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Abstract

We study the problem of traffic aggregation in a network with some natural security constraints.
Here each node i has traffic (number of packets) mi and they forward this information through the
network to a server node which wishes compute ∑mi. The sever node should not be able to know
any additional information about mi’s and an intermediate node should not be able to tamper (without
detection) the traffic information it is forwarding. We formalize this problem and suggest a solution
using a variant of aggregate signatures, and prove its security using standard hardness assumptions.

Keywords: Aggregate signature scheme with message aggregation, Random oracle model, network
traffic computation, secure computation of total traffic

1 Introduction

Secure multi-party computation was initiated by Yao [1] by introducing the millionaire problem. Two
millionaires A and B wants to find who is richer, without revealing the exact amount each has. Yao
proposed a solution, for this problem, which paved way to a generalized notion called multi-party com-
putation (MPC) protocols. In particular, a MPC protocol is used to compute the value of a public function
F on N variables on points (m1,m2, . . . ,mN), by N participants p1, p2, . . . , pN each having private data
m1,m2, . . . ,mN respectively. An MPC protocol is secure if no participant learns more than the publicly
known description of F and the result of F(m1,m2, . . . ,mN). In our work, F(m1,m2, . . . ,mN) = ∑mi,
where the security properties are enforced with a variant of aggregate signature scheme.

In an Aggregate Signature scheme N participants p1, p2, . . . , pN sign N messages say, m1,m2, . . . ,mN

to generate a single signature. The original motivation was to reduce the costs of communication and
computation during signature verification. The main desired security property of an aggregate signature
is that a forger should neither be able to extract any individual signature from an aggregate signature
nor be able to generate an aggregate signature without the private keys of all the N participants. Several
aggregate signatures with diverse properties were proposed in the literature [2, 3, 4, 5, 6, 7, 8, 9, 10, 11].

In computer networking, Network Traffic Control is an important task. To manage the network,
the administrator should know the total traffic (number of packets) in the various parts of the network.
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Figure 1: An example scenario

This allows one to detect packet losses and congestion. The individual node may forward the traffic
information to its neighbors and a malicious or faulty node may corrupt the traffic information. We focus
on a hierarchal traffic aggregation on a tree which is embedded on an arbitrary network.

Each client node i generates a traffic. Each leaf node simply forwards its mi’s to its parents. Each
client node i which is a non-leaf node computes the sum of all incoming traffic from its children along
with its own traffic mi and forwards the sum to its parent. The server is located at the root and would
like to compute the total traffic (∑mi) in the network. This is shown in figure 1. The two security
requirements are:

1. The server should not be able to compute any information about the traffic of individual clients.

2. A client i should not be able to tamper with the traffic forwarded to it.

We assume the total traffic ∑mi is bound by a polynomial. We formalize this problem and provide a
solution using standard hardness assumptions. The computational load on the server is O(

√
∑mi), which

is around 215 field operations for a traffic of 1 billion packets and each node computes one signature. The
two requirements regarding the computation of the traffic are:

1. The server should be able to compute the total traffic in the network.

2. No one else can compute the total traffic.

To achieve this property, we make use of the concept of aggregate signatures. The signature of each
node gets aggregated with the signatures of its ancestor and hence the total traffic of all children nodes
are summed up with the traffic of the parent node when the signature aggregation is done by the parent
node. It should be noted that all existing aggregate signature schemes require the messages to be sent
along with the signature to get verified by the verifier. Moreover, existing schemes do not allow secure
computation on the messages that are signed. For our purpose, we require that the messages (namely the
individual traffic in each node) should be summed up each time the signature is aggregated in a secure
way, which make all existing schemes handicapped in achieving these properties.
Our Contribution: In this paper, we provide a formal security model for aggregate signatures with
message aggregation, where the total traffic is polynomially bounded and provide a concrete scheme.
We observe that, the scheme should provide individual signature unforgeability, aggregate signature
unforgeability and confidentiality as the basic security requirements. We prove the security of our scheme
in the random oracle model. In our construction, each parent node gets convinced that the total traffic
which it received from its successors is not altered by any one during transit. Moreover, it can be easily
observed that, if an individual node wants to quote a higher amount of traffic, it can always quote it
and sign the hiked value but this cannot be restricted by any cryptographic protocol. Hence, we make
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the reasonable assumption that the nodes are honest in quoting their individual traffic but are curious in
knowing the total traffic flowing through the network, and the individual traffic of other nodes.

2 Preliminaries

In this section, we review a few preliminary assumptions that are used to prove the scheme.

2.1 Bilinear Pairing

Let G1 be an additive cyclic group generated by P, with prime order q, and G2 be a multiplicative cyclic
group of the same order q. A bilinear pairing is a map ê : G1×G1→G2 with the following properties.

• Bilinearity. For all P,Q,R ∈G1,

– ê(P+Q,R) = ê(P,R)ê(Q,R)

– ê(P,Q+R) = ê(P,Q)ê(P,R)

– ê(aP,bQ) = ê(P,Q)ab [Where a,b ∈R Z∗q]

• Non-Degeneracy. There exist P,Q ∈G1 such that ê(P,Q) 6= IG2 , where IG2 is the identity element
of G2.

• Computability. There exists an efficient algorithm to compute ê(P,Q) for all P,Q ∈G1.

2.2 Computational Assumptions

In this section, we review the computational assumptions related to bilinear maps that are relevant to the
protocol we discuss.

2.2.1 Computation Diffie-Hellman Problem (CDHP)

Definition 2.1. Given (P,aP,bP) ∈ G3
1 for unknown a,b ∈ Z∗q, the CDH problem in G1 is to compute

abP.

Definition. The advantage of any probabilistic polynomial time algorithm A in solving the CDH prob-
lem in G1 is defined as

AdvCDH
A = Pr

[
A (P,aP,bP) = abP | a,b ∈ Z∗q

]
The CDH Assumption is that, for any probabilistic polynomial time algorithm A , the advantage AdvCDH

A
is negligibly small.

3 Framework and Security Models

In this section, we propose the generic frame work for aggregate signature with message aggregation,
frame the security goals and security model for the same. There are three entities in the scheme. i) A
trusted Authority (TA) who is responsible for generating the private keys of the server and nodes of the
system. ii) The server who is interested in calculating the sum of all messages signed by the client nodes
in such a way that the server does not know the individual message sent by each node. iii) A network of
client nodes arranged in a tree like fashion. Each client node verifies and aggregates the signature sent
by its children and passes on to its parent node.

48



A Special Purpose Signature Scheme Vivek, Sharmila, Venkie and Pandu

3.1 Generic Framework for Aggregate Signature with Message Aggregation

• Setup(κ): The trusted authority (TA) generates the public parameters params and makes them
public.

• Keygen: The key generation algorithm is executed by the trusted authority to generate the private
key of the server and the client nodes:

– Ni: For each node Ni, TA computes the private key di and the public key is Yi and sends them
to the client node.

– Server: The private key S of the server is computed by the TA and is passed on to the server.
It should be noted that there should be a link between the private key of the server and the
private keys of the client nodes.

• Sign(mi,di,w j,k): The input parameters for this algorithm are the message mi which is polynomial
in κ , the private key of the ith node di, the session identifier of the jth session w j and the kth

execution of the sign algorithm in the session w j is represented by k. The output of this algorithm
is σi, the individual signature of the node Ni.

• AggSign(σl, for Nl ∈ {Child(Ni)},mi,di,w j,k): The input parameters for this algorithm are σl,
for Nl ∈ {Child(Ni)}, the signatures aggregated by Nl ∈ {Child(Ni)} the message mi which is
polynomial in κ , di the private key of the ith node, the session identifier of the jth session w j and
the kth execution of the sign algorithm in the session w j is represented by k. The output of this
algorithm is σi, which is the aggregation of all the signatures σl, for Nl ∈ {Child(Ni)} with Ni’s
signature, when executed by the client nodes and when executed by the server it produces σAgg.

• MessageRecover(σAgg,S,w j,k): The input to this algorithm are the aggregate signature σAgg, the
private key S of the server and w jis the session identifier and k is the signature number in session
w j. The output of this algorithm is the summation of all the messages ∑mi.

3.2 Security Goals

First, we set the security goals for the aggregate signature scheme with message aggregation.

• In the scheme, all client nodes are semi-trusted in the sense that any node cannot alter the message
signed by another node but can maliciously participate in the protocol, i.e. can sign on a message
that may attempt to increase or decrease the overall sum of messages without being identified by
the server.

• Individual Signature Unforgeability: The individual signatures of the client nodes should be
unforgeable with respect to existential forgery by any entity except the TA of the system.

• Aggregate Signature Unforgeability: The aggregate signature should be unforgeable with respect
to existential forgery and even though the server has some information about the user secret keys,
it should not be able to forge a valid aggregate signature.

• Confidentiality: The server or any client node should not be able to distinguish the message signed
by any other client node in the system.

• Completeness: The server should be convinced that all the client nodes have participated in the
transaction, i.e. even if one of the client nodes have not contributed in the signature generation,
the server should not be able to retrieve the aggregated message.
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3.3 Security Model

In this section, we provide the security model for proving the Individual Signature Unforgeability, Ag-
gregate Signature Unforgeability, Confidentiality and Completeness of the proposed aggregate signature
with message aggregation.

3.3.1 I - Individual Signature Unforgeability:

An individual signature is claimed to be existentially unforgeable under chosen message attack (EUF-
CMA), if any polynomially bounded forger F has a negligible advantage in the following game:

We consider the scenario wherein the client nodes are arranged in a hierarchy, so it forms a tree
structure. Thus, the response to Sign and AggSign will be made by C with respect to the position of the
current node. The queries with respect to the MessageRecover oracle will be responded by C only if all
nodes have contributed in the generation of the aggregate signature.
Setup: Let us consider there are n client nodes in the system. The challenger C runs the Setup algorithm
to generate the master public parameters params. C generates the private keys di (for i = 1 to n−1) and
public key Yi, (for i = 1 to n) and the private key S of the server by invoking the Keygen algorithm. C
now gives params, di, (for i = 1 to n−1), Yi, (for i = 1 to n) and S to F .
Training Phase: F asks polynomial number of queries to the Sign, AggSign and MessageRecover
oracles provided by C which are described below.

• Sign oracle: F can query the individual signature by any node for any session identifier w j and
signature number in the session k of a user with public key Yi. C chooses a message mi (of size
polynomial in κ), computes σ

(1)
i and σ

(2)
i . C sends σ

(2)
i as the sign by the user with public key Yi

on σ
(2)
i . The query may also be related to the target node with public key Yn.

• AggSign oracle: F can query the aggregate signature for any session identifier w j and signature
number in the session k to this oracle. C chooses message mi (of size polynomial in κ), for i = 1 to
n, aggregates them and sends the aggregate signature to F . F verifies the validity of the aggregate
signature and should be able to recover the aggregated message since F knows the private key of
the server.

• MessageRecover oracle: F produces an aggregate signature σAgg and queries the corresponding
aggregate message ∑mi, (for i = 1 to n). C verifies the validity of the aggregate signature and
should be able to recover the aggregated message since C knows the private key of the server.

Forgery: At the end of the Training Phase, F produces a valid message mi, signature σ∗ pair. F wins
the game if σ∗ is a valid signature and σ∗ is not the output of any previous queries to the Sign Oracle
with mi as the message, during the Training Phase.

3.3.2 II - Aggregate Signature Unforgeability:

An aggregate signature is claimed to be existentially unforgeable under chosen message attack (EUF-
CMA), if any polynomially bounded forger F has a negligible advantage in the following game:
Setup: Let us consider there are n client nodes in the system. The challenger C runs the Setup algorithm
to generate the master public parameters params. C generates the private keys di for i = 1 to n−1), the
public key Yi, (for i = 1 to n) and the private key S of the server by invoking the Keygen algorithm. C
now gives params, di, (for i = 1 to n−1), Yi, (for i = 1 to n) and S to F .
Training Phase: F asks polynomial number of queries to the Sign, AggSign and MessageRecover
oracles provided by C which are described below.
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• Sign oracle: F can query the individual signature by any node for any session identifier w j and
signature number in the session k of a user with public key Yi. C chooses a message mi (of size
polynomial in κ), computes σ

(1)
i and σ

(2)
i . C sends σ

(2)
i as the sign by the user with public key Yi

on σ
(2)
i . The query may also be related to the target node with public key Yn.

• AggSign oracle: F can query the aggregate signature for any session identifier w j and signature
number in the session k to this oracle. C chooses message mi (of size polynomial in κ), for i = 1 to
n, aggregates them and sends the aggregate signature to F . F verifies the validity of the aggregate
signature and should be able to recover the aggregated message since F knows the private key of
the server.

• MessageRecover oracle: F produces an aggregate signature σAgg and queries the corresponding
aggregate message ∑mi, (for i = 1 to n). C verifies the validity of the aggregate signature and
should be able to recover the aggregated message since C knows the private key of the server.

Forgery: At the end of the Training Phase, F produces a valid aggregate signature σ∗Agg. F wins
the game if σ∗Agg is a valid signature and σ∗Agg is not the output of any previous queries to the AggSign
Oracle with the same session identifier or the signature number in the session as in the forged aggregate
signature, during the Training Phase. It should be noted that F can produce the forgery for a message
set which was already queried to the AggSign Oracle but for a different session identifier or the signature
number in the session.

3.3.3 III - Confidentiality:

As the message is polynomial with respect to the security parameter κ , the usual way of proving confi-
dentiality, namely CCA2 game (Adaptive Chosen Ciphertext Attack) cannot be used in this context. This
is because, the adversary will always have a non-negligible advantage in winning the game by guessing
the message. To be specific the advantage of the adversary will be 1

Poly(κ) . Thus, we advocate for perfect
secrecy in this context.

Definition 3.1. A cryptosystem offers Perfect Secrecy if Pr[m] = Pr[m|σ ] for all m ∈ M and σ ∈ C,
where M and C are the message space and the ciphertext space respectively. That is, the probability
that the message is m is identical to the probability of m being the message even after the ciphertext σ is
observed.

4 Aggregate Signature with Message Aggregation (AG MA):

In this section, we propose the new Aggregate Signature supporting Message Aggregation AG MA and
prove its security in the security model provided in section 3. Important notations used in the scheme:

N - Set of all client nodes.
Ni - Client node with index i.
Ii - Set of all indices of child nodes of node Ni.

4.1 The Scheme

Setup: The trusted authority (TA) chooses two groups G1 and G2 of prime order q, a bilinear pairing
ê : G1×G1→G2, chooses a random generator P ∈R G1, chooses two hash functions F : G1→ G1 and
H : {0,1}∗→G1. The TA publishes the public parameters params = (q,G1,G2, ê,P,H(.),F(.))

Keygen: The key generation algorithm is executed by the trusted authority as follows:
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• Ni: For each node Ni ∈ N, TA chooses xi,yi ∈R Z∗q and computes Yi = yiP. The private key of the
node Ni is di = 〈xi,yi〉 and the public key is Yi.

• Server: The private key of the server S = ∑xiP, where i = 1 to |N|. The server pre-computes the
value β = ê(P,P) and keeps it for the message recovery phase.

Sign(mi,di,w j,k): The input parameters for this algorithm are the message mi which is polynomial in
κ (Represented as Poly(κ)), the private key of the ith node di, the session identifier of the jth session
w j and the kth execution of the Sign algorithm in the session w j is represented by k. σi, the individual
signature of the node Ni is computes as follows.

• Compute H jk = H(w j,k).

• Compute the signature as σ
(1)
i = xiH jk +miP.

• Compute Fi = F(σ
(1)
i ) and σ

(2)
i = yiFi.

• The signature on message mi by node Ni is σi = 〈σ (1)
i ,σ

(2)
i 〉.

Remark: Note that even if the size of mi is polynomially bounded, the size of xi is very large because
xi ∈ Z∗q and hence any adversary cannot obtain mi from σ

(1)
i .

AggSign(〈{σl},∀l ∈ Ii〉,mi,di,w j,k): Let mi be the message to be aggregated, di be the private key of
the ith node and w j be the session identifier of the jth session and k represent the kth execution of the
AggSign algorithm in the session w j.

• The following steps are executed to obtain the aggregate signature when this algorithm is run by
the server:

– Computes H jk = H(w j,k).

– Checks for all nodes Nl , where l ∈ Iserver whether, ê(σ (2)
l ,P) ?

= ê(F(σ
(1)
l ),Yi).

– Computes σAgg =

(
∑

l∈Iserver

(σ
(1)
l )

)
.

• When this algorithm is executed by the ith client node, the signature is aggregated as follows:

– Computes H jk = H(w j,k).

– Checks for all nodes Nl , where l ∈ Ii whether, ê(σ (2)
l ,P) ?

= ê(F(σ
(1)
l ),Yi).

– If all the above checks are valid, Ni computes the aggregate signature as

σ
(1)
i =

(
∑
l∈Ii

(σ
(1)
l )

)
+ xiH jk +miP

– Computes Fi = F(σ
(1)
i ) and σ

(2)
i = yiFi.

– The signature σi = 〈σ (1)
i ,σ

(2)
i 〉 on message mi by node Ni is passed on to its parent node.
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Remark: Note that the function of σ
(1)
i is to aggregate the individual traffic (i.e. mi) of the node with the

sum of all traffics of its successors. This signature can easily be altered by an adversary, by just adding
some random m′P (where m′ is polynomial in κ) to σ

(1)
i but the adversary will not be able to generate

σ
(2)
i corresponding to the altered σ

(1)
i value. Thus, σ

(2)
i acts as a signature on σ

(1)
i by the node that has

generated σ
(1)
i and σ

(1)
i acts as the value that aggregates the individual traffic of the node and the total

traffic of the successors of the node.

MessageRecover(σAgg,S,w j,k): The server obtains σAgg by executing AggSign algorithm and recovers
∑mi as follows:

• Computes H jk = H(w j,k).

• Computes α = ê(σAgg,P)ê(H jk,S)−1

• It is easy to see that α = β ∑mi .

• Now, the server solves DL of α with respect to β to find ∑mi.

Remark: Note that since we made the assumption that mi is polynomially bounded, ∑mi is also bound
polynomially and hence small. Thus, Discrete Logarithm can be solved efficiently in reasonable time for
this case. It should be further noted that this is a valid assumption because the value of a typical network
traffic can only be polynomial with respect to the security parameter κ .

5 Security Proof

In this section we formally prove the security of our scheme.

5.1 Individual Signature Unforgeability

Theorem 5.1. If there exists an algorithm to break the EUF-CMA security of the individual signature
of the AG MA scheme then there exists an algorithm C that can solve the CDH problem with the same
advantage.

Proof: The challenger C is challenged with an instance of the CDH problem say, (P,aP,bP) ∈ G3
1 for

unknown a,b ∈ Z∗q. Let us consider that there exists a forger F , who is capable of forging the individual
signature of the AG MA scheme, C can make use of F to compute abP by playing the following
interactive game with F .

Setup: Let us consider there are n client nodes in the system. The challenger C performs the following
to setup the system:

• Chooses xi,yi ∈R Z∗q, (for i = 1 to n−1) and generates the private keys di = 〈xi,yi〉 and public keys
Yi = yiP, (for i = 1 to n−1).

• Chooses xn ∈R Z∗q, sets Yn = aP (here, aP is taken from the CDH instance) and the private key of

the server as S =
n−1
∑

i=1
xiP.

• Designs the two hash functions H and F as random oracles OH and OF . C maintains lists LH and
LF in order to consistently respond to the queries to the random oracles OH and OF .

53



A Special Purpose Signature Scheme Vivek, Sharmila, Venkie and Pandu

C now gives params = (q,G1,G2, ê,P), yi, (for i = 1 to n−1), xi, (for i = 1 to n), Yi, (for i = 1 to n) and
S to F .
Training Phase: F asks polynomial number of queries to the Sign, AggSign and MessageRecover
oracles provided by C . The design of the oracles and responses given by C to F are described below.
OH(w j,k): In order to respond to this query, C checks whether a tuple of the form 〈w j,k,r jk,H jk〉 exists
in the list LH . If it exists, C returns H jk as the response to this query, else C performs the following:

• Chooses r jk ∈R Z∗q.

• Computes the value H jk = r jkP.

• Stores the tuple 〈w j,k,r jk,H jk〉 in the list LH .

• Returns H jk as the response to this query.

OF(σ
(1)
i ): When this oracle is queried with input σ (1), C checks whether a tuple of the form 〈σ (1)

i , fi,Fi〉
exists in the list LF . If it exists, C returns the corresponding Fi to F , else performs the following to
answer this query:

• Chooses fi ∈R Z∗q.

• Computes the value Fi = fibP (Where bP is taken from the CDH instance).

• Stores the tuple 〈σ (1)
i , fi,Fi〉 in the list LF .

• Returns Fi as the response to this oracle.

OSign(w j,k): If the signature does not correspond to the target node Nn, C proceeds as per the sign
algorithm, otherwise C responds as follows:

• Chooses r jk, fi ∈R Z∗q and a message mi ∈RPoly(κ).

• Computes the value H jk = r jkP.

• Stores the tuple 〈w j,k,r jk,H jk〉 in the list LH .

• Computes the signature σ
(1)
i = xiH jk +miP.

• Computes the value Fi = fiP.

• Stores the tuple 〈σ (1)
i , fi,Fi〉 in the list LF .

• Computes σ
(2)
i = fi(bP). (Here, bP is taken from the CDH problem.)

• Returns the signature σi = 〈σ (1)
i ,σ

(2)
i 〉 to F .

OAggSign(〈{σl},∀l ∈ Ii〉,mi,w j,k): F can query the aggregate signature on any set of signatures 〈{σl},∀l ∈
Ii〉. C responds as follows:
if Ni is the root node (essentially, the server), C performs the following:

• Computes σAgg =

(
∑

l∈Iserver

(σ
(1)
l )

)
and sends σAgg as the response to F .

if Ni is not the root node (essentially, not the server), C performs the following:
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• Chooses r jk, fi ∈R Z∗q.

• Sets H jk = r jkP and stores the tuple 〈w j,k,r jk,H jk〉 in the list LH .

• Checks for all nodes Nl , where l ∈ Ii whether, ê(σ (2)
l ,P) ?

= ê(F(σ
(1)
l ),Yi).

• If all the above checks are valid, C computes the aggregate signature as σ
(1)
i =

(
∑

l∈Ii

(σ
(1)
l )

)
+

xiH jk +miP.

• Computes the signature on the aggregate signature as follows:

– If i = n, computes the value Fi = fiP, stores the tuple 〈σ (1)
i , fi,Fi〉 in the list LF and computes

σ
(2)
i = fi(bP). (Here, bP is taken from the CDH problem.)

– If i 6= n, computes the value Fi = fiP, stores the tuple 〈σ (1)
i , fi,Fi〉 in the list LF and computes

σ
(2)
i = yi( fiP). (Since C knows the private key corresponding to the nodes Ni, for i = 1 to

n−1).

• The signature σi = 〈σ (1)
i ,σ

(2)
i 〉 is returned to F a the aggregate signature by node Ni.

OMessageRecover(σAgg,S,w j,k): In order to respond to this query C performs the following:

• C checks for a tuple of the form 〈w j,k,r jk,H jk〉 in the list LH and retrieves the corresponding H jk.

• Since C knows
n
∑

i=1
xi, computes

n
∑

i=1
xi(H jk).

• Computes ∑miP = σAgg−
n
∑

i=1
xi(H jk).

• Solves DL on ∑miP with respect to P, retrieves ∑mi and returns it to F

Forgery: At the end of the Training Phase, F produces a valid signature σ∗n = 〈σ∗(1)n ,σ
∗(2)
n 〉. C

retrieves the solution for the CDH problem from it as follows:

• C checks for the tuple of the form 〈σ∗(1)i , fi,Fi〉 in the list LF and retrieves fi. (C knows that
σ
∗(2)
n = ynFi.)

• Since, Fi was set to be fibP during OF query corresponding to σ
∗(1)
i and Yn = ynP is set to be aP

during the setup, C can compute abP = f−1
i σ

∗(2)
n .

5.2 Aggregate Signature Unforgeability

Theorem 5.2. If there exists an algorithm to existentially forge the aggregate signature of the AG MA
scheme then there exists an algorithm C that can solve the CDH problem with the same advantage.

Proof: The challenger C is challenged with an instance of the CDH problem say, (P,aP,bP) ∈ G3
1 for

unknown a,b ∈ Z∗q. Let us consider that there exists a forger F , who is capable of forging the aggregate
signature of the AG MA scheme, C can make use of F to compute abP by playing the following
interactive game with F .
Setup: Let us consider there are n client nodes in the system. The challenger C performs the following
to setup the system:
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• Chooses xi,yi ∈R Z∗q, (for i = 1 to n−1) and generates the private keys di = 〈xi,yi〉 and public keys
Yi = yiP, (for i = 1 to n−1).

• Chooses yn ∈R Z∗q, sets Yn = ynP and the private key of the server as S =
n−1
∑

i=1
xiP+aP (here, aP is

taken from the CDH instance) .

• Designs the two hash functions H and F as random oracles OH and OF . C maintains lists LH and
LF in order to consistently respond to the queries to the random oracles OH and OF .

C now gives params = (q,G1,G2, ê,P), yi, (for i = 1 to n), xi, (for i = 1 to n−1), Yi, (for i = 1 to n) and
S to F .
Training Phase: F asks polynomial number of queries to the Sign, AggSign and MessageRecover
oracles provided by C . The design of the oracles and responses given by C to F are described below.

OH(w j,k): In order to respond to this query, C checks whether a tuple of the form 〈w j,k,r jk,H jk〉 exists
in the list LH . If it exists, C returns H jk as the response to this query, else C performs the following:

• Chooses r jk ∈R Z∗q.

• Computes the value H jk = r jkbP (here, bP is taken from the CDH instance) .

• Stores the tuple 〈w j,k,r jk,H jk〉 in the list LH .

• Returns H jk as the response to this query.

OF(σ
(1)
i ): When this oracle is queried with input σ (1), C checks whether a tuple of the form 〈σ (1)

i , fi,Fi〉
exists in the list LF . If it exists, C returns the corresponding Fi to F , else performs the following to
answer this query:

• Chooses fi ∈R Z∗q.

• Computes the value Fi = fiP.

• Stores the tuple 〈σ (1)
i , fi,Fi〉 in the list LF .

• Returns Fi as the response to this oracle.

OSign(w j,k): If the signature does not correspond to the target node Nn, C proceeds as per the sign
algorithm, otherwise C responds as follows:

• Chooses r jk, fi ∈R Z∗q and a message mi ∈RPoly(κ).

• Computes the value H jk = r jkP.

• Stores the tuple 〈w j,k,r jk,H jk〉 in the list LH .

• Computes the signature σ
(1)
i = r jkaP+miP.

• Computes the value Fi = fiP.

• Stores the tuple 〈σ (1)
i , fi,Fi〉 in the list LF .

• Computes σ
(2)
i = fiP.
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• Returns the signature σi = 〈σ (1)
i ,σ

(2)
i 〉 to F .

OAggSign(〈{σl},∀l ∈ Ii〉,mi,w j,k): F can query the aggregate signature on any set of signatures 〈{σl},∀l ∈
Ii〉. C responds as follows:
if Ni is the root node (essentially, the server), C performs the following:

• Computes σAgg =

(
∑

l∈Iserver

(σ
(1)
l )

)
and sends σAgg as the response to F .

if Ni is not the root node (essentially, not the server), C performs the following:

• Chooses r jk, fi ∈R Z∗q.

• Sets H jk = r jkP and stores the tuple 〈w j,k,r jk,H jk〉 in the list LH .

• Checks for all nodes Nl , where l ∈ Ii whether, ê(σ (2)
l ,P) ?

= ê(F(σ
(1)
l ),Yi).

• If all the above checks are valid, C computes the aggregate signature as follows:

– If i = n, computes σ
(1)
i =

(
∑

l∈Ii

(σ
(1)
l )

)
+ r jk(aP)+miP. (Since C knows the private key xi

corresponding to the nodes Ni, for i = 1 to n−1.)

– If i 6= n, computes σ
(1)
i =

(
∑

l∈Ii

(σ
(1)
l )

)
+ xir jkP+miP. (Here, aP is taken from the CDH

problem.)

• Computes Fi = fiP, stores the tuple 〈σ (1)
i , fi,Fi〉 in the list LF and computes σ

(2)
i = yi fiP. (Since

C knows the private key yi corresponding to all the nodes Ni, for i = 1 to n.)

• The signature σi = 〈σ (1)
i ,σ

(2)
i 〉 is returned to F a the aggregate signature by node Ni.

OMessageRecover(σAgg,S,w j,k): In order to respond to this query C performs the following:

• C checks for a tuple of the form 〈w j,k,r jk,H jk〉 in the list LH and retrieves the corresponding r jk.

• C computes X =
n−1
∑

i=1
xi(r jkP)+ r jkaP.

• Computes ∑miP = σAgg−X .

• Solves DL on ∑miP with respect to P, retrieves ∑mi and returns it to F .

Forgery: At the end of the Training Phase, F produces a valid signature σ∗n = 〈σ∗(1)n ,σ
∗(2)
n 〉 for the

session identified by w j and the signature number in the session w j as k. C computes the solution for the
CDH problem from σ∗n as follows:

• C checks for the tuple of the form 〈w j,k,r jk,H jk〉 in the list LH and retrieves r jk. (C knows that

σ
∗(1)
n =

n
∑

i=1
xi(r jkbP).)

• Since the private key of the server S was set to be
n−1
∑

i=1
xi +aP and OH corresponding to (w j,k) was

set to be r jkbP, C computes X = abP+
n
∑

i=1
miP = σ

∗(1)
n −

n−1
∑

i=1
xi(r jkbP).
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• C computes ê(P,P)
n
∑

i=1
mi
= ê(σAgg,P)ê(

n−1
∑

i=1
xiP+aP,r jkbP)−1.

• Solves DL on ê(P,P)
n
∑

i=1
mi

with respect to ê(P,P), to find
n
∑

i=1
mi.

• Computes abP = r−1
jk (σAgg− (

n
∑

i=1
mi)P−

n−1
∑

i=1
xi(r jkbP)) and outputs it as the solution for the CDH

problem instance.

Thus, C solves the CDH problem with non-negligible probability.

5.3 Confidentiality

Theorem 5.3. The aggregate signature with message aggregation scheme AG MA offers perfect secrecy.

The condition for perfect secrecy is Pr[m] = Pr[m|σ (1)
i ] for all m ∈M and σ

(1)
i ∈C, where M and C

are the message space and the ciphertext space respectively. Since the ciphertext component responsible
for the confidentiality of the scheme is σ

(1)
i and we know that σ

(1)
i ∈G1.

• The probability that a random σ
(1)
i will be in the range of encryption is |M||G1| .

• Probability that σ
(1)
i is the image of a specific message m ∈M is 1

|M| .

• Therefore, Pr[σ (1)
i |m] =

[
|M|
|G1|

][
1
|M|

]
=
[

1
|G1|

]
.

• Since σ
(1)
i ∈G1, Pr[σ (1)

i ] = 1
|G1| .

The condition for perfect secrecy is Pr[m] = Pr[m|σ (1)
i ], applying Baye’s Theorem (If Pr[y] > 0, then

Pr[x|y] = Pr[x]Pr[y|x]
Pr[y] .), we get the following:

Pr[m|σ (1)
i ]=

Pr[m]Pr[σ (1)
i |m]

Pr[σ (1)
i ]

=
Pr[m]

[
1
|G1 |

]
[

1
|G1 |

] = Pr[m]

=⇒ Perfect Secrecy. �

6 Conclusion

In this paper, we have studied the problem of traffic aggregation in a network. We have formalize this
problem and suggested a solution using a variant of aggregate signature scheme. We have proved the
security of the scheme using standard hardness assumptions in the random oracle model. In the current
model, we assume that each node is honest but curious and hence consider that all the nodes participate
in the protocol with honest individual traffic values. Thus, our model captures the adversary who is an
outsider and tries to know the total traffic or individual traffic of a node and also captures the adversary
who is an insider and tries to know the individual traffic of other nodes.
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