulate action a
4: for each action set changed if n at location l learns a new data item
5: end for
6: end for

Figure 3: The reimplementation of the loop in the pseudocode in Figure 2 (lines 6− 13) using the
behaviour component. It should be noted that all the information regarding, e.g., possible locations of
the actor is stored in its state, so the behaviour does not need additional input.

Also for developing new analyses the encapsulation of decisions about possible actions into the
behaviour is beneficial, as the resulting analyses concentrate on computing the analysis result, and do not
have to keep track of where actors and data might be located.

6 Conclusion

System models have recently been introduced to model organisations and evaluate their vulnerability
to threats and especially insider threats. Insider threats pose difficult problems for organisations. By
their very nature, insiders have access to and knowledge about the organisation’s infrastructure, data, and
workflows, and they use these in their everyday work to fullfil tasks. For this kind of attacks, system
models are ideally suited since they can be seen as white-box testing of organisations.

In an increasing numbers of attacks also from the outside, social engineering is now used, turning an
outside attack into an inside attack by convincing an insider to help; social engineering aims at making
an insider perform an action that he is allowed to perform, were it part of his daily work.

To evaluate organisations with respect to both social engineering and employee behaviour in general,
we need to be able to specify different kinds of behaviour for actors. However, current models do not
support this explicit specification of different behaviours. Instead, behaviour is deeply embedded in
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the analyses supported by the models, meaning that it is a complex, if not impossible task to change
behaviours. Especially when considering social engineering or the human factor in general, the ability
to use different kinds of behaviours is essential.

In this work we presented an approach to making behaviour explicit. Our framework is independent
of the system model used, and therefore applicable to other existing models as well. Using the external
behaviour component, we not only can simulate and analyse system models with different kinds of actors,
but we can also re-implement existing analyses, which without further effort take the different kinds of
behaviour into account.
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